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Abstract

The observation that computer vision methods overfit to
dataset specifics has inspired diverse attempts to make ob-
Jject recognition models robust to domain shifts. However,
similar work on domain-robust visual question answering
methods is very limited. Domain adaptation for VQA dif-
fers from adaptation for object recognition due to addi-
tional complexity: VQA models handle multimodal inputs,
methods contain multiple steps with diverse modules result-
ing in complex optimization, and answer spaces in different
datasets are vastly different. To tackle these challenges, we
first quantify domain shifts between popular VQA datasets,
in both visual and textual space. To disentangle shifts be-
tween datasets arising from different modalities, we also
construct synthetic shifts in the image and question domains
separately. Second, we test the robustness of different fam-
ilies of VOA methods (classic two-stream, transformer, and
neuro-symbolic methods) to these shifts. Third, we test the
applicability of existing domain adaptation methods and de-
vise a new one to bridge VOA domain gaps, adjusted to
specific VOA models. To emulate the setting of real-world
generalization, we focus on unsupervised domain adapta-
tion and the open-ended classification task formulation.

1. Introduction

Visual question answering (VQA) borders on Al-
completeness: it requires perception (visual and linguistic)
and cognition. Despite the strong performance of recent
VQA methods, they fall short of generalization and true
reasoning: they are known to suffer from dataset bias [22],
require domain-specific languages or domain-specific exe-
cutable program annotations [34, 41], or must be trained
separately for each new dataset.

Prior work in domain adaptation for object recognition
examines how robust methods are when trained and tested
on different datasets (domains), and further proposes tech-
niques to bridge domain gaps. In contrast, there is a short-
age of analyses of how domain-robust visual question an-
swering methods are. Importantly, domain adaptation tech-

Does the curtain to the left of the side

What time is it? table have small size and white color?

Figure 1. The same visual setting can be captured in different
ways in VQA datasets, and paired with different information needs
(questions). They may require deduction using visual contents,
reading from a specific region of the image, or reasoning about
complex spatial relationships. All examples are selected from real
VQA datasets, i.e. VQA v2, VQA Abstract, VizWiz and GOA.

niques cannot successfully be applied in the VQA setting in
a straight-forward manner. First, VQA models take inputs
across multiple modalities, each of which could contribute
to the domain specificity of the trained models. Second, dif-
ferent VQA methods have multiple intermediate stages and
processing steps over the inputs, which makes optimization
challenging. Domain adaptation techniques could be ap-
plied at multiple of these stages, and domain adaptation can
be performed jointly or separately from VQA training, with
varying success. Third, answer spaces in different datasets
are vastly different. While domain adaptation methods exist
to tackle non-identical answer spaces in object recognition,
this setting is not very common. Conversely, in VQA, it is
the norm, since many datasets are highly specialized (for
example, VizWiz [23] contains special answers “unanswer-
able” or “unsuitable image” because image-question pairs
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are provided by visually impaired users).

To tackle each of these challenges, we propose the fol-
lowing steps. First, to understand how the multiple modal-
ities contribute to domain shifts, we break down and mea-
sure both visual and textual domain shifts across datasets.
We disentangle shifts in image and question space by con-
structing synthetic dataset variants, to test how VQA meth-
ods respond to these separate shifts. To understand how the
multiple steps and mechanisms in recent VQA models make
them robust or fragile to shifts, we compare different fam-
ilies (classic two-stream, transformer, and neuro-symbolic
methods) by exposing them to different shifts. We exam-
ine multiple mechanisms to bridge domain gaps for these
methods, in the challenging setting of unsupervised adapta-
tion where no labels from the target set are available, and
discuss the differences in successful versus unsuccessful at-
tempts. Third, to examine the contribution of answer space
differences, we use the open-ended VQA classification for-
mulation. Because no embedding is available for the answer
options, the gap in answer spaces is more pronounced. We
compare performance across datasets and observe relations
between particular modality shifts and domain robustness.

In more detail, we compare image and question repre-
sentations across nine datasets: VQA v1 and v2, VQA Ab-
stract, Visual 7w, Visual Genome, COCO QA, CLEVR,
GQA and VizWiz. We find there are large shifts in both
visual and textual space, both at a low- and high-level (e.g.
syntax and meaning). We separately apply automatic style
transfer (for the visual modality) and paraphrasing (for the
textual modality) to disentangle VQA methods’ robustness
separately to each of these artificial shifts. We also observe
disparate contributions of these shifts in methods’ perfor-
mance across real domain gaps.

We find evidence that neuro-symbolic, compositional
models are more robust to domain shift than others, because
in those methods, perception and reasoning are more disen-
tangled. We argue that reasoning has the potential to be
domain-independent: for example, the process of reason-
ing about spatial relationships can in theory be abstracted
away from pixel space, thus should not need retraining if the
pixel space changes. Inspired by the potential of perception-
reasoning disentanglement, we design a two-stage domain
adaptation technique to bridge domain gaps. We show that
this two-stage variant is more successful than a direct, one-
stage application of [17], and a version of [47], for recover-
ing performance lost due to domain gaps.

We are only aware of two prior works on domain adap-
tation for VQA [10, 38]. Both of these consider supervised
domain adaptation (labels present in target dataset) while
we operate in an unsupervised setting (labels on source
dataset only). They work with fewer datasets (2-5) and ap-
ply domain adaptation to fewer and simpler VQA methods.
Our work can be seen as a “reality check” for VQA meth-

ods, similar to prior reality checks for metric learning and
weakly supervised object detection [ 13, 43].

To summarize, our contribution is to answer the follow-
ing questions: (1) In what ways (visual, semantic, syntactic)
are image-question pairs from recent VQA datasets differ-
ent? (2) What kind of dataset differences most affect VQA
generalization? (3) Which methods are more robust to syn-
thetic visual shifts? (4) Which methods allow more gener-
alization when training/testing on different VQA datasets?
(5) What domain adaptation techniques most successfully
bridge domain gaps? (6) What are the challenges of per-
forming domain adaptation in unsupervised VQA?

2. Related Work

VQA method families. We consider three families of
methods and their robustness to domain shifts. Classic two-
stream methods [3, 32,42, 55] represent the input image and
question separately, then fuse the representations to obtain
an answer. Perception and cognition are entangled. Trans-
Jormer methods [12, 16,39, 58, 65] compute multiple layers
of attention between entities in each modality (e.g. words
to visual regions). They often use unsupervised pre-training
on massive vision-language datasets (e.g. images with text
captions). Other than positional encodings, these methods
have no separate relational reasoning component. Neuro-
symbolic, knowledge base, and graph methods are concep-
tually distinct as they break down question-answering into
modules. Some of these perform perception (e.g. recog-
nize objects) while others perform cognition (e.g. relational
reasoning about object position). Notable representatives
include [1, 2, 4,29, 31, 34, 41,44, 61, 62]. For example, in
[2, 4, 41, 60], entities are first parsed in a perception step,
then reasoning takes a composable logic form, and ques-
tions are answered by verifying if objects satisfy a relation-
ship implied by the question. [44] extract information about
objects, then look up related concepts in a knowledge base,
and perform reasoning using a GCN. In this paper, we show
that the ability to disentangle perception and reasoning en-
ables more domain-robust question answering.

Dataset bias in VQA. Prior work has found it is easy to
introduce undesirable artifacts during dataset construction,
which models can utilize to achieve misleadingly strong re-
sults. For example, [22] find that questions can be answered
well using language priors (and bypassing the need for rea-
soning). [51] help a model cope with priors by discouraging
it from producing an answer similar to that produced by an
image-blind model. [56] accomplish robustness through ad-
versarial regularization, [21] by constructing logic compo-
sitions of existing questions, [20] through semantic image
mutations, and [27] by adding noise to the questions. All of
these are concerned with bias or lack of robustness within
a single dataset, but do not examine how datasets differ in
terms of image and question compositions.

Domain adaptation (DA) and generalization (DG) cope
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with domain shifts, e.g. for object recognition. Unlike
generalization [9, 49, 57], adaptation [6, 17, 26, 47] as-
sumes that some (unlabeled and/or sparsely labeled) data
is available in the target domain. In the most common, clas-
sic DA setting, source and target class vocabularies over-
lap. Domain adaptation is challenging for VQA in that
answer spaces do not overlap. This setting has also been
tackled in DA for object recognition, but less commonly:
in partial DA [7, 8, 67], the target class space is a subset
of the source space; and in open-set DA [40, 54], the tar-
get space could have new classes not present in the source.
The key idea in DA is to bridge the source and target dis-
tributions and arrive at a shared representation. Some in-
fluential methods include gradient reversal from a domain
classifier to ensure domain-agnostic features [17], cycle-
consistency [26], separating shared and domain-specific
features [0, 38], minimizing moments of features in differ-
ent domains [47], maximizing norm which correlates with
transferrability [63], maximizing overlap between proto-
types from different datasets [45], etc. Methods specific to
particular vision tasks also exist, e.g. for object detection
where gradient reversal is applied at both the image and in-
stance (region) level [1 1], for semantic segmentation [68],
etc. Some prior work [15, 36, 37, 40, 48, 53, 59, 66] lever-
ages style transfer techniques to bridge domain gaps, while
we use style transfer and language paraphrasing to factor
our shifts in the complex multi-input setting (images and
question) in VQA.

Prior work in domain-robust VQA. Our work is the first
to perform fully unsupervised domain adaptation for VQA.
There are only two prior works in domain-robust VQA we
are aware of, but both operate in the supervised setting (i.e.
some target labels are available). [10] find most of the do-
main shift lies in questions and answers. We consider more
recent and diverse datasets, and find these contain signif-
icant image shifts as well. Further, [10] only considered
a simple two-input MLP and two 2016 methods, while we
consider three families of recent VQA methods. [10] is par-
tially unsupervised; they do not use target labels to train
the VQA model, but do use them to compute adaptable fea-
tures. [64] only study the shift between two datasets, and
only apply domain adaptation over a non-standard method
for VQA. In contrast to [ 10, 64], we study nine datasets, and
a new style transfer setting to isolate shifts in visual space.

3. Approach

We assume we have a labeled source dataset D =
{df,...,df,...,d‘spsl}, where each df is an image-
question-answer triplet {v{, q7, a7 }. The image and ques-
tion are inputs to the VQA model, and the ground-truth
answer is the desired output. We also have an unlabeled

AT T T T
target dataset D = {dj,...,d;,... ,d‘le} where each
d] is an image-question pair {v], q] }, and no answers are

provided even in the training set. We aim to build a VQA
model using DS and 157, which can answer questions in
DT. Any two datasets D and DT have potentially large
domains gaps, in terms of marginal distributions (of images,
questions, or answers) or conditional distributions (e.g. an-
swers given the images or questions). Therefore, the major
challenge is to maximize the performance on DT despite
the domain gaps, and our strategy is to ensure the model
trained on D* is as transferable to DT as possible.

We measure domain gaps for nine datasets (Sec. 3.1), de-
scribe how to construct synthetic gaps to disentangle visual
and linguistic shifts (Sec. 3.2), and how to adapt domain
adaptation techniques to bridge gaps (Sec. 3.3) for individ-
ual VQA methods (Sec. 3.4).

3.1. Measuring real domain gaps

The first step towards building a domain-robust VQA
model is to understand the multi-faceted dataset gaps. We
analyze the following datasets: (1) VQA vl [5]; (2) VQA
v2 [22]; (3) Visual Genome [35]; (4) Visual7W [69]; (5)
COCO-QA [52]; (6) GQA [30]; (7) CLEVR [35]; (8) VQA
Abstract [5]; (9) VizWiz [23]. We could measure shifts in
the following distributions across datasets: (1) P(v); (2)
P(q): (3) P(a): (4) P(qlv): (5) P(alv); (6) P(alq): (7)
P(al|v,q), where v, q and a represent image, question and
answer respectively. Here, we focus on measuring shifts in
P(v) and P(q), To measure how much the corresponding
distribution changes across datasets, we using Maximum
Mean Discrepancy (MMD):

MMD(D%, D") = |Ex~ps[p(X)] = Ey prlp(Y)]lln

Ng MNg ng Nt

- % ZZk(Xi,Xj) + %sz(}’i,}’j)
ng i=1 j=1 i i=1 j=1
B nfnt Zﬁzk(xi’yﬂ M)
i=1 j=1

where k represents the RBF kernel and ng, n; represent
sample size in the source and target domains. For visual rep-
resentations, we use pretrained ResNet-101 [25] to extract
image embeddings {v;,v;} for 10,000 randomly sampled
images in each pair of datasets {D5, DT}. We use the fi-
nal 2048-D embedding as high-level semantic features, and
the spatially average-pooled embedding after conv3_4 layer
(512-D) as low-level features. For questions, we measure
both semantic and syntactic gaps using two different rep-
resentations. For the semantic representation, we choose
pre-trained BERT [14] to encode 10,000 randomly sampled
questions {q;, q;} from pairwise datasets {D%, DT}, For
syntactic features, we follow the approach in [19] to extract
20 low-level features: question length, number of conjunc-
tions, pronouns, prepositions, etc. We show the results in
Tables | and 2.
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3.2. Constructing synthetic shifts to isolate effects

As we can see in Tables 1 and 2, many dataset pairs dif-
fer in both their image and question distributions. Our goal
is to understand precisely how different VQA methods re-
spond to shifts in each distribution, but this is not straight-
forward because both modalities would affect the VQA per-
formance. Therefore, to disentangle domain gaps arising
from the image or question modality, we synthetically con-
struct gaps in either image or question space. To do this, we
use image style transfer and question paraphrasing.

Specifically, we create stylized variants of each image
in D¥. Let F(v,f) be a style transfer function which
takes in a content image v and style image f and outputs
the content image now with a new style, vi. We choose
Ada-IN [28] as our style transfer function F. We also pay
extra attention to ensure colors are preserved in the style
transfer process, which is important to ensure answers to
color-related questions remain valid. We achieve the color
preservation by converting style-transferred images into the
YUV color space, and copying the UV channels from the
original images. We also experimented with the color his-
togram matching in [18&], but ultimately chose luminance-
only transfer. We also control the transfer strength o in [28]
to avoid losing too much information. We manually verified
color and answers were preserved on a small set of images.

For questions, let G be a paraphrasing function,
G(q,g) = g®, where q is a question and g is a reference
“style”. We finetuned a massively pretrained sequence-
to-sequence generative TS5 model [50] on Quora duplicate
questions', to shift the question q to a different style.

Synthetic dataset pairs: We apply the image style
transfer and question paraphrasing separately, to construct
new pairs of VQA datasets that only have domain shift in
one modality. For example, by experimenting on D° =
{v,q,a} and DT = {vf q}, the results would reveal the
model’s robustness on image domain shift. If we choose
DT = {v,q&}, then similar experiments would show the
impacts from question domain shift. Note that in both set-
tings, the answers are kept unchanged thus the impacts from
answer space shift will be eliminated. We do not use the
answers on the target domain to train, even though they are
identical to those in the source domain.

3.3. Bridging domain gaps

Our goal is to ensure high accuracy on DT, even though
we have no ground-truth answers in the target domain as
supervision. Thus, we minimize a loss of this type:

L(D%,DT;0) = L..(D%;0) + AL;a(DT,D%,0) (2)

In the above, 6 refers to the parameters of a VQA model,
to be defined in Sec. 3.4. L., is cross-entropy loss (com-

Ihttps://www.kaggle.com/c/quora-question-pairs

puted on the source dataset only), and Lyg is a loss that
computes the discrepancy between the feature distributions
of the source and target domains, computed over images
and/or questions. The bar in @ refers to the model compo-
nent over which we apply Lq (see Sec. 3.4).

For Lyg4, we consider two domain adaptation strategies
from object recognition, and a new variant of one of them.
First, we adapt an adversarial domain classifier as described
in DANN [17], and reverse its gradient. The idea is to learn
features that prevent the model  from being able to success-
fully distinguish between source and target domains. To
successfully adapt DANN, we have to consider the differ-
ences between DA for object recognition and DA for VQA.
In particular, DANN can be applied over both image and
question inputs (or over intermediate representations that
depend on both). We describe how we adapt DANN for
each VQA method, in Sec. 3.4. Second, we use a simplified
single-source version of Moment Matching [47] which min-
imizes moment-related distances to reduce domain gaps.

We treat answering as 1000-way open-ended classifica-
tion, and ensure the output space is the same for all datasets;
we provide details in Sec. 4. Alternatives include answer-
ing as generation (which is challenging for automatic eval-
uation) or as a multiple-choice task (which may introduce
biases due to the choice of the incorrect answers [10]).

3.4. Adaptation for VQA models

VQA models: We analyze domain robustness of
VQA models from different families: (1) Classic
two-stream methods (RelNet [55]); (2) Neuro-symbolic
methods (NSCL [41]); and (3) Transformer methods
(LXMERT [58]). We also test MAC [29] and TbD [42],
which are hybrids of classic and neuro-symbolic methods.

Challenges: Applying domain adaptation is challenging in
the unsupervised open-ended classification setting. The first
challenge is the lack of labels on the target dataset, in the
setting we assume. To the best of our knowledge, only two
prior works [10, 64] tried to tackle the domain adaptation
problem for VQA. However, one leveraged multiple-choice
options [10], and both leveraged labels in the target do-
mains, which are not available in our setting. More specif-
ically, Chao et al. [10] minimize Jensen-Shannon Diver-
gence (JSD) to achieve domain adaptation in the multiple-
choice VQA task. All datasets they investigated are de-
rived from COCO so there is little visual domain shift,
thus they only focused on dealing with question and an-
swer/decoys shift. We noticed their improvements mostly
come from minimizing JSD over answer/decoys (i.e. min-
imizing JSD over questions brings negligible < 0.4% per-
formance boost). In addition, [10]’s feature transformation
method (impoverished VQA model without image inputs)
requires labels from the target dataset. However, this is not
applicable under the open-ended setting because we assume

7049



Encoder Encoder

N TN
Training Il Trammg\I
! I
18

I CE Loss . I CELoss | |
' I
! I
! I
! I
-— Inference : :
- ! . AN MM Lossor | |
Visual i DA Visual DANN Loss | |
I

|
| I

\

One-stage DA/

g —— ——— e e e —

MSE Loss

DANN Loss

11
h ]
I Reference; 7! :‘\
Visual :—’
1 Encoder

[

-
: Encoder | *,

[
-

[

-

DA Visual
Encoder

How many people
are standing?

Figure 2. Illustration of the domain adaption strategies as described in Section 3.4. We show both training and inference stages for the
baseline where no domain adaptation is applied (top left), and the training procedure for one-stage domain adaption with DANN or Moment
Matching (top right). In the bottom, we show the training procedure of our proposed two-stage DANN approach. Specifically, we first train
a domain-adaptive visual feature extractor in the first stage, with a MSE loss to encourage preserving semantics, and a domain confusion
loss (DANN) to reduce domain gaps. Next, using extracted features from the domain-invariant extractor, we train a VQA model on source
data. The gradient reversal layer (GR) [17] is only used with DANN. Dashed lines indicate no gradients due to module being frozen or for

inference only.

no answers and decoys for the target dataset.

A second challenge is that joint optimization of VQA with
a domain adaptation objective (Eq. 2) is unstable because
the VQA loss and DA loss may compete, making optimiza-
tion difficult. This is especially true for complex, state-of-
the-art VQA models. To cope with the challenge of apply-
ing domain adaptation over VQA, [10] break up adaptation
and VQA training into two stages; they primarily use a sim-
ple MLP, while we evaluate DA with recent VQA models.
[10] empirically use a GAN-like approach to estimate JSD,
which makes their training computationally intensive and
hard to adapt to more complicated VQA models. [64] also
reports similar challenges in training a complex multitask
(VQA+DA) method, and they handle it by carefully tun-
ing the scalars for their multitask loss. Notably, they make
the scalars corresponding to the unsupervised feature align-
ment very small (e.g., 0.003, 0.025), and the multiplier for
the source classifier is also small (0.001 vs 1 for the super-
vised target loss). This highlights the challenge of leverag-
ing transfer from the source domain without target labels.
Baseline and one-stage approaches: We report the per-
formance of two reference models: (1) the accuracy on
the source dataset, which indicates model capacity, and
(2) the accuracy on the target dataset assuming target la-
bels are fully available, which serves as an empirical upper
bound for domain adaptation. The simplest baseline is di-

rectly applying a model trained on a source dataset, on test
data from the target domain, without any domain adapta-
tion. The training and inference procedure is illustrated in
Fig. 2. As another baseline, we also investigated an end-
to-end pipeline to combine the DANN training with VQA
training, shown as “One-stage DA”. Specifically, we added
the domain discrimination loss and reversed its gradients to
update the visual representations. However, it is non-trivial
to find the best place for applying domain discrimination for
different VQA methods. For example, for MAC we added
a linear classifier to distinguish the domains and applied the
DANN loss on the visual embedding before feeding them
into the MAC unit. In addition to DANN, we experimented
with moment matching [47] where the first- and second-
order moments are enforced to align across domains. In
this case the gradient reversal layer is no longer needed.

Proposed two-stage DA approach: To better cope with the
challenges, we also propose a two-stage approach to build
a domain-invariant feature extractor and VQA module se-
quentially. A figurative illustration of the process is shown
in Fig. 2 (bottom). The motivation for breaking up domain
adaptation and VQA modeling is to stabilize the training for
greater robustness. The idea is partially inspired by neuro-
symbolic methods, which separate perception (in this case,
feature extraction) and reasoning (the VQA model after fea-
ture extraction). Our two-stage strategy is summarized as:
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Visual 7W VG VQAvl VQAv2 COCOQA CLEVR VQAAbs. GQABal. VizWiz
Visual 7W - 0.04 0.18 0.18 0.56 0.18 0.46 0.25
VG 0.01 - 0.16 0.16 0.54 0.16 0.44 0.27
VQA vl 0.06 0.07 - 0.00 0.44 0.03 0.34 0.28
VQA v2 0.06 0.07 0.00 - 0.44 0.03 0.35 0.28
COCO QA 0.20 0.20 0.15 0.15 - 0.69 0.44 0.26 0.58
CLEVR 0.22 0.22 0.17 0.17 0.19 - _ 0.58
VQA Abs. 0.06 0.06 0.02 0.02 0.15 0.19 - 0.34 0.27
GQA Bal. 0.10 0.11 0.06 0.06 0.15 0.13 0.07 - 0.43
VizWiz 0.06 0.06 0.10 0.10 0.23 0.22 0.10 0.12 -
Table 1. Domain gaps in question space; red shading is MMD over 768-D BERT embeddings, blue is MMD over 20-D syntax statistics.
Visual 7W VG  VQAvl VQAv2Z COCOQA CLEVR VQAAbs. GQABal. VizWiz
Visual 7W - 0.00 0.01 0.01 0.01 0.08 0.00 0.04
VG 0.01 - 0.00 0.01 0.01 0.08 0.00 0.04
VQA vl 0.02 0.02 - 0.00 0.00 0.08 0.01 0.04
VQA v2 0.03 0.02 0.01 - 0.00 0.08 0.01 0.03
COCO QA 0.04 0.04 0.03 0.03 - 0.08 0.01 0.03
CLEVR 0.54 0.54 0.54 0.54 0.54 - 0.09
VQA Abs. 0.36 0.36 0.36 0.36 0.36 0.59 - 0.08 0.08
GQA Bal. 0.03 0.03 0.03 0.03 0.04 0.54 0.36 - 0.04
VizWiz 0.22 0.22 0.21 0.21 0.21 0.52 0.42 0.22 -

Table 2. Domain gaps in image space; red shading is MMD over ResNet-101 2048-D features, blue is MMD over conv3_4 512-D features.

1. Extract features for images in the source dataset, as de-
fined in the VQA method (e.g. use pre-trained ResNet).

2. Train a domain-invariant feature extractor with both
source and target datasets (without labels), using (a) an
MSE loss which encourages the extracted features on
source dataset to preserve semantics, and (b) a BCE loss
with gradient reversal layer to prevent distinguishing the
source and target domains.

3. Apply the backbone from step 2 to extract visual features
and train a VQA model on the source dataset.

4. Take the visual feature extractor from step 2 and VQA
model from step 3, then feed in the target dataset and
evaluate the performance.

VQA method specifics: Each VQA method extracts fea-

tures in a particular way, resulting in small variances in our

two-stage DA implementation. For MAC and TbD, fea-
ture extraction is executed with ResNet-101 prior to train-
ing the VQA model, following the methodology outlined
previously. NSCL uses ResNet-34 to extract features from
different regions in the image (region proposals via a pre-
trained Mask R-CNN [24]), and allows for NSCL to fine-
tune ResNet-34 during training. To most closely follow our
two-stage methodology, we replace the pretrained ResNet-

34 with a frozen ResNet-34 backbone trained in step 2. Rel-

Net uses 4 convolutional layers to extract features from the

images. We used a pre-trained set of these convolutional

layers to export the source features for VQA and DA. For

LXMERT, the initial visual features are from pre-trained

Faster R-CNN and processed by vision-only transformer

layers. We kept the Faster R-CNN backbone untouched and

fine-tuned the transformer layers to be domain-invariant.

4. Experimental Validation

We show four groups of results: shifts in image and ques-
tion space for nine datasets (Sec. 4.1), robustness of five
methods to synthetic shifts in visual or textual space using
the CLEVR dataset (Sec. 4.2), different ways to apply un-
supervised domain adaptation using MAC on three datasets
(Sec. 4.3), and finally robustness of two methods using eight
real dataset pairs (Sec. 4.4).

4.1. Domain shifts in nine datasets

Tables 1 and 2 show how the questions and images in
nine datasets differ. Each table is a composition of two tri-
angles. In Table 1, the lower triangle contains Maximum
Mean Discrepancy (MMD) statistics using BERT embed-
dings, while the upper triangle shows MMD statistics using
syntax features (Sec. 3.1). MMD computes how different
two distributions are, with higher values indicating larger
difference. The shading ranges from white to red/blue, with
darker, more vivid colors indicating larger values.

In the lower triangle of Table 1, we observe that Vi-
sual 7W and Visual Genome (VG) are similar, and VQA
vl and v2 are similar, as expected. GQA is similar to VQA
v1/v2 in terms of semantics (captured through BERT), but
it is different in terms of syntax. VQA Abstract is much
more similar to VQA v1/v2 in terms of syntax than to other
datasets (blue triangle), but in terms of semantic content
(red triangle), it is also fairly similar to Visual 7W and VG.
COCO QA and CLEVR stand out from other datasets both
in terms of semantics and syntax (both rows/columns for
COCO QA and CLEVR have high values except on diag-
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Target Acc. Target Acc. Target Acc. Target Acc. Target Acc.
Method / Type Source Acc. (§irect) (2—sta§e DANN) (10‘%% scratch) (IO%gﬁnetune) t(gfull)
NSCL (NS) 98.0 59.7 68.6 60.0 75.8 95.9
MAC (NS/CL) 934 62.6 65.2 84.6 82.1 88.6
TbD (NS/CL) 99.1 36.3 41.3 72.5 84.2 95.3
RelNet (CL) 93.7 44.8 47.2 61.5 77.1 914
LXMERT (TR) 94.8 58.0 - 60.9 65.9 91.3

Table 3. Method robustness on CLEVR, using style transfer of the original images (domain shift in image space). We bold the best two
results per column. The most important columns are Target (direct) and Target (2-stage DANN) as they require no supervision on the
target. We observe neuro-symbolic methods are most robust. — means performance degraded on LXMERT with DANN.

Methods Q I1 11+Q 12 2+Q VQAv2 | CLEVR | GQA Bal.
NSCL (NS) - 71.0 - 60.6 - Source Accuracy 54.0 95.8 44.6
MAC (NS/CL) 522 45.9 28.1 60.9 379 Target (direct) 41.0 459 373
TbD (NS/CL) || 529 || 557 | 361 || 704 | 42.6 Target (1-stage DANN) 422 45.7 374
RelNet (CL) 49.6 20.5 19.1 46.2 31.6 Target (1-stage MM) 42.6 46.6 38.6
LXMERT (TR) || 534 || 506 | 36.6 | 58.0 | 40.5 Target (2-stage DANN) 2.8 46.7 38.5
Table 4. Method robustness on CLEVR. We show performance l Target (full) H 291 l 900 l 1

under artificial Question shifts, followed by Image shifts with two
styles (resulting in I1 and I2), and two settings where both Image
and Question shifts are applied (I+Q). — means we were unable to
test on NSCL since their semantic parser is not open-sourced. We
bold the best result and those within 1% of the best.

onal), but CLEVR’s syntax (darker blue) stands out more
than COCO QA’s syntax (lighter blue), while in terms of
semantics they are similarly unique. GQA and VizWiz are
also relatively unique, but less so than CLEVR. In Sec. 4.4,
we show how these shifts affect cross-dataset performance.
Some dataset pairs that were distinct in terms of ques-
tions are similar in terms of images, and vice versa, as
shown in Table 2. COCO QA is now fairly similar to
other datasets (in terms of images), but VQA Abstract and
VizWiz become more unique (darker shading) than in Table
1; they are two of the three rows/columns with high values,
in addition to CLEVR. Results are generally consistent in
the lower/upper triangles (from ResNet layers closer to the
output or input, respectively) except that in higher dimen-
sions (lower triangle), absolute MMD scores are larger.

4.2. Methods’ robustness to synthetic domain shifts

Tables 3 and 4 show how robust different VQA methods
are to synthetic shifts on the CLEVR dataset. In Table 3,
we show robustness to visual shifts. We evaluate perfor-
mance by the method on the original CLEVR dataset, per-
formance of the model trained on CLEVR and applied in the
shifted setting (e.g. style-transferred images) directly, target
performance with unsupervised domain adaptation (specif-
ically, 2-stage DANN), and three supervised settings for
comparison — two that use 10% of the target training data,
and one that uses 100% of the target training data. We use
the default recommended hyperparameters without exhaus-
tive search. We observe all methods’ performance drops in
the Target setting compared to Source, as expected. How-
ever, in Target (direct) and Target (2-stage DANN), both of

Table 5. Different DA methods on MAC (NS/CL), image shift.

which do not use labels on the target, NSCL and MAC (both
neuro-symbolic or NS hybrid) retain the best performance.
Using a small amount of target data for fine-tuning, MAC
and TbD (both NS hybrids) perform best.

Table 4 demonstrates each method’s change in perfor-
mance when evaluated with paraphrased questions (first
column), style-transferred images using two separate styles,
I1 and 12 (second and fourth columns), and combined ques-
tion and image shifts (third and fifth columns). LXMERT is
most robust to question shifts, likely due to its extensive
pre-training on language data, followed by TbD. Neuro-
symbolic or hybrid methods (NSCL or TbD) are most ro-
bust to image shifts, consistent with our hypothesis.

4.3. Domain adaptation for synthetic shifts

In Table 5, we evaluate different domain adaptation
strategies with MAC as the backbone model on VQA v2,
CLEVR, and GQA Balanced, where artificial domain shifts
are created in the image space. By comparing Source and
Target (full) accuracy, we deduce the image style trans-
fer preserves the information required for VQA as accu-
racy only drops slightly. However, in all datasets, we see
quite significant performance drop if a trained model is di-
rectly applied to the corresponding target dataset. The do-
main adaptation strategies (1-stage DANN [17] and Mo-
ment Matching [47], and our 2-stage DANN) help to dif-
ferent degree. Our proposed 2-stage DANN is always sig-
nificantly better than then 1-stage DANN, and better than
the 1-stage MM on two of three datasets. Note that differ-
ences between methods are significant in that the range be-
tween Target (direct) and Target (full) is very small for two
of the three datasets. It is worth mentioning that training the
1-stage DANN baseline is highly unstable as the optimiza-
tion is more difficult. We repeated the experiments multiple
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Datasets Accuracy (%)
A B A B [ASBB=A

CLEVR 950 || 298 | 18.7

Q GQA Bal. 324 320 | 356
S| VOAV2 oA abs ]| 22 283 | 336 | 317
VG 33 | 262 | 23.1

> CLEVR 849 || 316 | 348
% GQA Bal. 532 [IN5050 515
=| YOAY2 [voaabs| O7° [S63 || 343 | 346
S VG 310 (1367 | 314

Table 6. Robustness across VQA datasets; best viewed in color.

Image Question
Datasets - - -
Appearance| Semantic | Syntactic | Semantic
CLEVR High High High High
GQA Bal. Low Low Med. High | Medium
VQA Abs. || Med. High | Med. High Low Low
VG Low Low Med. Low | Medium
Table 7. Summary of shifts, VQA-v2 < selected datasets.

times and only preserved the 1-stage DANN models that did
not collapse. Because of the challenges mentioned, on real
dataset shifts, we only achieved marginal gains using do-
main adaptation, over directly applying the source model,
consistent with prior work [10, 64].

4.4. Generalization under real domain shifts

Table 6 shows the robustness of two recent VQA meth-
ods among five datasets: VQA v2, CLEVR, GQA Bal-
anced, VQA Abstract and Visual Genome. These datasets
have different answer spaces, as shown in Fig. 3. Since the
final classification layer is coupled with the answer vocab-
ulary, models trained on one dataset cannot be directly ap-
plied to another. To mitigate this issue, we obtain a shared
1000-class answer space by computing the 1000 most com-
mon answers across all five selected datasets. We report
training and evaluating a model on the same dataset (i.e.
Acc of A and B), and training on one and evaluating on the
other (e.g. Acc of A — B denotes training on A and eval-
uating on B). The accuracy is calculated on the validation
split for individual datasets (except for GQA where we use
testdev split as recommended), and is obtained by matching
the top-1 prediction with the ground-truth answer(s).

Since source/target datasets have different upper bounds
(i.e. B Acc), we normalize the transferred accuracy by di-
viding by B, and illustrate the relative normalized perfor-
mance using the intensity of shading: darker background
of a cell indicates higher ratio of the transferred accuracy
and the source/target accuracy. Blue backgrounds measure
how well a transferred model A — B performs compared
to its upper bound, as they are all transferring from the same
source A, while red backgrounds measure how well differ-
ent source models B — A transfer to the same target .A.

By comparing the accuracy on the training and evalu-
ation datasets, we see that in most cases LXMERT (TR)

Vaav2 GQABal | Dataset Most Frequent Answers
15303V 18 VQA V2 | yes, no, 2, 1, white, 3,4, ...
fTons CLEVR |no, yes, 1, 0, small, rubber, ...
EEER B GQA Bal. | no, yes, left, right, man, ...
\ : VQA Abs. | yes, no, 2, 1, red, 3, white, ...
Visual Genome VG 1, white, 2, daytime, black, ...
Figure 3. Venn diagram of answer vocabulary of three datasets. A
large portion of answers are not shared across datasets, and the
distribution (e.g. most frequent answers) may differ as well.

generalizes better across datasets than MAC (NS/CL). We
hypothesize that transformer-based methods like LXMERT
benefit from their massive pre-training (which includes dis-
joint GQA and VQA v2 data). We also observe that GQA
and Visual Genome are more useful sources when trans-
ferring knowledge to VQA v2, compared to CLEVR. This
observation is consistent with our statistical analysis in Ta-
bles 1 and 2, and for simplicity we extracted relevant infor-
mation in Table 7. We see that GQA Balanced and Visual
Genome are similar to VQA v2 in multiple aspects. We
also note that GQA Balanced has smaller semantic shifts
than syntactic shifts with respect to VQA v2, while VG
has smaller syntactic than semantic shifts with VQA v2.
This makes GQA Balanced more helpful as a source dataset
(darker shading for GQA—VQA-v2 than for VG—VQA-
v2 in Table 6, for both MAC and LXMERT). Finally, the
only case MAC is more robust than LXMERT (in terms of
shading) is VQA-v2<+VQA-Abstract, which is the dataset
with largest visual shifts after CLEVR. One possibility is
that LXMERT is better suited to deal with question shifts
and MAC with visual shifts, because of its neuro-symbolic
nature and dedicated perception module.

5. Conclusion

We showed domain differences between VQA datasets
can come from the visual and linguistic space; different
methods are more susceptible to visual or linguistic shifts,
and high-level semantic shifts make methods more fragile
than syntactic ones. We found neuro-symbolic methods are
more robust to synthetic visual-only domain shifts and some
real dataset shifts, but transformer methods handle real lin-
guistic and some visual shifts better due to pretraining. We
demonstrated that while unsupervised domain adaptation in
VQA is challenging, better gains can be made through a
two-stage DANN which shares similar intuition as neuro-
symbolic methods. In the future, we will explicitly handle
shifts in answer space, and develop DA techniques that can
flexibly choose how much to adapt over each modality,
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