
Supporting Real-Time T -Queries on Network
Traffic with A Cloud-based Offloading Model

Yuanda Wang§, Haibo Wang§, Chaoyi Ma, Shigang Chen, Ye Xia
Department of Computer and Information Science and Engineering

University of Florida, Gainesville, Florida
yuandawang@ufl.edu, wanghaibo@ufl.edu, ch.ma@ufl.edu, sgchen@cise.ufl.edu, yx1@cise.ufl.edu

Abstract—Traffic measurement provides fundamental statistics
for network management functions. To implement the measure-
ment modules on the data plane for real-time query response,
modern sketches are designed to work with limited on-die
memory allocation from network processors and collect traffic
statistics in epochs of a preset length. To handle real-time queries
at arbitrary times over traffic in a preceding period T (called
T -queries), the prior art sets the epoch length to T

n
and keeps the

measurement results in a window of n−1 past epochs to support
approximate T -queries. Such an approach however drastically
increases the memory cost or decreases the accuracy in the query
results if the memory allocation is fixed. In this paper, motivated
by the concept of offloading in today’s edge-cloud computing, we
propose a collaborative edge-center traffic measurement model,
where the traffic measurement modules at all network devices
form the edge, which offloads the traffic measurement results
to a measurement center possibly hosted in a datacenter. The
center synthesizes the measurements from the past epochs and
sends the aggregate results back to the measurement modules
to support T -queries. We conduct experiments using real traffic
traces to evaluate the performance of the proposed edge-center
measurement model. The experimental results demonstrate that
the proposed designs significantly outperform the prior art.

Index Terms—Traffic measurement, offloading model, T -query,
real-time

I. INTRODUCTION

Traffic measurement modules such as Netflow [1] and
sketch-based solutions [2]–[6] on routers and other network
devices provide critical information for traffic engineering,
anomaly detection and other network functions. There are
numerous applications that can benefit from detailed real-time
traffic statistics — for a few examples, identifying abnormal
increase in traffic volume to catch denial-of-service attacks
[7]–[11], detecting worm propagation or scanning attacks
[12]–[14], and profiling potential botnet activities [15], [16].

To support real-time responses, it is highly desired that
the traffic measurement modules are implemented on the data
plane, examining the packet stream directly on the network
processors. However, this means that they have to compete for
the on-die processing and memory (such as SRAM) resources
of network processors or other special-purpose chips that
operate at line rates for the key networking functions of
packet forwarding, queuing and scheduling, quality of service,
firewalling, and packet inspection/classifiction for performance
and security purposes. In this case, the design of a traffic

§Equal contribution

measurement module must assume limited processing/memory
allocation and can only record packet information for a limited
time before its allocated memory space is saturated. At that
time, the existing information has to be purged in order
to free space for recording new packets that continuously
arrive. Much of the prior art [6], [17], [17]–[21] focuses on
highly compact data structures called sketches that measure a
packet stream for a preset period of time called epoch. The
measurements for each epoch are stored offline, and queries
can be made on flow statistics in each epoch.

This paper is interested in support real-time queries on the
data plane at an arbitrary time t for an arbitrary flow f about
its traffic statistics in a preceding period of T before time
t. This is called a T -query. One may argue that we may
simply use an existing sketch to measure traffic in an epoch
of (t− T, t]. However, because t can be arbitrary, there is no
way to determine the beginning time of each epoch before
queries happen. One naive solution is to support approximate
T -queries with preset epochs, each of length T . When a query
arrives in the middle of an epoch, we return the statistics of
the flow that have been recorded so far in the current epoch.
The query result will however vary greatly, covering traffic in
a preceding period between 0 (when the query arrives at the
beginning of the epoch) and T (when the query arrives at the
end of the epoch).

Most prior art [22]–[24] addresses the above problem by
using smaller epochs of length T

n . They require a measurement
module to keep all measurements from a window of the most
recent n − 1 completed epochs, in addition to the current
epoch. The answer to a query at time t on flow f combines
the statistics of the flow from the previous n−1 epoch and the
current epoch. The query result covers the traffic in a preceding
period of [t0− n−1

n T, t), where t0 is the beginning time of the
current period and t is the query time. The difference between
this period’s length and the length of (t−T, t] under query is
(t0 − n−1

n T) − (t − T) = T
n − (t − t0) ≤ T

n , which can be
made arbitrarily small when we increase n.

The problem of the above solution is that the measurement
module now has to keep the traffic statistics of the past n −
1 epochs, which is an undesired memory cost on the data
plane, which increases with n. One may argue that the memory
cost for each epoch will be smaller due to a smaller epoch
length. However, the impact of a smaller epoch on memory is
actually not significant. Consider using a counter to measure

1

the number of packets in each flow. Suppose that we use a
32-bit counter for an epoch of length T . Let n = 32. It will
take a 27-bit counter for an epoch of length T

32 if we make
the counter range proportional to the epoch length. The total
memory for the flow will be 27 × 32 = 864 bits! Moreover,
it is questionable whether we should reduce the counter size
from 32 bits to 27 bits because network traffic is often bursty
and it could happen that most packets of a flow over a period
of T happens in one epoch of T

n .
The goal of this paper is to achieve the same approximation

in the query result as the window approach does, while
avoiding its pitfall of memory cost on the data plane. Our idea
is motivated by the concept of offloading in today’s edge-cloud
computing. We introduce a collaborative edge-center traffic
measurement model that consists of a measurement edge and
a measurement center. The edge consists of all devices in a
network that implement the measurement modules, and the
center may be hosted in a data center that provides virtually
unlimited resources for long-term storage/analysis of traffic
measurements and assistance in coordinating the measurement
activities across all devices in the network. Each measurement
module at the edge offloads its traffic measurements of the
prior n−1 epochs to the center, which in turn feeds aggregate
measurements back to assist the measurement module in an-
swering real-time queries. Timeliness and memory efficiency
require coordination and data exchange between the edge
and the center, representing a three-way tradeoff between
memory cost, communication cost and query accuracy. Our
main contributions are listed as follows.
• This is the first work that employs an offloading model to

relieve the increased memory cost in answering T -queries
in real time.

• We present two general designs that exploit offloading in
measuring flow size and flow spread, respectively.

• We conduct experiments using real traffic traces to evalu-
ate the performance of the proposed solutions. The exper-
imental results demonstrate that our solution significantly
outperforms the prior art, either reducing the memory cost
or equivalently improving the accuracy in query results
under the same memory allocation.

The rest of the paper is organized as follows. Section II
describes the system and flow models and then states the prob-
lem studied in this paper. Our solutions and the performance
analysis are given in Section III. The experimental evaluation
is presented in Section IV. Section V reviews related work.
Finally, we conclude the paper in Section VI.

II. PRELIMINARIES

A. System Model

We introduce a collaborative edge-center traffic measure-
ment model that consists of a logical measurement edge
and a measurement center. The logical measurement edge is
composed of all routers, switches, IDSes (introduction detec-
tion systems), firewalls, and other network devices that are
equipped with a traffic measurement module, which examines

the arrival packet stream and records the traffic statistics. The
measurement center may be hosted in a data center that has
computing/storage resources for long-term data storage and
short-term coordination with the numerous measuring devices
at the edge.

Time is divided into epochs, whose length is preset and
fixed. The measurement modules offload their measurement
data after each epoch to the center. The center records such
data, synthesize them over multiple epochs or over multiple
devices, and send aggregate data back to the measurement
modules of the devices at the edge, so that they do not
have to spend their limited on-die memory in keeping detail
information in order to support real-time queries from local
network security/performance functions such as identifying
large-sized flows (heavy hitters) for traffic shaping or identify-
ing large-spread flows (super spreaders) for anomaly detection.
As the edge does not keep detailed traffic measurements over
multiple epochs, each measurement module will answer real-
time queries based on both the local measurement data and
the aggregate data provided from the center.

B. Flow Model

The network traffic at a measurement module is a packet
stream which consists of a continuous sequence of packets,
where f is a flow label and e is an element identifier. The
flow label f is typically a combination of selected packet-
header fields, which may include source address, destination
address, protocol identifier, and/or other fields in the packet
headers, depending on the type of measurement functions and
application requirements. The element e can also be one or
multiple header fields or certain content in packet payload. All
packets with the same flow label form a flow. With different
flow labels, flows under measurement may be per-source flows,
per-destination flows, TCP flows, WWW flows, etc. Based on
the packet stream, there are various types of traffic statistics
that are crucial for network applications. This paper focuses
on two of them, i,e., flow size and flow spread, but our
collaborative edge-center measurement model solutions may
be extended for other types of measurement as well.

Flow size is defined as the number of elements in each
flow, where elements may be packets, bytes, or occurrences
of a certain header-field value. One may measure the number
of SYM packets from each source address, the number of
ACK packets sent to each address, the number of bytes that
each host downloads, or the number of bytes in each source-
destination flow. Such information is very useful to anomaly
detection, capacity planning, flow rerouting. For instance,
measuring the number of SYN/ACK packets provides a means
for detecting SYN attacks [25].

Flow spread is defined as the number of distinct elements
in each flow. Consider per-destination flows, where all packets
sent to a common destination constitute a flow. If the number
of distinct source addresses in a flow suddenly surges, it may
signal a DDoS attack. An institutional gateway may determine
the popularity of external web content for caching priority by
tracking the number of distinct source addresses in each flow

2

(which consists of all outbound HTTP requests for the same
web content).

C. Problem Statement

The T -query can be made by a network function or a
user to a traffic measurement module at any time t for a
flow f ’s real-time statistic, e.g., flow size and flow spread,
in the period of (t − T, t], which is the period of length T
immediately preceding time t, where T is a preset parameter.
Exact implementation of T -query is very difficult because it
requires the measurement module to track the exact traffic in
(t − T, t]. As time goes from t to t + ∆t, not only do we
have to record new information from (t, t+ ∆t], but also we
have to remove the old information in (t−T, t−T + ∆t], for
any time increment ∆t, which is hard to implement efficiently
without storing each packet 〈f, e〉 with an arrival timestamp.

In practice, traffic measurement is done in each epoch.
If we let T be n epochs (where integer n(≥ 1) can be
arbitrarily chosen), then the length of each epoch is T

n . We
define approximate T -query at time t on flow f as estimating
the size or spread of f in the current epoch up to t plus the
previous n−1 epochs. The answer to the query is based on the
traffic measured in a period of length between (t− T + T

n , t]
and (t− T, t], depending on where t is in the current epoch.

Below we give a couple of application examples of real-time
T -queries. Consider the application of detecting SYN/ACK
attacks and DDoS attacks discussed earlier. It is critical to
detect them in real time, so that response can be made in real
time, which in turns requires answering T -queries about flows
of interest in real time. In another application of traffic shaping
to deal with a congestion condition, we want to identify large
flows in real time, so that the congestion can be resolved
quickly.

III. COLLABORATIVE EDGE-CENTER TRAFFIC
MEASUREMENT

We propose three sketch designs for collaborative edge-
center traffic measurement, which allows the measurement
modules at the edge to offload their measurement data to
the center (in the cloud), so as to reduce the on-die memory
requirement at the edge where each measurement module must
record the arrival packets at the line rates and answer T -queries
in real time. Sketch refers to a compact data structure that
records information from a large data stream, in our case,
a large packet stream arriving at a high rate. We discuss
the tradeoff between query approximation and communication
overhead that is enabled in our designs. Finally we formally
analyze query accuracy.

A. One-Sketch Design for Flow Size

We describe our one-sketch design that uses a CountMin
[26] sketch to measure per-flow size in each epoch of length
T
n . The same design can be easily modified to work with other
sketches that measure per-flow size in each epoch [4], [18],
[27], [28]. Our contribution is to build a solution with any of
these sketches to answer T -queries on flow size.

Algorithm 1: One-sketch design for flow size—edge
side
Input: CountMin sketches C, time t, T , n
Action: packet recording, data offloading and query
if packet x arrives then

record x to C using the recording operation in
CountMin;

end
if reach the end of current epoch then

send C to the measurement center;
reset all counters in C to zero;

end
if receive A then

for i = 0 to d− 1 do
for j = 0 to m− 1 do

C[i][j] = C[i][j] +A[i][j];
end

end
end
if query on flow f then

answer query on C in the way that CountMin does;
end

Algorithm 2: One-sketch design for flow size—center
side
Input: CountMin sketches B0, B1...Bk−1,
C0, C1...Ck−1, time t, T , n, k
Action: data combination
if receive Ck then

if k < n− 1 then
for i = 0 to d− 1 do

for j = 0 to m− 1 do
Bk[i][j] = Ck[i][j]− Ck−1[i][j];

end
end

end
else

for i = 0 to d− 1 do
for j = 0 to m− 1 do

Bk[i][j] =
C[i][j]−

∑
k−n+2≤l≤k−1Bl[i][j];

A[i][j] =
∑

k−n+2≤l≤k Bl[i][j];
end

end
send Ak to the measurement edge;

end
k = k + 1;

end

3

We first review the CountMin sketch [26], which uses a
two-dimensional array of counters, denoted as C[i][j], 0 ≤
i < d and 0 ≤ j < m. It has d rows, each of m counters.
When receiving a packet from flow f , we record the packet
by hashing f to one counter in each row and increasing that
counter by one, i.e.,

C[i][Hi(f)] = C[i][Hi(f)] + 1,

where Hi, 0 ≤ i < d, are independent hash functions and
the modulo operation is assumed to keep the hash output in
the range [0,m). When we query the size of flow f recorded
in C, we take the minimum value of those d counters as the
estimate answer n̂f for the query, i.e.,

n̂f = min{C[i][Hi(f)], 0 ≤ i < d}.

It has been proved [26] that the estimate from CountMin is
bounded by

Prob(|n̂f − nf | ≥
eN

l
) ≤ m

ed
, (1)

where N is the total number of packets recorded by CountMin.
Next we present our design of using a single CountMin

sketch C per measurement module to support T -queries. The
module is configured to record packets epoch by epoch, each
of length T

n . The counters in C are initialized to zeros at the
beginning of the the 0th epoch. Starting from the (n − 1)th
epoch, their values will be reset to zeros at the beginning of
each epoch.

At the end of the kth epoch, for all k ≥ 0, the measurement
module sends the content of C to the measurement center. We
denoted the content of C as Ck after the kth epoch, where
k ≥ 0. The center stores the measurements from the kth epoch
in a new two-dimensional array Bk as follows:

B0[i][j] = C0[i][j], 0 ≤ i < d, 0 ≤ j < m

Bk[i][j] =


Ck[i][j]− Ck−1[i][j],

k < n− 1, 0 ≤ i < d, 0 ≤ j < m;

Ck[i][j]−
∑

k−n+2≤l≤k−1Bl[i][j],

k ≥ n− 1, 0 ≤ i < d, 0 ≤ j < m.

(2)

Clearly, Bk keeps the measurements of the kth epoch, ∀k ≥ 0.
When k ≥ n − 1, the center computes the aggregate

measurements Ak from the (k − n + 2)th epoch to the kth
epoch, i.e., ∀0 ≤ i < d, 0 ≤ j < m,

Ak[i][j] =
∑

k−n+2≤l≤k

Bl[i][j], (3)

and sends Ak back to the measurement module, which will
add Ak to its sketch array C as follows:

C[i][j] = C[i][j] +Ak[i][j], 0 ≤ i < d, 0 ≤ j < m.

T -queries are allowed starting from the (n − 1)th
epoch. When being queried on flow f , the module returns
min{C[i][Hi(f)], 0 ≤ i < d}. The pseudo codes for the one-
sketch design on the edge side and center side are given in
Algorithms 1 and 2.

In our edge-center module, we make the edge light-weighted
to save memory resource by only keeping the measurement
of the current epoch and relieving it from storing the detailed
information about earlier epochs, which is stored in the center.
The center will refresh the edge with the aggregate information
of the earlier n− 1 epochs, i.e., Ak. The problem of the one-
sketch design is that queries cannot be made right after the end
of the kth epoch and before the module receives Ak, which
is a round-trip delay between the module and the center. This
may not be a serious issue if the center collocates with the
measurement module and the delay is negligible. But if the
center is distant in a datacenter, serving for many measurement
modules scattered in a large network, the delay may become
non-negligible. To address this problem, we design a two-
sketch mechanism for flow-size below, which doubles the
memory requirement at each measurement module.

B. Two-Sketch Design for Flow Size

Algorithm 3: Two-sketch design for flow size—edge
side
Input: CountMin sketches C and C ′, time t, T , n
Action: packet recording, data offloading and query
if packet x arrives then

record x to C and C ′ using the recording
operation in CountMin;

end
if reach the end of current epoch then

send C to the measurement center;
C = C ′;
reset all counters in C ′ to zero;

end
if receive A then

for i = 0 to d− 1 do
for j = 0 to m− 1 do

C ′[i][j] = C ′[i][j] +A[i][j];
end

end
end
if query on flow f then

answer query on C in the way that CountMin does;
end

The new design uses two CountMin sketches, C and C ′ of
the same dimensions. Initially, all counters in C and C ′ are
set to zeros. In each epoch, all packets will be recorded in
both C and C ′ in the same way as the one-sketch design does
to C. At the end of the kth epoch, ∀k ≥ 0, still denoting the
content of C as Ck, the measurement module will send Ck to
the center, copy C ′ to C, and reset C ′ to zeros.

At the end of the kth epoch with k ≥ n − 1, our design

4

Algorithm 4: Two-sketch design for flow size—center
side

Input: CountMin sketches B0, B1...Bk−1,
C0, C1...Ck−1, time t, T , n, k
Action: data combination
if receive Ck then

if k < n− 2 then
for i = 0 to d− 1 do

for j = 0 to m− 1 do
Bk[i][j] = Ck[i][j]− Ck−1[i][j];

end
end

end
else

for i = 0 to d− 1 do
for j = 0 to m− 1 do

Bk[i][j] =
Ck[i][j]−

∑
k−n+2≤l≤k−1Bl[i][j];

A[i][j] =
∑

k−n+3≤l≤k Bl[i][j];
end

end
send Ak to the measurement edge;

end
k = k + 1;

end

ensures that, ∀0 ≤ i < d, 0 ≤ j < m,

C[i][j] =
∑

k−n+1≤l≤k

Bl[i][j] (4)

C ′[i][j] =
∑

k−n+2≤l≤k

Bl[i][j], (5)

where Bl is the measurements for the lth epoch, as is defined
in Section III-A. Hence, C contains the measurements for n
epochs, from the (k − n + 1)th epoch to the kth epoch. C ′

contains the measurements for n − 1 epochs, from the (k −
n+ 2)th epoch to the kth epoch.

After sending the content of C to the center, copying C ′ to
C and setting C ′ to zeros, the measurement module will have

C[i][j] =
∑

k−n+2≤l≤k

Bl[i][j] (6)

C ′[i][j] = 0. (7)

C will contain the measurements for n− 1 epochs, from the
(k−n+2)th epoch to the kth epoch, ready to support T -queries
from the beginning of the (k+ 1)th epoch. The measurement
module will now start the (k + 1)th epoch by recording each
packet in both C and C ′.

When the center receives Ck, it first computes Bk and Ak

as follows: ∀0 ≤ i < d, 0 ≤ j < m,

B0[i][j] = C0[i][j], 0 ≤ i < d, 0 ≤ j < m

Bk[i][j] =


Ck[i][j]− Ck−1[i][j],

k < n− 1, 0 ≤ i < d, 0 ≤ j < m;

Ck[i][j]−
∑

k−n+2≤l≤k−1Bl[i][j],

k ≥ n− 1, 0 ≤ i < d, 0 ≤ j < m.

(8)

Starting from the (n− 2)th epoch, it will compute

Ak[i][j] =
∑

k−n+3≤l≤k

Bl[i][j], (9)

and send Ak to the measurement module, which will add Ak

to C ′k as follows:

C ′[i][j] = C ′[i][j] +Ak[i][j], 0 ≤ i < d, 0 ≤ j < m.

This will ensure that at the end of the (k+1)th epoch, C ′ will
contain the measurements of n−1 epochs, from the ((k+1)−
n + 2)th epoch to the (k + 1)th epoch, while C will contain
the measurements for n epochs, from the ((k+ 1)− n+ 2)th
epoch to the (k + 1)th epoch, which are both consistent with
(5).

When being queried on flow f , the module returns
min{C[i][Hi(f)], 0 ≤ i < d}. The pseudo codes for the two-
sketch design on the edge side and center side are given in
Algorithms 3 and 4.

C. Three-Sketch Design for Flow Spread

We describe our three-sketch design that uses vSkt(HLL)
[17] to measure per-flow spread in each epoch of length
T
n . The same design can be easily modified to work with
other sketches that measure per-flow spread [19], [29]. Our
contribution is to build a solution on top of vSkt to answer
T -queries on flow spread.

We first review the vSkt(HLL) [17]. Its data structure is
a two-dimensional array of HLL registers [30], denoted as
C[i][j], 0 ≤ i < d and 0 ≤ j < m. An HLL register is
a counter of r bits which can store a value in the range of
[0, 2r−1]. For example, if we assign each HLL register 5 bits,
then its range is is [0, 31]. When receiving a packet 〈f, e〉, we
record it by hashing 〈f, e〉 to one HLL register in the whole
sketch and update the register value as follows :

C[H ′(e)][HH′(e)(f)] = max{C[H ′(e)][HH′(e)(f)], G(e)}
(10)

where H ′ is a uniform hash function with an output in the
range of [0, d) ; Hi, 0 ≤ i < d, are independent hash functions
of range [0,m) ; G is a geometric hash function whose value
is v with probability 2−v for v ≥ 1. When querying, we first
estimate the total number of distinct elements recorded by
vSkt(HLL) as

N̂ = αdd
2/(

d−1∑
i=0

2−max{C[i][j],0≤j<m}),

5

Algorithm 5: Three-sketch design for flow spread—
edge side

Input: vSkt(HLL) sketches B, C and C ′, time t, T , n
Action: packet recording, data offloading and query
if packet x arrives then

record x to B, C and C ′ using the recording
operation in vSkt(HLL);

end
if reach the end of current epoch then

C = C ′;
reset all registers in C ′ to zero;
send B to the measurement center;
reset all registers in B to zero;

end
if receive A then

for i = 0 to d− 1 do
for j = 0 to m− 1 do

C ′[i][j] = max{C ′[i][j], A[i][j]};
end

end
end
if query on flow f then

answer query on C in the way that vSkt(HLL)
does;

end

Algorithm 6: Three-sketch design for flow spread—
center side

Input: vSkt(HLL) sketches for different epochs
B0, B1...Bk, time t, T , n, k
Action: data combination
if receive Bk then

if k ≥ n− 2 then
for i = 0 to d− 1 do

for j = 0 to m− 1 do
A[i][j] = max{Bl[i][j], k − n+ 3 ≤ l ≤
k};

end
end
send A to the measurement edge;

end
k = k + 1;

end

and then we use the following function to estimate spread of
flow f as n̂f :

n̂f = αdd
2/(

d−1∑
i=0

2−C[i][Hi(f)])− N̂/m,

where αd = 0.7213/(1 + 1.078/d). It has been proved [17]
that the expectation and variance of estimate from vSkt(HLL)

satisfies

nf (1− ε− 1

m
) ≤ E(n̂f) ≤ nf (1 + ε− 1

m
)

V ar(n̂f) =
1.042

d
(k +

N

m
)2 +

1.042

dm2
X2

+ (
1.042

d
+ 1)

N

d
(1− 1

m
)

(11)

where ε = δ(1− 1
m + 2N

mnf
) with δ ≤ 5× 10−5 when d ≥ 16,

and N is the total number of distinct elements recorded by
vSkt(HLL).

Our design uses three vSkt(HLL) sketches, denoted as B,
C and C ′, respectively. Each of them is an array of d × m
HLL registers. At the end of each epoch, the registers in B
are sent to the center and then they are reset to zeros, whereas
C is replaced by C ′, and C ′ will wait for its new values
from the center. Then, the next epoch starts, and the packets
will be recorded in B, C and C ′, with B tracking the spread
measurements in this epoch, C used to answer T -queries, and
C ′ preparing for the next epoch. The reason for introducing a
third sketch B to record the measurements of the current epoch
and send it to the center is that the center cannot compute it
based on (8) because C is not a counter array but an HLL
register array with a max operation (10).

Let Bk be the flow-spread measurements in the kth epoch.
At the end of the kth epoch with k ≥ n−1, our design ensures
that, ∀0 ≤ i < d, 0 ≤ j < m,

C[i][j] = max{Bl[i][j], k − n+ 1 ≤ l ≤ k} (12)
C ′[i][j] = max{Bl[i][j], k − n+ 2 ≤ l ≤ k}, (13)

where Bl is the spread measurements of the lth epoch. Similar
to the two-sketch design, but here in terms of spread instead
of size, C contains the measurements from the (k − n+ 1)th
epoch to the kth epoch, and C ′ contains the measurements
from the (k − n+ 2)th epoch to the kth epoch.

Denote C and C ′ at the end of the kth epoch as Ck and
C ′k, respectively. The measurement module will send B (i.e.,
Bk) to the center, set it to zeros, copy C ′ to C, and set C ′ to
zeros, such that, ∀0 ≤ i < d, 0 ≤ j < m,

C[i][j] = max{Bl[i][j], k − n+ 2 ≤ l ≤ k} (14)
C ′[i][j] = 0. (15)

C will contain the measurements for n− 1 epochs, from the
(k−n+2)th epoch to the kth epoch, ready to support T -queries
from the beginning of the (k+ 1)th epoch. The measurement
module will now start the (k + 1)th epoch by recording each
packet in B, C and C ′.

When the center receives Bk, if k ≥ n−2, it first computes
Ak as follows: ∀0 ≤ i < d, 0 ≤ j < m,

Ak[i][j] = max{Bl[i][j], k − n+ 3 ≤ l ≤ k} (16)

and then sends Ak to the measurement module, which will
merge Ak to C ′k as follows: ∀0 ≤ i < d, 0 ≤ j < m,

C ′[i][j] = max{C ′[i][j], Ak[i][j]}.

6

This will ensure that at the end of the (k + 1)th epoch, C
contains the measurements from the ((k+1)−n+1)th epoch
to the (k+1)th epoch, and C ′ contains the measurements from
the ((k + 1)− n + 2)th epoch to the (k + 1)th epoch, which
are consistent with (13).

Upon T -query, the measurement module will answer query
on C. The pseudo codes for the three-sketch design on the
edge side and center side are given in Algorithms 5 and 6,
respectively.

D. Tradeoff between Approximation and Communications

Built on top of the offloading model, our designs require
the measurement edge to periodically interact with the mea-
surement center. Specifically, at the end of each kth epoch, the
measurement edge will offload the measurement data (Ck for
flow size measurement and Bk for flow spread measurement)
and the measurement center will send the aggregate data
back to the measurement edge, i.e., Ak for either flow size
measurement or flow spread measurement. The epoch length
is T

n seconds and the memory for the sketch is denoted as
M bits. So the average bandwidth required when dividing the
time period T into n epochs is

2Mn

T
bps, (17)

where the coefficient is 2 because we combine the downlink
and uplink bandwidth together. As we can see, with n increas-
ing, the communication cost will increase as well.

While a smaller n is in favor for less communication cost,
a larger n enables [t0 − n−1

n T, t] to approximate [t − T, t]
more, where t0 is the start time of the current epoch with
t0 ≤ t ≤ t0 + T

n . For any T -query casted at time t, we
expect to collect the traffic statistics during the time period
of [t − T, t] exactly, which can only be done if we track
the time stamp of each packet, implying tremendous resource
consumption. Alternatively, our solutions actually collect the
traffic statistics during the time period of [t0 − n−1

n T, t], an
approximate substitute period to the period [t − T, t]. We
can conclude that the difference between these two periods
is within |t0 − n−1

n T − (t − T)| ≤ T
n which indicates that a

larger n is preferred for a closer approximation.

E. T -query Accuracy

Consider an arbitrary time t of T -query on a flow’s size
or spread over a period of [t0 − n−1

n T, t], where t0 is the
beginning time of the current epoch. Our two-sketch (or three-
sketch) design greatly reduces memory cost by measuring
in each epoch of length T

n , while not keeping the detailed
measurements of the earlier epochs locally. The question is
whether its query result is as accurate as what will be produced
from directly applying CountMin (or vSkt) to the period of
[t0 − n−1

n T, t] — this is the ideal case but not implementable
for all possible times t. The theorems below show that our
designs produce the same query results as the ideal case.

Theorem 1. For a T -query at an arbitrary time t on an
arbitrary flow, the two-sketch design produces the same result

as what CountMin with the same configuration of d, m and
hash functions will produce when it measures the traffic in
[t0 − n−1

n T, t].

Proof: C represents the CountMin sketch in our design
and let Cc be the CountMin sketch that records the packet
stream during time period [t0− n−1

n T, t]. Consider any pair of
counters that have the same location in C and Cc, i.e., C[i][j]
and Cc[i][j]. They will witness the same set of packets as
the hash functions and the number of columns are the same.
Since for the each packet arrival the counter will increase by
1, we can conclude that C[i][j] = Cc[i][j]. Since their query
operations are the same, C and Cc will produce the same flow
size estimate for any flow. The theorem stands.

Theorem 2. For a T -query at an arbitrary time t on an
arbitrary flow, the three-sketch design produces the same
result as what vSkt with the same configuration of d, m and
hash functions will produce when it measures the traffic in
[t0 − n−1

n T, t].

Proof: C represents the vSkt(HLL) sketch in our design
from which we answer the spread query for any flow and let
Cc be the vSkt(HLL) sketch that records the packet stream
during time period [t0 − n−1

n T, t]. Consider any pair of HLL
registers in the same location of C and Cc, i.e., C[i][j] and
Cc[i][j]. They will witness the same set of packets as the hash
functions and the number of columns are the same, and thus
produce the same geometric hash value. Since both registers
Cc[i][j] and C[i][j] store the maximum geometric hash value,
we have C[i][j] = Cc[i][j]. Given that C and Cc answer the
spread query in the same way, they will produce the same
spread estimate for any flow. The theorem stands.

IV. EXPERIMENT AND EVALUATION

A. Experiment Setup

Dataset: We use the real traffic traces downloaded from
CAIDA in 2018 [31]. The dataset we use lasts for 30 mins and
contains 328524761 packets, 27710 different source addresses
and 20791 different destination addresses.
Flow size measurement: We consider the destination address
as the flow label. That is, packets with the same destination
address form a flow. In the CAIDA dataset, there are 20791
destination flows. T is set as 1 min and each epoch lasts for
6s, meaning that answering T query requires collecting the
information of 10 consecutive epochs. We use CountMin to
measure the flow size in each epoch, with the recommended
setting of d = 4. We implement our two-sketch design in
comparison with the state of the art, i.e., Sliding Sketch [22].
Sliding Sketch is based on CountMin. Its main data structure
is a two-dimension array with its number of rows d equal to
the number of epochs that the sliding window (T) contains.
We implement two types of Sliding Sketches, one with d = 10
for fair comparison and the other with d = 5 to enhance our
evaluation.
Flow spread measurement: The destination address is the
flow label, which has the application of detection of DDoS

7

� 23 25 27 29 211 213 215 217
�����
���

�

����

����

��
��
��
��
��
��
�

�������
���������	����

�������
���������	���
����
�����

(a) 1Mb Memory

� 23 25 27 29 211 213 215 217
���������

�

���

����

����

����

	
��
��
��
��

�
��
�

�����������������������
����������������������

���������

(b) 2Mb Memory

� 23 25 27 29 211 213 215 217
���������

�

��

���

���

���

	
��
��
��
��

�
��
�

�����������������������
����������������������

���������

(c) 8Mb Memory

Fig. 1: Flow size measurement accuracy comparison of Sliding Sketch and the two-sketch design under memory allocations
of 1Mb, 2Mb and 8Mb.

22 24 26 28 210 212
	����
���
�

�

����

����

����

�����

�
��
��
��
��
��
��
�

����
������
�����

(a) 1Mb Memory

22 24 26 28 210 212
�����	�����

�

����

����

����

�

�
��
��
��
��
��
�

��
�

�����	�����

(b) 2Mb Memory

22 24 26 28 210 212
�����	�����

�

���

����

����

����

�

�
��
��
��
��
��
�

��
�

�����	�����

(c) 8Mb Memory

Fig. 2: Flow spread measurement accuracy comparison of VATE and the three-sketch design under memory allocations of
1Mb, 2Mb and 8Mb.

attacks [32]. T is set as 1 min and each epoch is 6s. vSkt(HLL)
is used for flow spread measurement in our three-sketch
design. Following the parameter setting in the original paper,
we set d = 128. We use the classical solution, i.e., VATE
[23], as the benchmark, which measures the spread of each
flow based on the bitmap algorithm [5], [33], [34]. The bitmap
length is the same as the original paper, i.e., 4096.

We use MacBook as the measurement edge, which has a
Quad-Core Intel Core i7 (2.7Ghz), 16GB memory. The cloud
center is HP Z840, which has an E5-2643v4 CPU (6-Core,
20M Cache, 3.4GHz), 256GB memory and disk space of total
9.6 TB.

In what follows, we present the experimental results using
the performance metric of absolute error, defined as |nf− n̂f |,
where nf is the real size/spread of f and n̂f is the estimated
size/spread of f .

B. Experimental Results

Flow size measurement: Each algorithms are allocated the
same amount of memory, which can be 1Mb, 2Mb, 4Mb and
8Mb. Fig. 3 shows the experimental results about the average
absolute error of all the flows. Our solution reduces the average
absolute error by up to 96.9% and 93.4% compared to Sliding
Sketches with d = 10 and d = 5, respectively. Thanks to

Fig. 3: Average absolute error of the two-sketch design in
comparison with Sliding Sketch under different memory allo-
cations for flow size measurement.

the offloading model, our solution only needs to store the
information of the current epoch and accumulative informa-
tion, while Sliding Sketch needs to store the information of
recent T period locally. We also illustrate the absolute error
distribution along flows with different sizes under the memory
allocations of 1Mb, 2Mb and 8Mb, as shown in Figs. 1a, 1b

8

Fig. 4: Average absolute error of the three-sketch design in
comparison with VATE under different memory allocations
for flow spread measurement

and 1c, respectively. The figures demonstrate that our solution
consistently outperforms Sliding Sketch, regardless of the flow
size.
Flow spread measurement: Fig. 4 shows the absolute error
with memory sizes of 1Mb, 2Mb, 4Mb and 8Mb. Thanks to
the offloading model, our solution reduces the average absolute
error by up to 97.8% compared to VATE. We also illustrate
the absolute error distribution along flows with different sizes.
The results under 1Mb, 2Mb and 8Mb memory allocations are
shown in Figs. 2a, 2b and 2c, respectively. Although VATE
reduces the absolute error for flows with large spreads, it is
still consistently inferior to our solution, regardless of the flow
spread.

V. RELATED WORK

We review two categories of existing work on traffic mea-
surement, one for the fix window and the other for the sliding
window. For each categories, we separate them into flow size
measurement and flow spread measurement.

A. Traffic Measurement for a Fixed Window

Flow size measurement: Flow size measurement for a single
flow can be easily solved using counters. However, when
there are numerous flows, it can incur tremendous memory
overhead. Therefore, solution such as Netflow can only deal
with a small subset of flows/packets, resulting in unsatisfactory
quality of service. Most research has followed the path of
designing efficient data structures to perform approximate
estimation. Instead of using separate counters for individual
flows, counting Bloom filter [35], CountMin [5] and Counter
Braids [36], [37] and other solutions [2]–[6] share counters
among flows to reduce the memory overhead. Among them the
widely acknowledged one is CountMin, serving as a building
block for a number of sophisticated measurement solutions.

Flow spread measurement: Bitmap [5], [33], [34], FM
sketch [38], and HLL sketch [30], [39] can measure the
spread of a single flow, called spread estimator. Because of
the same reason as the solution for flow size measurement,
we need sketch-based solutions to save memory. To measure

the flow spread for each flow in the packet stream, CSE [20]
and vHLL [21] reduce memory consumption through space
sharing. bSketch [17] and vSketch [17] propose a family of
sketches using plug-ins like bitmaps [40], FM sketches [38]
and HLL sketches [30], [39]. Among all the solutions, vSketch
using HLL sketches, denoted as vSkt(HLL), and vHLL, are the
most accurate solutions.

B. Traffic Measurement for Sliding Window

Traffic measurement for sliding window cares about the
same packet stream as T -query does if the window size
is equal to T . However, T -query highlights the importance
of answering the query in real time while some traditional
solutions for sliding window cannot be implemented on online
network processors. The reason is that most existing solutions
based on sliding window divide the packet stream into multiple
epochs, which can turn the traffic measurement problem for
a sliding window to that for multiple fixed windows, but at
the cost of using multiple independent sketches. The idea is
directly applied by Zhou et al [24] for flow size measure-
ment and CountMin is used to measure packets stream in
one epoch. Gou et al. reduces the memory consumption by
using a CountMin with n rows for a sliding window with
n epochs. They propose a scanning operation to circularly
clear the counters in CountMin, ensuring that counters in
different rows store the traffic statistics of different numbers
of epochs and the minimum value among n hashed counters
can approximately estimate the size of the queried flow. Flow
spread measurement for a sliding window is studied. The state
of the art is VATE [23], which is based on CSE, a solution
for flow spread measurement for fixed epochs. VATE expands
every bit in CSE to a counter and the value of the counter
(except 0) is a time stamp. For T -query, VATE only needs
to collect the counters whose values locate in the latest time
period of T and perform similar query to what CSE does.

VI. CONCLUSION

Real-time obtaining the traffic statistics in the most recent
time period of T is crucial for many practical network ap-
plications. This paper proposed solutions to answering the
T -query on network traffic in real time. We employ the
offloading model to significantly reduce the on-die memory
resource consumption, making it possible to implement the
solutions on online network processors. Theoretical analysis
and experimental results show that our solutions outperform
existing work in terms of estimation accuracy and memory
efficiency.

ACKNOWLEDGEMENT

This work was supported in part by National Science
Foundation of US under grant CNS-1909077 and a grant from
Florida Center for Cybersecurity.

REFERENCES

[1] Cisco, “Cisco IOS NetFlow,” Online. [Online]. Available: http://www.
cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

9

[2] M. Yu, L. Jose, and R. Miao, “Software Defined Traffic Measurement
with OpenSketch,” Proc. of NSDI, pp. 29–42, 2013.

[3] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman†, “One
Sketch to Rule Them All: Rethinking Network Flow Monitoring with
UnivMon,” Proc. of ACM Sigcomm, 2016.

[4] C. Estan and G. Varghese, “New Directions in Traffic Measurement and
Accounting,” Proc. of ACM SIGCOMM, August 2002.

[5] G. Cormode and S. Muthukrishnan, “Space Efficient Mining of Multi-
graph Streams,” Proc. of ACM PODS, June 2005.

[6] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic Sketch: Adaptive and Fast Network-wide
Measurements,” Proc. of ACM SIGCOMM, August 2018.

[7] D. Plonka, “FlowScan: A Network Traffic Flow Reporting and Visual-
ization Tool,” Proc. of USENIX LISA, 2000.

[8] K. Park and H. Lee, “On the Effectiveness of Route-Based Packet
Filtering for Distributed DoS Attack Prevention in Power-Law Internets,”
Proc. of ACM SIGCOMM’2001, August 2001.

[9] D. Moore, G. Voelker, and S. Savage, “Inferring Internet Denial of
Service Activity,” Proc. of USENIX Security Symposium’2001, August
2001.

[10] P. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling High Bandwidth Aggregates in the Network,”
Computer Communications Review, vol. 32, no. 3, pp. 62–73, July 2002.

[11] S. Venkatataman, D. Song, P. Gibbons, and A. Blum, “New Streaming
Algorithms for Fast Detection of Superspreaders,” Proc. of NDSS,
February 2005.

[12] C. C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and
Early Warning for Internet Worms,” in Proceedings of the 10th ACM
conference on Computer and communications security, 2003, pp. 190–
199.

[13] C. C. Zou, W. Gong, D. Towsley, and L. Gao, “The Monitoring and Early
Detection of Internet Worms,” IEEE/ACM Transactions on networking,
vol. 13, no. 5, pp. 961–974, 2005.

[14] S. Chen and Y. Tang, “Slowing Down Internet Worms,” Proc. of IEEE
ICDCS’04, March 2004.

[15] M. Feily, A. Shahrestani, and S. Ramadass, “A Survey of Botnet and
Botnet Detection,” in 2009 Third International Conference on Emerging
Security Information, Systems and Technologies. IEEE, 2009, pp. 268–
273.

[16] Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum, “BotGraph:
Large Scale Spamming Botnet Detection.” in NSDI, vol. 9, 2009, pp.
321–334.

[17] Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized
Sketch Families for Network Traffic Measurement,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 3, no. 3, Dec. 2019.

[18] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and general sketch-based
monitoring in software switches,” in Proceedings of the ACM Special
Interest Group on Data Communication, 2019, pp. 334–350.

[19] Q. Xiao, S. Chen, M. Chen, and Y. Ying, “Hyper-Compact Virtual
Estimators for Big Network Data Based on Register Sharing,” in Proc.
of ACM SIGMETRICS, 2015.

[20] M. Yoon, T. Li, S. Chen, and J. Peir, “Fit a Compact Spread Estimator in
Small High-Speed Memory,” IEEE/ACM Transactions on Networking,
vol. 19, no. 5, pp. 1253–1264, October 2011.

[21] Q. Xiao, S. Chen, Y. Zhou, M. Chen, J. Luo, T. Li, and Y. Ling,
“Cardinality Estimation for Elephant Flows: A Compact Solution based
on Virtual Register Sharing,” IEEE/ACM Transactions on Networking,
2017.

[22] X. Gou, L. He, Y. Zhang, K. Wang, X. Liu, T. Yang, Y. Wang,
and B. Cui, “Sliding sketches: A framework using time zones for
data stream processing in sliding windows,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, ser. KDD ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1015–1025. [Online]. Available:
https://doi.org/10.1145/3394486.3403144

[23] J. Xu, W. Ding, X. Hu, and Q. Gong, “Vate: A trade-off between
memory and preserving time for high accurate cardinality estimation
under sliding time window,” Computer Communications, vol. 138,
pp. 20–31, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S014036641830625X

[24] Y. Zhou, Y. Zhou, S. Chen, and Y. Zhang, “Per-flow counting for big
network data stream over sliding windows,” in 2017 IEEE/ACM 25th

International Symposium on Quality of Service (IWQoS), 2017, pp. 1–
10.

[25] H. Wang, D. Zhang, and K. G. Shin, “SYN-dog: Sniffing SYN Flood-
ing Sources,” Proc. of 22nd International Conference on Distributed
Computing Systems (ICDCS’02), July 2002.

[26] G. Cormode and S. Muthukrishnan, “An Improved Data Stream Sum-
mary: the Count-Min Sketch and Its Applications,” Proc. of LATIN,
2004.

[27] M. Charikar, K. Chen, and M. Farach-Colton, “Finding Frequent Items
in Data Streams,” Proc. of International Colloquium on Automata,
Languages, and Programming (ICALP), July 2002.

[28] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Transactions on Networking,
vol. 20, no. 5, pp. 1622–1634, 2012.

[29] M. Yoon, T. Li, S. Chen, and J. Peir, “Fit a Spread Estimator in Small
Memory,” Proc. of IEEE INFOCOM, April 2009.

[30] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm,” Proc. of
AOFA, pp. 127–146, 2007.

[31] Caida anonymized 2018 internet traces. [Online]. Available: http:
//www.caida.org/data/overview/

[32] Wikipedia contributors, “Denial-of-service attack — Wikipedia,
the free encyclopedia,” https://en.wikipedia.org/w/index.php?title=
Denial-of-service attack&oldid=1026628937, 2021, [Online; accessed
8-June-2021].

[33] K. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A Linear-time
Probabilistic Counting Algorithm for Database Applications,” ACM
Transactions on Database Systems, vol. 15, no. 2, pp. 208–229, June
1990.

[34] C. Estan, G. Varghese, and M. Fish, “Bitmap Algorithms for Counting
Active Flows on High-Speed Links,” IEEE/ACM Trans. on Networking,
vol. 14, no. 5, October 2006.

[35] S. Cohen and Y. Matias, “Spectral Bloom Filters,” Proc. of ACM
SIGMOD, June 2003.

[36] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter Braids: A Novel Counter Architecture for Per-Flow Measure-
ment,” Proc. of ACM SIGMETRICS, June 2008.

[37] Y. Lu and B. Prabhakar, “Robust Counting Via Counter Braids: An
Error-Resilient Network Measurement Architecture,” Proc. of IEEE
INFOCOM, April 2009.

[38] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for
database applications,” Journal of Computer and System Sciences,
vol. 31, pp. 182–209, September 1985.

[39] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in Practice:
Algorithmic Engineering of a State-of-The-Art Cardinality Estimation
Algorithm,” Proc. of EDBT, 2013.

[40] K. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A Linear-time
Probabilistic Counting Algorithm for Database Applications,” ACM
Transactions on Database Systems, vol. 15, no. 2, pp. 208–229, 1990.

10

