


We propose an approach that leverages global context,

using captions as supervision. Our approach models con-

text for scene graphs in two ways. First, it extracts infor-

mation from captions beyond the subject-predicate-object

entities (e.g., in the form of attributes like “checkered”, in

Fig. 1). This context enables more accurate representations

of concepts, and thus more accurate localization of each

subject-predicate-object triplet. Second, visuo-linguistic

context provides a way to reason about common-sense rela-

tionships within each triplet, to prevent non-sensical triplets

from being generated (e.g., “rails standing on man” is un-

likely, while “man standing on rails” is likely). To cope

with the challenges of the noise contained in captions, we

rely on an iterative detection method which helps prune

some spurious relations between caption words and image

regions, via boostrapping. While the captions we use are

crowdsourced, our method paves the road for using image-

caption pairs harvested from the internet for free, using

text accompanying images on the web, from blogs, social

media posts, YouTube video descriptions, and instructional

videos [31, 42, 53]. Note that our method internally uses a

graph with broad types of nodes, including adjectives, even

though these are not part of the graph that is being output at

test time. A side contribution is an adaptation of techniques

from weakly-supervised object detection to improve local-

ization of subject and object through iterative refinement,

which has not been used for scene graph generation before.

To isolate the contribution of global context from the

noise contained in captions (i.e., objects not being men-

tioned), we verify our approach in two settings. First, we

construct a ground-truth triplet graph by connecting triplets

with certain overlap. We show that our full method greatly

outperforms prior work (it boosts the performance of [54]

by 59%-67%). Second, we use two types of actual captions.

This causes overall performance to drop, but we observe

that modeling phrasal (cross-triplet) and sequential (within-

triplet) linguistic context achieves strong results, signifi-

cantly better than more direct uses of captions, and com-

petitive with methods using clean image-level supervision.

To summarize, our contributions are as follows:

• We examine a new mechanism for scene graph gener-

ation using a new type of weak supervision.

• We contextualize embeddings for subject/object enti-

ties based on linguistic structures (e.g. noun phrases).

• We propose new joint classification and localization of

subject, object and predicate within a triplet.

• We leverage weakly-supervised object detection tech-

niques to improve scene graph generation.

2. Related Work

Learning from textual descriptions: Open information

extraction systems [3, 9, 12, 29, 50] produce relation triples

using surface and dependency patterns, but target language-

only relation extraction or question answering. On the vi-

sion end, method exist to parse a question or image into

a structured, tree-like form, for composable visual reason-

ing [2, 13, 17, 20, 28, 52]. Following the emergence of

scene graphs [18] as a global description of an image, au-

tomatic parsing from textual descriptions to scene graphs

[41, 46] aims to fill the gap between texts and images. It

tackles practical issues such as pronoun resolution and plu-

ral nouns, and duplicates some nodes in the scene graph if

necessary. Though we use the parser designed in [41], our

reliance on parsing is different. While the above methods

tackle pure language tasks, visual question answering, and

image retrieval, we use the parsed results as supervised sig-

nals to guide a scene graph generation model during train-

ing. Our work is similar to [7, 16, 51] since we extract or

amplify information from captions. However, these works

only extract entities from captions, while we also learn from

the properties and relations described. Also related are

recent methods that use supervision from visual-language

pairs [10, 30, 33, 43, 47], but these learn general-purpose

representations and do not perform scene graph generation.

Visual grounding of phrases locates the entities in an

image, based on a given natural language query. [19] align

sentence fragments with image regions. [6, 40] attend to the

relevant image regions to reconstruct the input phrase, sim-

ilar to weakly-supervised object detection. [58] incorporate

a spatial transformer [15] to refine object boxes relative to

multi-scale anchors. We use a technique similar to visual

grounding to find label-related regions, but our key inno-

vation lies in our use of the linguistic structure. We allow

context to propagate to language queries to improve entity

detection. Our model only takes image inputs at test time.

Scene graph generation (SGGen) aims to localize and

recognize all visual entities and predict predicates between

them. Most approaches [8, 14, 24, 26, 27, 34, 38, 48, 49, 55]

learn to generate graphs in a fully-supervised manner, in

which training data involves both entities (bounding boxes

and labels) and predicates. Inspired by weakly-supervised

object detection (WSOD) [5, 35], [37, 54, 57] somewhat

reduce the reliance on these labor-intensive annotations.

[37] infer visual relations using only image-level triplets.

[57] directly apply WSOD for entity localization and add a

weakly-supervised visual relation detection (WSVRD) task

for classifying entity pairs. [54] match predicates to enti-

ties and jointly infer the entities, predicates, and their align-

ments, using a bipartite graph. However, [37, 54, 57] still

require clean triplet annotations from crowdsourcing, while

our method only requires captions. Further, we capture

visual properties in the internal graph our method uses at

training time; these cannot be represented using triplets but

help to enrich the visual representation and better ground

entities. [54]’s method includes a more general (subject,

predicate, ∅) graph, but it does not capture visual attributes.
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Visual features

Vprop Region proposals nv × 1
Vfeat Region proposal features nv × dcnn

nv = 20 Number of region proposals

dcnn = 1536 Feature dimension

Text graph GL(E,R), parsed from caption

E = [ei]
ne
i=1 Entities (graph nodes) |E| = ne

R = [(ri, si, oi)]
nr
i=1 Relations (graph edges) |R| = nr

ne, nr Number of entities/relations in a graph

ce, cr Number of entity/relation classes (vocab size)

ei The i-th entity node, ei ∈ {1 · · · ce}
ri The i-th relation edge, ri ∈ {1 · · · cr}
si, oi Subject/object index of i-th relation, si, oi ∈

{1 · · ·ne}, esi , eoi refer to subject/object

Frozen GloVe embeddings

Went Entity embedding matrix ce × d

Wrel Relation embedding matrix cr × d

Image-level labels parsed from GL

Yent Yent[i, :] is the one-hot representation of ei ne × ce
Yrel Yrel[i, :] is the one-hot representation of ri nr × cr
Ycssub, Ycsobj Ycssub[i, :], Ycsobj [i, :] are one-hot repr of esi , eoi nr × ce
Ycspred Alias of Yrel nr × cr

Instance-level pseudo labels

nt Number of iterations to improve g

g
(t), t ∈ {0 · · ·nt} Grounding vector, if E=[girl, banana], g=[10, 17]

means proposal v10 is class girl and v17 is banana

ne × 1

Y
(t)
det

, t ∈ {0 · · ·nt} Entity detection label, Ydet[i, j]=1 means the proposal

vi involves the j-th entity class

nv × ce

Yrelsub, Yrelobj Relation detection label, Yrelsub[i, j]=1 means the

proposal vi may serve as a subject, and can apply the

j-th relation to an unknown object; Yrelobj [i, j]=1
means the proposal vi may serve as an object, some un-

known subject can apply the j-th relation to vi

nv × cr

Table 1. Overview of notation for the visual features, linguistic structure G
L and supervision parsed from G

L.

R = {(“wear”, 2, 1), (“eat”, 2, 3), (“sit”, 2, 4))}. Given the

GloVe embedding [36] of the entity and relation classes

Went ∈ R
ce×d, Wrel ∈ R

cr×d, and the one-hot representa-

tion of entities and relations Yent ∈ R
ne×ce , Yrel ∈ R

nr×cr

(each row is a ce or cr-dim one-hot vector, and there are

ne and nr rows, respectively), the initial entity and re-

lation word embeddings can be represented as H
(0)
ent =

YentWent ∈ R
ne×d and H

(0)
rel = YrelWrel ∈ R

nr×d.

Now we compute phrasal contextualized entity embed-

dings ψ(E;GL) ∈ R
ne×d. Alg. 1 shows the process,

and can be stacked several times. We update relation edge

embeddings, then aggregate the relation features into the

connected entity nodes, using linear layers φr and φα ap-

plied on the concatenation of inputs. We use ψ(E;GL) =

H
(t)
ent, (t > 1) in the next section, to localize visual entities.

Algorithm 1: Message passing to utilize phrasal con-

text. We use TF-GraphNets [4] to implement.

Input : Text graph GL = (E,R)

Initial entity features H
(t)
ent = [e1, . . . , ene

]T

Initial relation features H
(t)
rel = [r1, . . . , rnr

]T

Output: Updated H
(t+1)
ent , H

(t+1)
rel

for i← 1 to nr do
r′i ← φr(ri, esi , eoi) // Update edge, r′

i
∈ R

d×1

αi ← φα(ri, esi , eoi ) // Update edge weight, αi ∈ R
1

for i← 1 to ne do

e′i←
∑

j=1:nr,
oj=i

{ exp(αj)∑

k=1:nr,
ok=i

exp(αk)

}

r′j //Aggregate, e′
i
∈ R

d×1

return H
(t+1)
ent = [e′1 · · · e

′
ne
]T , H

(t+1)
rel = [r′1 · · · r

′
nr
]T

3.2. Associating text entities with visual boxes

After getting the contextualized entity embeddings

ψ(E;GL) ∈ R
ne×d, we seek their associated visual re-

gions g(0) ∈ R
ne×1 (i.e., grounding vector), where each

g
(0)
i ranges in {1 · · ·nv} and v

g
(0)
i

denotes the visual box

best describing the text entity ei. We obtain g using an

attention mechanism. By optimizing the image-level pre-

diction, we expect the model to learn to focus on the most

informative and distinguishable regions, which can often be

used as instance references for training object detectors.

We first project Vfeat ∈ R
nv×dcnn to the d-dim visual-

language space, resulting in attention and classification

heads Hatt, Hcls ∈ R
nv×d. Then, we compute Ddot ∈

R
ne×nv , in which Ddot[i, j] measures the compatibility be-

tween text entity ei and visual region vj . We softmax-

normalize Ddot to get the attention matrix A(0) ∈ R
ne×nv ,

and obtain g(0) by selecting the max-valued entry.

Hatt = VfeatWatt, Hcls = VfeatWcls

Ddot = ψ(E;GL)HT
att, A

(0)[i, j] =
exp(Ddot[i, j])

∑nv

k=1 exp(Ddot[i, k])

g
(0)
i = argmax

j∈{1···nv}

A(0)[i, j] (1)

We use image-level entity labels Yent ∈ R
ne×ce as su-

pervision to learn proper attention scores. We first ag-

gregate the image-level weighted visual features F =
[f1 · · ·fne

]T ∈ R
ne×d, where fi denotes the image-level

feature encoded with proper attention to highlight text en-

tity ei. For example, given ei = “glasses” in Fig. 2, the

model needs to shift attention to the glasses visual region

by adjusting the i-th row of A(0). The final image-level en-

tity classification score is given by Pcls ∈ R
ne×ce , and the

grounding module is trained using cross-entropy.

F = A(0)Hcls, F
′ = FWT

ent

Pcls[i, j] =
exp(F ′[i, j])

∑ce
k=1 exp(F

′[i, k])

(2)

Lgrd = −
ne
∑

i=1

ce
∑

j=1

Yent[i, j] logPcls[i, j] (3)

3.3. Initial scene graph generation

Thus far, the text entity embeddings H
(0)
ent played a role

in the grounding procedure, and so did the one-hot encoded
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label Yent extracted from the caption. Next, the model

learns to predict the entities and relations without help from

captions, which will not be available at inference time.

To this end, given entities E = [e1 · · · ene
]T , relations

R = [(r1, s1, o1) · · · (rnr
, snr

, onr
)]T , and grounded boxes

[v
g
(0)
1
· · · v

g
(0)
ne

]T , we first parse the target instance labels.

We extract Y
(0)
det ∈ R

nv×ce and Yrelsub, Yrelobj ∈ R
nv×cr

using Eq. 4, in which all non-mentioned matrix entries are

set to 0. Y
(0)
det [i, j] = 1 means visual region vi involves

the j-th entity class. Yrelsub[i, j] = 1 denotes the poten-

tial subject visual region vi (e.g. a “person” region) may

apply the j-th relation (e.g. “ride”) to an unknown object.

Yrelobj [i, j] = 1 denotes an unknown subject may apply

the j-th relation to the potential object visual region vi (e.g.

a “horse” region). We add rel to highlight Yrelsub, Yrelobj
are relation instance-level labels, but are attached to the

grounded subject and object visual boxes respectively.

Y
(0)
det [i, j] = 1 if ∃k ∈ {1 · · ·ne}, s.t.(g

(0)
k = i, ek = j)

Yrelsub[i, j] = 1 if ∃k ∈ {1 · · ·nr}, s.t.(g
(nt)
sk

= i, rk = j)

Yrelobj [i, j] = 1 if ∃k ∈ {1 · · ·nr}, s.t.(g
(nt)
ok

= i, rk = j)
(4)

We next learn to predict the instance-level labels based

on these targets, using entity detection headH
(0)
det ∈ R

nv×d,

and relation detection heads Hrelsub, Hrelobj ∈ R
nv×d.

Then, we matrix-multiply the three heads to the entity em-

bedding Went ∈ R
ce×d and relation embedding Wrel ∈

R
cr×d, and softmax-normalize, resulting in entity detection

scores P
(0)
det ∈ R

nv×ce and subject/object detection scores

Prelsub, Prelobj ∈ R
nv×cr . We use cross-entropy loss

terms L
(0)
det, Lrelsub, Lrelobj similar to Eq. 3 to approximate

P
(0)
det ∼ Y

(0)
det , Prelsub ∼ Yrelsub, and Prelobj ∼ Yrelobj .

X ∈ {det, relsub, relobj}, W ′ ∈ {Went,Wrel}

HX = VfeatWX , FX = HXW
′T

PX [i, j] =
exp(FX [i, j])

∑

k exp(FX [i, k])

(5)

After training the aforementioned model, we can de-

tect entities using P
(0)
det ∈ R

nv×ce and detect rela-

tions using Prel ∈ R
nv×nv×cr , where Prel[i, j, k] =

min(Prelsub[i, k], Prelobj [j, k]). Intuitively, we treat the re-

lation as valid if it could be both implied from the subject

and object visual regions. For example, if the model infers

“ride” from the “person” region and estimates “ride” can

also apply to object region “horse”, it determines that “ride”

is the proper predicate bridging the two regions. [54, 57]

proposed similar architectures to infer relation from a single

region, [54] for optimizing runtime and [57] to avoid bad

solutions. We use this idea because it is simple and effec-

tive, in combination with our stronger module in Sec. 3.5.

Test time post-processing. Given P
(0)
det , and Prel, we

adopt the top-K predictions (in experiments, k=50, 100)

denoted in Eq. 6 as the initial scene graph generation

(SGGen) results. In Eq. 6, the universal set U =
{(vsv

i
, vov

i
, sei , p

r
i , o

e
i )}i denotes all possible 5-tuple com-

binations and B is a subset of U of size k. The goal is

to seek the subset B(B ⊂ U and |B| = k) such that the

sum of log probabilities is maximized. Within a specific

B, sv, ov ∈ {1 · · ·nv} are the indices of proposal boxes

to represent the subject and object regions, respectively;

se, oe ∈ {1 . . . ce} are subject and object entity class IDs;

pr ∈ {1 . . . cr} is the relation class ID. To implement Eq. 6

in practice, we use non-max suppression on P
(0)
det to reduce

the search space (ruling out unlikely classes and boxes).

SGinit = argmax
B⊂U,|B|=k

∑

(sv,ov,se,pr,oe)∈B

(

logP
(0)
det [s

v, se]

+ logPrel[s
v, ov, pr] + logP

(0)
det [o

v, oe]
)

(6)

3.4. ITERATIVE detection scores estimation

Careful readers may notice the superscript (0) in ground-

ing vector g(0), attention A(0), instance label Y
(0)
det , and in-

stance prediction P
(0)
det . We use the superscript (0) to de-

note these are initial grounding results, which could be im-

proved by the WSOD iterative refining technique proposed

in [45]. Suppose loss L
(t)
det (t ≥ 0) brings P

(t)
det ∈ R

nv×ce

close to Y
(t)
det ∈ R

nv×ce , where Y
(t)
det is the caption-guided

target label and P
(t)
det is the prediction without help from

captions. We could then incorporate the entity information

E = [e1 · · · ene
]T of the caption into P

(t)
det to turn it into

a stronger instance-level label Y
(t+1)
det . The motivation is

that the initial label Y
(0)
det extracted from attention (Eq. 1, 4)

will be easily influenced by the noise in captions. Since the

attention scores always sum to one, some region will be as-

signed a higher score than others, regardless of whether the

objects have consistent visual appearance. In an extreme

case, mentioned but not visually present entities also have

a matched proposal. Using P
(t)
det is an indirect way to also

consider the visual model’s (Eq. 5) output, which encodes

the objects’ consistent appearance.

To turn P
(t)
det into Y

(t+1)
det , we first extract A(t+1) ∈

R
ne×nv (same shape as the attention matrix A(0)). We sim-

ply select the columns (denoted as [:, i]) from P
(t)
det accord-

ing toE to achieveA(t+1), and compute g(t+1) and Y
(t+1)
det .

A(t+1) =
[

P
(t)
det[:, e1] · · ·P

(t)
det[:, ene

]
]T

g(t+1) = argmax
j∈{1···nv}

A(t+1)[i, j] (7)

Y
(t+1)
det [i, j] = 1 if ∃k ∈ {1 · · ·ne}, s.t.(g

(t+1)
k = i, ek = j)
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We refine the model nt times, and in Eq. 4, we use g(nt)

from the last iteration to compute Yrelsub and Yrelobj .

3.5. Modeling SEQUENTIAL context

We observed the model sometimes generates triplets that

violate common sense, e.g., plate-on-pizza in Fig. 5 top, be-

cause the aforementioned test time post-processing (Eq. 6)

considers predictions from Pdet and Prel separately. When

joined, the results may not form a meaningful triplet. To

solve the problem, we propose a vision-language module to

consider sequential patterns summarized from the dataset

(Fig. 2 middle-bottom). The idea is inspired by [27], but

different because: (1) we encode the language and vision

priors within the same multi-modal RNN while [27] models

vision and language separately, and (2) our label generation

captures a language N-gram such that the later generated

object and predicate will not contradict the subject.

Specifically, we gather the grounded tuples Dgt =
{(vgsi

, vgoi
, esi , ri, eoi)}

nr

i=1 within each training example

to learn the sequential patterns. Compared to the SGGen 5-

tuple (Eq. 6), the esi , ri, eoi here are from the ground-truth

(E,R) and are always correct (e.g., no “cake-eat-person”).

Since the module receives high-quality supervision from

captions, it will assign low scores or adjust the prediction

(Eq. 6) for imprecise 5-tuples at test time, using its estimate

of what proper 5-tuples look like.

Fig. 2 middle-bottom shows the idea. We use an RNN

(LSTM in our implementation) to consume both word em-

beddings and visual features of the subject and object. The

training outputs are subject prediction Pcssub ∈ R
nr×ce (cs

for common sense), object prediction Pcsobj ∈ R
nr×ce , and

predicate prediction Pcspred ∈ R
nr×cr . We now explain

how to generate their i-th row (to match true esi -ri-eoi ).

First, we feed into the RNN a dummy /start/ embedding

and the grounded subject visual feature vgsi
. The subject

prediction Pcssub[i, :] is achieved by a linear layer projec-

tion (from RNN output to d-dim) and matrix multiplication

(using Went ∈ R
ce×d). We predict the object Pcsobj [i, :]

similarly, but using the grounded object visual feature vgoi

concatenated with the subject word embedding esi as in-

puts. If we do not consider the visual input, this step is

akin to learning a subject-object 2-gram language model.

Next, the RNN predicts predicate label Pcspred[i, :] (using

Wrel ∈ R
cr×d instead of Went), using object word embed-

ding eoi and a dummy visual feature ∅ as inputs.

To learn Pcssub, Pcsobj , Pcspred, we extract labels

Ycssub, Ycsobj , Ycspred (Eq. 8) and use cross-entropy losses

Lcssub(Pcssub ∼ Ycssub), Lcsobj(Pcsobj ∼ Ycsobj),
Lcspred(Pcspred ∼ Ycspred) to optimize the RNN model.

Ycssub =
[

Yent[esi , :]
T · · ·Yent[esnr

, :]T
]T

(8)

Ycsobj =
[

Yent[eoi , :]
T · · ·Yent[eonr

, :]T
]T

, Ycspred = Yrel

At test time, we feed to the RNN the visual features

from SGinit (Eq. 6) and the /start/ embedding. We let

the RNN re-label the subject-object-predicate using beam

search. The final score for each re-labeled 5-tuple is the sum

of log probabilities of generating subject, object, and pred-

icate. We generate the object before the predicate because

objects are usually more distinguishable than predicates, so

this order simplifies inference, allowing the use of a smaller

beam size. We re-rank the beam search results using the fi-

nal scores and keep the top ones to compute the Recall@k

to evaluate (examples in Fig. 5, Fig. 6).

Our final model is trained using the following multi-

task loss, where β is set to 0.5 since at the core of the task

is the grounding of visual objects.

L =Lgrd + β
(

nt
∑

t=0

L
(t)
det + Lrelsub + Lrelobj

+ Lcssub + Lcsobj + Lcspred

)

(9)

4. Experiments

Datasets. We use the Visual Genome (VG) [22] and

Common Objects in Context (COCO) [25] datasets, which

both provide captions describing the visual contents. VG

involves 108,077 images and 5.4 million region descrip-

tions. The associated annotations of 3.8 million object in-

stances and 2.3 million relationships enable us to evaluate

the scene graph generation performance. To fairly com-

pare to the counterpart weakly-supervised scene graph gen-

eration methods [57, 54], we adopt the VG split used in

Zareian et al. [54]: keeping the most frequent ce = 200
entity classes and cr = 100 predicate classes, resulting

in 99,646 images with subject-predicate-object annotations.

We use the same 73,791/25,855 train/test split1. We also

adopt the split in Xu et al. [48], more commonly used

by fully-supervised methods. It contains 75,651/32,422

train/test images and keeps ce = 150 entity and cr = 50
predicate classes. Both VG splits are preprocessed by [54].

For COCO data, we use the 2017 training split (118,287

images). We rule out the duplicated images in the VG test

set, resulting in 106,401 images for Zareian et al.’s split and

102,786 images for Xu et al.’s.

Learning tasks. The linguistic structure supervision for

training is from the following three sources:

• VG-GT-Graph imagines an ideal scenario (an upper

bound with the noise in captions and parsers’ impacts

isolated) where we have the ground-truth text graph

annotations instead of a set of image-level subject-

predicate-object triplets, for training on VG. To get these

ground-truth graphs, we check the visual regions associ-

ated with the entities (subjects and objects) and connect

entities if their regions have IoU greater than 0.5. We do

not use box annotations to improve detection results.

1We follow [54], but [57] reports 73,801/25,857 train/test split
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Zareian et al.’s split (weakly sup)

Method R@50 R@100

VtranE-MIL [56] 0.71 0.90

PPR-FCN-single [57] 1.08 1.63

PPR-FCN [57] 1.52 1.90

VSPNet [54] 3.10 3.50

BASIC 2.20 2.88

+ PHRASAL 2.77 3.62

+ ITERATIVE 3.26 4.15

+ SEQUENTIAL 4.92 5.84

Xu et al.’s split (fully sup)

Method R@50 R@100

IMP [48] 3.44 4.24

MotifNet [55] 6.90 9.10

Asso.Emb. [34] 9.70 11.30

MSDN [24] 10.72 14.22

Graph R-CNN [49] 11.40 13.70

VSPNet (Full) [54] 12.60 14.20

BASIC 3.82 4.96

+ PHRASAL 4.04 5.21

+ ITERATIVE 6.06 7.60

+ SEQUENTIAL 7.30 8.73

Table 2. SGGen recall (%) under VG-GT-Graph setting. We

compare our method to the state-of-the-art methods. High recall

(R@50, R@100) is good.

• VG-Cap-Graph utilizes the VG region descriptions. We

use [41] to extract text graphs from these descriptions,

but we ignore the region coordinates and treat the graphs

as image-level annotations.

• COCO-Cap-Graph uses captions from COCO and ap-

plies the same parsing technique as VG-Cap-Graph. The

difference is that these captions are image-level, and de-

scribe the objects and relations as a whole.

Metrics. We measure how accurately the models gener-

ate scene graphs, using the densely-annotated scene graphs

in the VG test set. Following [48], a predicted triplet is con-

sidered correct if the three text labels are correct and the

boxes for subject/object have ≥ 0.5 IoU with ground-truth

boxes. We then compute the Recall@50 and Recall@100 as

the fraction of the ground-truth triplets that are successfully

retrieved in the top-50 and top-100 predictions, respectively.

Methods compared. We conduct ablation studies to ver-

ify the benefit of each component of our method.

• BASIC model refers to our Sec. 3.2-3.3 without applying

the phrasal contextualization. We set ψ(E,GL) = H
(0)
ent.

• +PHRASAL context (Sec. 3.1) uses contextualized entity

embeddings ψ(E,GL) instead of H
(0)
ent.

• +ITERATIVE (Sec. 3.4) gradually improves the ground-

ing vector g. We iterate nt = 3 times by default.

• +SEQUENTIAL context (Sec. 3.5) revises the prediction

presented in Eq. 6, using the RNN encoded with knowl-

edge regarding sequential patterns.

We compare to weakly-supervised scene graph genera-

tion methods that published results on Zareian et al.’s split:

VtransE-MIL [56], PPR-FCN-single [57], PPR-FCN [57]

and VSPNet [54]. We also compare to fully-supervised

methods on Xu et al.’s split: Iterative Message Passing

(IMP) [48], Neural Motif Network (MotifNet) [55], Asso-

ciative Embedding (Asso.Emb.) [34], Multi-level Scene De-

scription Network (MSDN) [24], Graph R-CNN [49], and

fully-supervised VSPNet [54].

VG-Cap-Graph COCO-Cap-Graph

Eval split
Zareian et al.’s Xu et al.’s Zareian et al.’s Xu et al.’s

R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

BASIC 0.81 0.91 0.99 1.09 1.20 1.51 2.09 2.63

+ PHRASAL 0.90 1.04 1.39 1.69 1.17 1.47 1.65 2.16

+ ITERATIVE 1.11 1.32 1.79 2.22 1.41 1.75 2.41 3.02

+ SEQUENTIAL 1.83 1.94 3.85 4.04 1.95 2.23 3.28 3.69

Table 3. SGGen recall (%) under Cap-Graph settings. High recall

(R@50, R@100) is good.

4.1. Results on GT­Graph setting

The GT-Graph setting allows our method to be fairly

compared to the state-of-the-art methods because in this set-

ting, the information ours and those methods receive is com-

parable (sets of triplets, in our case connected). Further, the

word distribution is the same for training/testing, while the

caption setting causes a train-test shift (described shortly).

In Tab. 2 left, we show our results on Zareian et al.’s

VG split and baselines of weakly-supervised methods.

Our BASIC method already surpasses VtransE-MIL, PPR-

FCN-single, and PPR-FCN. This may be due to the low

quality of the EdgeBox proposals used in them. Com-

pared to VSPNet, which also uses Faster RCNN propos-

als, our BASIC method is slightly worse, but our compo-

nents greatly improve upon BASIC, and our final model

achieves 4.92, a 59% improvement over VSPNet (using

R@50). +PHRASAL context improves BASIC by 26% (2.77

v.s. 2.20), +ITERATIVE improves +PHRASAL by 18% (3.26

v.s. 2.77), and +SEQUENTIAL gains 51% (4.92 v.s. 3.26).

In Tab. 2 right, we compare to fully-supervised methods

on Xu et al.’s split. We observe our method is very com-

petitive even though we only use image-level annotations.

In terms of Recall@50, our final method (7.30) outper-

forms IMP (3.44) and MotifNet (6.90). As for the relative

improvement, +PHRASAL context improves BASIC by 6%

(4.04 v.s. 3.82), +ITERATIVE gains 50% (6.06 v.s. 4.04),

and +SEQUENTIAL gains 20% (7.30 v.s. 6.06).

4.2. Results on Cap­Graph setting

Our proposed Cap-Graph setting is an under-explored

and challenging one, as the learned SGGen model depends

on the captions’ exhaustiveness and the parser’s quality, but

it allows learning from less expensive image-text data.

In Tab. 3, we show the SGGen performance of mod-

els learned from VG region captions (VG-Cap-Graph)

and COCO image captions (COCO-Cap-Graph). We see

the same trend as in GT-Graph setting: our components

(+PHRASAL, +ITERATIVE, and +SEQUENTIAL) have pos-

itive effects. Further, our final models learned from both

VG-Cap-Graph (R@50 1.83) and COCO-Cap-Graph (1.95)

are better than all weakly-supervised methods except VSP-

Net (in Tab. 2 left). Our models learned from captions are

even comparable (VG-Cap-Graph 3.85, COCO-Cap-Graph

3.28) to the fully-supervised IMP (R@50 3.44).
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