




without the need for expensive and non-parallelizable re-

currence. Recently, transformers have been demonstrated

as an effective architecture in many problems in natural

language processing [9, 34], speech processing [25, 42],

computer vision [30, 6, 11] and vision-language tasks

[43, 24, 20, 40, 50, 32, 22, 7]. Since the transformer ar-

chitecture is permutation-invariant, a positional encoding is

necessary to provide the order information of the sequential

input. For work which represents the image by a set of re-

gions of interest, a common way is to embed the bounding-

box coordinates of each region and potentially the fraction

of image area covered [7, 43, 24]. For pixel-level represen-

tation, Carion et al. explore sinusoidal embeddings based

on the absolute position and a learnt positional encoding

of pixels [6]. However, experimentation in machine trans-

lation [39] and music generation [16] suggested that using

relative positional embeddings results in significantly bet-

ter accuracy. Adding the absolute positional encoding to

the inputs, as done in [11, 6, 43], is not always sufficient.

Explicitly modeling relative position information separately

from other inputs (e.g. features) extends the self-attention

mechanism to efficiently consider spatial relationship be-

tween each query-key pair [39, 35, 3, 51]. Ramachandran

et al. [35] and Bello et al. [3] define 2D relative position em-

beddings by the relative distance between the position of the

query and key pixel. Our approach follows the idea of Ra-

machandran et al. except that our relative position embed-

ding is at the region level. Our objective is to model spatial

relationships between objects, thus a pixel-level representa-

tion does not make sense. Besides, we can add overlapping

area information to the relative spatial feature between two

regions, which a pixel-level representation cannot. Kant et

al. also consider relative spatial relationship between object

regions, but they transform spatial relationship into twelve

categories and then apply the adjacency matrices as an addi-

tional attention mask on their base model architecture [17].

Therefore, they only consider the relative spatial direction

and ignore the concrete relative distance between pairwise

objects, which loses essential information compared to our

method. Another weakness is their spatial relationship cate-

gories do not have full coverage, e.g. the spatial relationship

between two non-overlapped objects far from each other is

ignored. We are not aware of any prior work that performs

atypicality detection with any type of transformer, nor with

the relative-spatial transformer we propose.

Self-supervised Learning. Self-supervised learning

through masked or next-token prediction is a commonly-

used method for language modeling in natural language

processing [9, 34]. In computer vision, methods exist to

learn visual representations through pretext tasks, e.g. via

colorization [49, 19, 45], jigsaw puzzles [29, 10], inpainting

[31], instance discrimination [47], or even pretext-invariant

objectives [26]. Prior work demonstrates the effectiveness

of these visual representations for transfer learning [13].

Representations can also be learned by predicting context

in a multi-modal setting [43, 24, 41, 5, 27]. Our work fol-

lows Tan et al.’s method by using masked object feature

regression for learning visual representations [43], but Tan

et al. operate in a cross-modal setting, while we operate in

a visual one. To our knowledge, we are the first to use self-

supervised learning based on context prediction for detect-

ing image atypicality.

3. Approach

We define atypicality detection as a binary classification

task: for a given image I , our model aims to predict whether

I is atypical or not. We first present our unsupervised atyp-

icality detection system, which leverages masked region re-

construction as the pretext task, and learns implicit knowl-

edge of contextual compatibility from large-scale unlabeled

data. The reconstruction losses of masked regions are the

clue for predicting atypicality of a test image. We then in-

troduce our Relative-Spatial Transformer which extends the

self-attention layer to explicitly model relative position in-

formation separately from visual features.

3.1. Masked Region Reconstruction

Fig. 3a shows an overview of our approach. An

image I is represented by a set of regions R =
{(v1, p1), (v2, p2), ...(vn, pn)}, where vi could be region i’s

visual feature vector, pixel matrix, class labels, etc., and pi
is the positional information. Our hypothesis is that if an

image is atypical, the objects appearing in it would not be

compatible with each other, thus it would be hard to recon-

struct a masked region from image context. We first pre-

train a model to reconstruct a region from context using

normal cases, then use it to detect atypicality in new test

images.

For the pre-training process, we take inspiration from

masked language modeling (e.g. BERT [9]) and cross-

modality representation learning (e.g. LXMERT [43]). The

model is trained to reconstruct the masked regions given

the remaining regions, on many general, normal images

(which could potentially contain a small proportion of atyp-

ical cases). Different from BERT or LXMERT, which aims

to learn a language or visual-language representation, our

model aims to learn the common co-occurrences and typi-

cal spatial relationship between objects.

At test time, we mask each region in the image and com-

pute the reconstruction loss. We compute the average loss

of all regions as a clue for predicting atypicality. We use

average rather than maximum loss because if an image is

atypical, the masked region reconstruction loss is high not

only when an atypical object is masked, but also when its

surrounding object is masked since it is also hard to recon-

struct a normal object from an atypical context.





experiments show that Relative-Spatial Attention leads to

an improvement across a diverse array of atypicality sub-

categories. Then we test the generalization of our approach

on real-world, non-persuasive atypical images, by detecting

atypicality within each object class, on a dataset we refer

to as the Single-Object dataset [46]. To understand the la-

belling requirement of each task, we compare our unsuper-

vised contextual compatibility approaches with supervised

models trained on the atypical/typical labels. When consid-

ering the different possibilities for representing the image

context, we compare visual versus semantic compatibility.

4.1. Setup

Input Representations. We use Faster R-CNN [36] pre-

trained on Visual Genome [18] for extracting the visual fea-

tures [2]. Faster R-CNN itself uses ResNet-101 [14] pre-

trained for classification on ImageNet [37]. We take the fea-

tures of each detected object as the visual representation of

the corresponding region. We select a fixed number of ob-

jects (36) by sorting detections by confidence score. Each

region is represented by its bounding-box coordinates and

its 2048-dimensional region-of-interest (RoI) features.

Self-supervised Training and Testing. Following

BERT [9], we mask 15% of regions in each sequence at

random during training. All masked regions are replaced

by a trainable vector with the same dimension as the RoI

feature. The spatial information of the masked region is

given. We use a batch size of 128 and train for 20 epochs

with learning rate of 1e-3. For testing, we mask one region

with the learned vector at a time, then compute the average

reconstruction loss of all regions. The higher the loss, the

more likely the image is atypical. We compute the ROC-

AUC score as the evaluation metric since it measures model

performance across all possible classification thresholds, by

reporting the probability the model ranks a random atypical

example higher than a random typical one.

Model Size. We denote the number of layers (i.e., trans-

former blocks) as L, the hidden size as H , and the number

of self-attention heads as A. We primarily report results on

the model with L=1, H=768, A=82.

Baseline Models. We consider two baselines, Auto-

encoder and One-Class SVM, since they are standard meth-

ods for detecting abnormality and outliers [1, 21]. For the

Auto-encoder, we implement the same encoder as DC-

GAN’s discriminator and DCGAN’s generator as the de-

coder [33], using the hyperparameters in [33]. The loss is

L2 error between input and generated images. However,

we make an interesting observation that atypicality relates

to image complexity in a potentially counter-intuitive way:

We found strong correlation between atypical images and

2There are no extra trainable parameters in RST compared to T. In

Fig. 3c, Wk,v is extra parameters of size of dp∗dv (dimensions of position

p & visual v vectors), but unlike RST, T requires trainable parameters of

size dp∗dv for projecting p to the same dimension as v for the summation.

relatively plain backgrounds, likely because ad designers of

atypical images want to make sure the image is plain enough

for the audience to notice the atypicality. Images with uni-

form background are more easily reconstructed while im-

ages with plenty of objects are harder. Further, images with

more pixels tend to contain more information to be com-

pressed and reconstructed. To ensure the auto-encoder cap-

tures atypicality rather than complexity, we need to normal-

ize for image complexity. We first prepossess all images by

resizing them to a fixed number of pixels (64*64). We also

measure image complexity (IC) as the average of horizon-

tal and vertical gradient of pixels (IC = avg(I2x+I2y ) where

Ix and Iy are respectively the horizontal and vertical gradi-

ent). Then we divide the auto-encoder reconstruction loss

by IC. In addition, to force the auto-encoder model to learn

an effective encoder and decoder, we limit the dimension of

the middle hidden layer to 2048 which is much smaller than

the input image dimension (3*64*64). For the One-Class

SVM model, we represent each image by the average of its

36 RoI feature vectors. Then we fit the One-Class SVM

model3 with default settings on the training images.

4.2. Unsupervised persuasive atypicality detection

Data. We evaluate our method on a dataset of advertise-

ment images where atypicality is creative and has a purpose

to convince an audience to take a certain action [48]. The

Ads dataset contains in total 64,832 ad images and the au-

thors annotated 3,928 of them for the atypicality task. Since

each image is annotated by one or multiple annotators, we

set a rule for deciding the atypical/typical label if annota-

tors do not agree with each other. In particular, we consider

an ad atypical if any annotator labels it as atypical. We use

the ifany rule because some atypical cases are subtle, sub-

jective or need background knowledge, thus any annotator

providing the atypical label is cause to believe the image is

not quite typical. Under this labeling rule, there are 2,285

atypical ads and 1,643 typical ads. For the self-supervised

training, we use all ads except for those 3,928 with atypical-

ity labels. For supervised training and for testing, we ran-

domly split the 3,928 atypical/typical images using a 7:1:2

ratio for train:val:test sets. Note we did not use any training

data from the atypicality dataset for our unsupervised meth-

ods, to make them fairly comparable to supervised methods.

All methods are evaluated on the exact same test set.

Results. The experimental results of our unsupervised

contextual compatibility approaches are shown in the up-

per part (unsup) of Tab. 1. To gain insights on the im-

pact of different types of persuasive atypicality on the de-

tection result, we also report the model performance on

the eight atypicality categories separately, as defined in the

Ads dataset (Sec. 2). Experimental results in Tab. 1 show

that our approaches significantly outperform baseline mod-

els overall (MICRO AVE) and for CP, OR, Others (with p-

3https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM





Methods aeroplane apple bicycle boat building bus car chair cow dining table

u
n

su
p AE 0.74 0.44 0.58 0.78 0.85 0.55 0.74 0.52 0.52 0.33

T (ours) 0.93 0.86 0.84 0.90 0.86 0.86 0.92 0.78 0.74 0.90

RST (ours) 0.90 0.78 0.76 0.88 0.83 0.78 0.87 0.70 0.65 0.82

su
p T (ours) 0.99 0.96 0.99 0.98 0.95 0.99 0.99 0.98 0.99 0.93

RST (ours) 1.00 0.99 0.96 0.99 1.00 0.99 1.00 0.95 0.97 0.99

Methods horse house motorbike road shoes sofa street table lamp train tree mAP

u
n

su
p AE 0.42 0.65 0.40 0.65 0.71 0.64 0.59 0.39 0.45 0.56 0.58

T (ours) 0.80 0.90 0.71 0.91 0.87 0.83 0.90 0.82 0.77 0.80 0.85

RST (ours) 0.75 0.90 0.60 0.85 0.76 0.75 0.90 0.62 0.67 0.74 0.78

su
p T (ours) 1.00 1.00 0.96 0.99 0.98 0.92 1.00 0.92 1.00 1.00 0.98

RST (ours) 0.95 1.00 0.93 0.97 1.00 0.89 1.00 0.92 0.96 1.00 0.97

Table 3. Experimental results on the Single-Object dataset. Average Precision for each class and the macro average (mAP) are reported.

tively means the set of regular images or unusual images in

category C. The task is to determine, for any test image

I ∈ C, whether I ∈ Cu. In other words, our task is to de-

tect atypical images from each single object class. This is

different from Wang et al.’s [46] problem setting: their task

aims to determine, for any test image I ∈ C ∪Or (with Or

denoting regular images not containing the object in cate-

gory C), if I ∈ Cu. We formulate the task in a different

way because our focus is to evaluate our methods on atypi-

cality detection within a single object class and we only use

Cr as our training data. In contrast, [46] also train object

detectors on Cr ∪ Or then use the object detection scores

for predicting atypicality in C. In conclusion, our method

performance is not directly comparable to theirs since nei-

ther our training nor test set includes Or.

We use the Auto-encoder model as a baseline. Given

that each image only contains one main object, we do not

normalize the auto-encoder loss with image complexity as

we did for the Ads Dataset. We follow the same split as

Wang et al., dividing Cr into training (Cr
train) and test set

(Cr
test). For each object category C, our models and the

baseline are trained on Cr
train and evaluated on Cu ∪Cr

test.

The upper part (unsup) of Tab. 3 shows the results. We

use the same evaluation metric, Average Precision, as Wang

et al. Different from what we observe with the Ads dataset,

Transformer is generally more effective than the RS Trans-

former here. The reason is that RST does not capture use-

ful information for predicting atypicality since the Single-

Object dataset has little object-object spatial relationship as

the atypicality source. Moreover, some learnt interactions

between objects by RST might be noisy because of over-

fitting with only hundreds of training samples (as shown in

Tab. 4). For this task, a standard attention mechanism with

regions’ absolute position as input can handle those single

atypical objects well, and Transformer achieves comparable

results to those shown in [46] (mAP of 0.90).5 In conclu-

5Even though they are not directly comparable, the inclusion of these

earlier results is still informative because we aimed to show our approach

produces results in the same ballpark.

Methods Ads aeroplane apple bicycle

Unsupervised 46,757 169 667 268

Supervised 2,741 189 429 312

Table 4. Training size for unsupervised and supervised models.

sion, our unsupervised approach by checking for contextual

compatibility works well not only on persuasively creative

images with complex atypicality transformation, but also on

single-object images. As expected, RST is not beneficial for

detecting non-persuasive atypicality of single object.

4.4. Are supervised labels essential for these tasks?

Models. To understand the labelling requirement for de-

tecting atypicality, we compare our unsupervised contextual

compatibility approaches with supervised models trained

on the atypical/not labels, for both Ads and Single-Object.

We use the same Transformer and RS Transformer architec-

tures for fair comparison. We also add a supervised baseline

model which is trained only on the RoI features (each im-

age is represented by the average of all regions-of-interest

features).6 For transformers, the output layer is an aver-

age pooling over the last hidden layer followed by a simple

2-layer neural network for predicting the atypicality label.

For the RoI baseline, the input image features feed directly

to the output layer which is the same 2-layer network.

Results. Tab. 1 and Tab. 3 show the comparison of unsu-

pervised and supervised approaches for the Ads and Single-

Object datasets, respectively. We find that for Ads, our

unsupervised approaches achieve comparable performance

to the supervised approaches, which highlights that even

with labeling the task is still difficult. This also demon-

strates the effectiveness of our proposed contextual com-

patibility method. When looking into each atypicality cat-

egory, we observe the unsupervised RS Transformer wins

on those atypicality transformations which involve more

object-object interaction, e.g. TR1, TR2, OIO, CP. This is

expected because RST efficiently learns contextual compat-

6The input features are the same as the One-Class SVM baseline. This

baseline is conceptually similar to the approach in Ye et al. [48] except that

they use VGG16 for extracting the image features.



Methods TR1 TR2 OIO OMP CP SDO LDO OR Others MICRO AVE

u
n

su
p

Transformer with VF 62.66 60.72 63.07 42.52 69.18 63.71 61.63 64.05 63.68 62.86

RS Transformer with VF 67.50 68.37 67.31 55.18 71.26 68.67 63.99 61.84 59.68 64.32

Transformer with CL 51.39 58.28 61.90 41.53 62.76 54.80 60.49 56.09 62.38 57.63

RS Transformer with CL 54.89 62.30 60.49 47.03 61.47 58.25 53.00 58.28 61.76 58.46

sup Fine-tuned BERT with CL 62.94 69.59 59.02 56.25 70.74 69.87 62.00 65.96 62.30 64.71

Table 5. Comparison of Faster R-CNN RoI visual feature (VF) and predicted class label (CL). AUC for each atypicality category and micro

ave are reported, with best AUC per column bolded. AUC for Fine-tuned BERT with CL is bolded if it outperforms all unsup. methods.

ibility knowledge from the large-scale normal images with

the RS self-attention mechanism which is designed for pre-

cisely modeling spatial relationship between objects. In ad-

dition, the RS Transformer outperforms the original Trans-

former for the supervised setting as well. For the Single-

Object dataset shown in Tab. 3, we see the supervised ap-

proaches give a nearly-perfect performance, which reveals

that providing labels greatly reduces the difficulty of the

atypical detection task for single object.

When comparing the performance of unsupervised and

supervised approaches, we have different observations on

the Ads and Single-Object datasets: for Ads, our unsuper-

vised approaches achieve comparable performance to the

supervised ones; for Single-Object, the supervised methods

substantially outperform the unsupervised ones. One reason

may be that unsupervised models have 20 times more train-

ing data for the Ads task, while the training size is similar

between unsupervised and supervised methods for Single-

Object, as shown in Tab. 4. Another reason may be that for

the single-object task, it is easy for models to capture the

key features of a normal object from unusual training ex-

amples, e.g. what does an apple usually look like. However,

for more complex atypicality transformation as in Ads, a

few labels do not help compared to learning various forms

of compatibility through many unlabeled samples.

4.5. Visual versus semantic compatibility

We next consider different possibilities for representing

the image context, namely checking visual versus seman-

tic compatibility. Our previous experiments use Faster R-

CNN RoI features which represent the visual content of the

region and then learn compatibility from them. We now

consider using the class labels predicted by Faster R-CNN

as the semantic features of the region and then we use the

same model for learning semantic compatibility.

Training. For unsupervised training with transformer-

based models, the input is a sequence of class labels with

the bounding-box coordinates of regions ordered by the de-

tection confidence score. Similarly with visual features, we

mask one (or several during the training) object class label

by a [MASK] token in the input, and the model is trained

to predict the class label of the masked region. We use the

cross-entropy loss for training and testing; the loss is the

atypicality signal. Since the input of class labels are dis-

crete textual tokens, we project them through an embedding

layer before feeding to the transformer; at the output, we

project the last hidden layer of the masked input back to the

class label by a decoder which shares the same weight as

the embedding layer. We follow the same experimental set-

ting as with the visual features. For supervised training, we

fine-tune the pre-trained BERT model (bert-base-uncased)7

with the sequence of class labels as input. We use batch size

16, leaning rate 3e-5 and 5 epochs, as suggested in [9].

Results. Experimental results on the Ads dataset are

shown in Tab. 5. We find that checking semantic compat-

ibility (CL) is not as effective as checking the visual com-

patibility (VF) under the unsupervised setting. Thus, visual

features contain more useful information (e.g., the visual

features of an atypical apple and a typical apple are differ-

ent; however, the class label input does not have this in-

formation when the atypical apple is correctly detected as

”apple” by Faster R-CNN), and only checking the seman-

tic compatibility is not enough for solving this task. How-

ever, fine-tuned BERT with predicted class labels slightly

outperforms the unsupervised RS Transformer using visual

feature input, especially for those categories whose atyp-

icality transformations are mainly from unusual combina-

tion of normal objects, such as TR2 and OR, which are well

captured by the semantic compatibility.

5. Conclusion

We have proposed to model contextual compatibility as

an unsupervised approach to detect atypicality in persuasive

imagery. Our new self-supervised Relative-Spatial Trans-

former improves the detection performance on a visual ad-

vertising dataset, compared to standard baselines and to a

novel application of a classic transformer architecture that

has not been used for atypicality prediction before. Fur-

thermore, analyses by atypicality categories show that our

method is especially effective on atypicality transforma-

tions involving spatial interactions between objects.

In the future, we will extend the relative-spatial self-

attention mechanism by adding terms capturing relations

specific to individual atypicality categories, and we will

capture inputs from other modalities, e.g. the slogans in ads,

to model contextual compatibility more efficiently.
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7https://huggingface.co/transformers/model doc/bert.html
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