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Abstract—Internet-connected devices have been surging
rapidly during the past years. Many important applications
based upon such devices have emerged, such as vehicle tracking
systems. These applications often require real-time execution
of a large number of computation tasks. Edge computing has
shown great potential in processing frequent but less-demanding
tasks. Additionally, cloud computing allows for great scalability
when substantial computing resources are needed. Edge-cloud
computing is a paradigm that combines edge computing and
cloud computing. A key problem in edge-cloud computing is
how to determine the execution location for each computation
task. We propose a dynamic edge-twin computing model in the
context of edge-cloud computing. It uses an evaluation mechanism
to predict the completion times of the task at both an edge device
and a cloud server. The completion time includes data transfer
time and computing time and it is determined based on real-time
information about the task and the computing environment. The
task will be executed by the device with a shorter completion
time. We have implemented a vehicle tracking system under the
edge-twin model. The experimental results show that the edge-
twin model outperforms edge-alone computing and cloud-alone
computing.

I. INTRODUCTION

Edge-cloud computing is a distributed computing paradigm
that utilizes computing resources of both edge devices and
cloud servers [1]. Comparing with cloud-based computing,
it tries to keep the execution of computation tasks at the
edge devices where the tasks are produced. By doing so, it
utilizes the computing resources at the edge and save network
bandwidth through reduction of long-haul data transfers. The
proximity to the data sources and/or to the data consumers
also means that real-time data analysis and more timely
responses are made possible [2]. When the edge resources are
inadequate, the edge-cloud computing model allows offloading
some computation tasks to the cloud servers for their powerful
processing capability and huge storage space [3].

Edge-cloud computing has remarkable applications in au-
tonomous cars, smart cities, home automation systems, etc
[4] and therefore has been gaining attention in the research
community. Miao et al. designed a computation offloading
strategy for an edge-cloud computing environment [5]. They
used artificial intelligence (Al) techniques to schedule compu-
tation tasks based on the data size and performance features of
edge-cloud computing devices. Villari et al. proposed osmotic
computing, which decomposes applications into microservices

and deploy these microservices on both edge devices and cloud
servers [6]. The above studies use historic workload data to
pre-determine the execution locations of computation tasks.
Similar strategy has been adopted by other work including
[7]-[10]. We argue that at the real time when the tasks arise,
if the conditions in their computing/networking/data environ-
ment are spontaneous and unpredictable, pre-determining the
execution location based on historic data will not provide
optimal performance because the real-time conditions may
deviate from the most likely conditions suggested by the
historic executions. For a couple of examples, as computation
tasks arrive, the processing capacity of the edge device may
vary widely depending on the background workload (e.g., with
or without simultaneous arrival of other user requests), the
processing capacity of the cloud may vary spontaneously (e.g.,
whether the purchased resources are currently used to process
videos from other cameras), the available network bandwidth
may vary significantly from time to time (e.g., a flush crowd of
background wireless usage or fluctuation in channel conditions
can greatly decrease bandwidth for a period of time), and the
data size to be processed may also vary greatly (e.g., video
sizes from cameras will be very different between rush hours
and light traffic times for the vehicle tracking application).
These conditions are unpredictable beforehand. This paper
considers how to optimize edge-cloud computing by real-time
dynamic determination of task execution location based on
current networking/data conditions.

We propose a dynamic edge-twin computing model, which
adopts an evaluation mechanism to determine the execution
location of each computation task based on real-time informa-
tion about the task and the computation environment. Before
executing a computation task, the evaluation mechanism esti-
mates the completion time of the task executed at its edge
device and the time executed at its cloud-based twin with
designated resources. The completion time at the twin includes
data transfer time and computing time, and it is determined
based on the current network bandwidth, the data size, and
other factors. The task will be executed either by the edge
device or by its cloud-based twin, depending on which has
a shorter completion time. This paper applies the edge-twin
computing model to a vehicle tracking application, which
provides a platform for us to evaluate the effectiveness of this
model.



Our contributions are: 1) We propose an edge-twin com-
puting model, which selects either an edge device or a cloud-
based virtual machine server (known as the twin of the
edge device) to execute a computation task; 2) We design
an evaluation mechanism to estimate the completion times
at both the edge server and its cloud-based twin. The task
will be executed at one of the two locations with a shorter
completion time. The evaluation mechanism takes into ac-
count the parameters of the task and up-to-date information
about the computing environment; 3) We develop a vehicle
tracking system to evaluate the edge-twin computing model.
We identify the key computing functions of video processing,
and transform their code into separate computation tasks that
can be either executed at the edge or in the cloud, depending
on the result from the evaluation mechanism; 4) We conduct
experiments with the vehicle tracking system and compare
the performance of the edge-twin computing model with the
edge-alone computing and cloud-alone computing models. We
show that the edge-twin model performs much better than the
traditional computing models.

II. DYNAMIC EDGE-TWIN COMPUTING MODEL

A. Overview

Consider an application of tracking vehicles based on the
videos captured from a set of edge devices, each equipped with
a camera and local computing/storage resources. Suppose that
the cameras are turned on by motion sensors and that the user
may issue different requests for real-time monitoring or non-
real-time vehicle recordings. Due to dynamic traffic conditions
or changes in user requirements, the processing load may vary
significantly over time.

Instead of designing edge devices for the maximum possible
workload, which may not be even known due to uncertain
future traffic conditions or user requirements, this paper adopts
an edge-twin model for resource scaling and cost control at
the edge. For each edge device, we allocate a VM server (also
called the twin of the edge device) in the cloud. An edge device
may perform some computation itself, while offloading other
computation to its twin in the cloud. Whether to perform a
computation task locally or in the cloud depends on many
factors, including the time it takes to compute the task locally,
the time it takes to compute the task in the cloud, and the
time it takes to transfer the data (e.g., video) to the cloud and
retrieve the results back. These factors in turn depend on the
data size, the nature of the computational aspect of the task,
network bandwidth, and communication delay, which may all
vary over time.

The problem that we study in this paper is called dynamic
edge-twin computing, which determines the execution loca-
tions (i.e., the edge or its cloud-based twin) of computation
tasks based on real-time conditions (such as the data size and
network bandwidth) in order to minimize the task completion
time. We will study this problem using a vehicle tracking
system that we have implemented.

B. Description of the Edge-Twin Computing Model

The edge-twin computing model determines the execution
location (i.e., the edge or its cloud-based twin) of computation
tasks to minimize the task completion time. An evaluation
mechanism running at the edge device is used to predict the
completion time of executing a task at the edge device and
the completion time of executing at the corresponding cloud-
based twin. More specifically, before executing a computa-
tion task, we invoke the evaluation mechanism, where the
information about the computing and networking environment
has been kept up-to-date, including the network bandwidth,
the processing capability of the edge device, as well as the
capacity of the cloud-based twin. The evaluation mechanism
extracts additional relevant parameters from the task data, such
as the data size. After the evaluation, the system dispatches
the computation task either to the local edge device or to the
cloud-based twin, depending on which one has a shorter pre-
dicted completion time. Such flexibility in execution location
provides room for improving the overall system performance.

To study the edge-twin computing paradigm, we have
developed a vehicle tracking system, which will be explained
in detail in Section III. Here, we give a brief introduction.
The purpose is to describe the edge-twin computing model in
an application context. Fig. 1 illustrates the vehicle tracking
system built on the edge-twin computing model. The edge
devices are equipped with limited local computing/storage
resources. Each edge device is connected with a camera
wirelessly or by wire. The cameras capture the videos of
vehicular traffic. The evaluation mechanism decides where to
execute each task, and subsequently, the task is executed. The
vehicle tracking system, which is executed under the edge-
twin computing model, will extract the vehicle information
and records it in a database that supports individual vehicle
tracking.

To support the edge-twin model, we need to identify the
key functions (i.e., the key methods in the code), which
could be computationally demanding and thus benefit from
the cloud-based twin. They are referred to as computation
tasks under our model. We must then transform the code for
each computation task such that it can be executed either at
the local device or the cloud-based twin. Suppose an original
computation task of the application is denoted as method E.
We add new code at the beginning of E to call the evaluation
mechanism which makes prediction the computation times
of both local execution and remote twin execution. We also
copy the code of E to the cloud-based twin as a remote
procedure call. The evaluation mechanism is implemented at
the edge device. Since both the edge device and its cloud-
based twin has the code to implement the code F, we can
select either one of them to execute the computation task.
The evaluation mechanism will select the location with shorter
predicted completion time so as to reduce the completion time
of the computation task. If the edge device is selected for
execution, the execution of method F continues to its original
code for the task and the cloud-based twin is not involved.
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Fig. 1: Vehicle tracking system based on the edge-twin
computing model.

If the cloud-based twin is selected for execution, the edge
execution of method E will skip its original code, but instead
establishing a TCP connection to its cloud-based twin, sending
the task data (e.g., video) to the twin, and then waiting for
the results to come back before proceeding (e.g., recording
the identified vehicles in the local database). When the cloud-
based twin receives the task request with input data (video), it
will call its local copy of E to process the data and send the
results back to the edge device.

III. VEHICLE TRACKING SYSTEM

The vehicle tracking system needs to find and archive
vehicle data from enormous amount of traffic videos. One
traffic video is composed of many frames and the video
processing tools need to check each frame to find vehicle
data. The workload of processing one traffic video is already
very heavy. On top of that, there is usually a large number
of traffic videos captured from ubiquitous traffic cameras.
As such, the tasks for video processing are regarded as the
main computation tasks, which consume a majority of the
computing/storage resources.

We have installed cameras at the sides of the streets on
our campus for video captures. The vehicle tracking system
identifies a target vehicle by the license plate number. The
same vehicle can be found from various videos based on its
license plate number. We mark the time, date and location of
each appearance of the vehicle on a roadmap. Connecting a
sequence of locations according to the time gives us a driving
path of the vehicle. All the vehicle data are stored in a database
connected to the edge. The user has the permission to access
the database and look up the vehicle data.

The vehicle tracking system uses the computer-vision tool
openCV [11] to process the videos, which reads the whole
video as a stream and divides the stream into multiple frames.
For each frame of the video, we use the YOLOV2 object de-
tection system to detect vehicles [12]. YOLOvV2 has many pre-
trained models that help to classify different objects. YOLOv?2
can detect different types of vehicles (e.g., cars, trucks, buses).
When a vehicle is detected, we track the vehicle all through
the video using Kernelized Correlation Filter (KCF), which is

Fig. 2: License plate recognition

a novel tracking framework that utilizes properties of circulant
matrix to implement high-speed tracking [13].

The system uses openALPR (automatic license plate num-
ber recognition library) to recognize the license plate num-
ber of a vehicle [14]. OpenALPR uses a pre-trained neural
network model (trained by Tesseract OCR library) to detect
the captured letters and numbers in one frame. It supports
multiple programming languages, including C++ and Python.
As shown in Fig. 2, openALPR returns ten most probable
outcomes, each with a confidence level. We select the license
plate number with the highest confidence level and use it as
the identification of the vehicle.

The vehicle data are stored in a hierarchical database, which
consists of three levels. The first level is classified according to
the type of vehicles. We classify the vehicles into four types:
car, bus, truck and motorcycle. The type of a vehicle can be
recognized by YOLOV2. Each type of vehicles includes many
different models (e.g., Toyota, Honda, Hyundai). In the second
level, we classify vehicles based on different models. For that,
we search the captured license plate number in other databases
about vehicle history (e.g., Carfax) and detect its model. In the
third level, we store the data of an individual vehicle.

IV. VEHICLE TRACKING SYSTEM BASED ON EDGE-TWIN
COMPUTATION MODEL

In our implementation of the vehicle tracking system under
the edge-twin computing model, we focus on reducing the
completion time of the compute-intensive tasks (computation
tasks), which consume more time than other low-complexity
tasks. We use the evaluation mechanism to decide where to
place each computation task — at the edge device or its cloud-
based twin.

A. Bulk Mode and Frame Mode

In the vehicle tracking system, we extract the video process-
ing tasks from the application as the computation tasks. Since
the user may issue different requests for real-time monitoring
or non-real-time records of a vehicle, we design the vehicle
tracking system to work in two modes. One is the bulk mode,
which processes the whole video as a bulk and provides non-
real-time vehicle data. The other is the frame mode, which
selects a subset of the frames from the video to process. The
frame mode can shorten the video processing time and satisfy



the requirements of real-time monitoring. Next, we explain the
bulk mode, the frame mode and the evaluation mechanism in
more detail.

1) Bulk Mode: The bulk mode is responsible for thoroughly
processing a large number of videos without neglecting any
details. This mode is useful in applications such as criminal
investigation and traffic supervision, where the officials need
to track suspicious vehicles or illegal vehicles from massive
amount of videos. Since all details may be valuable, we should
process each video frame by frame. We use the evaluation
mechanism to predict the completion times at both the edge
device and its cloud-based twin. The video processing task will
be executed at the device with shorter predicted completion
time.

2) Frame Mode: To satisfy the need for real-time moni-
toring, we must ensure that the video-processing throughput
can keep up with the video generating rate. We employ two
methods to increase the throughput. One is sampling, which
is to only process one frame for every M frames. Another
is a joint execution mechanism. We transfer the frames to be
processed into a pipeline. Whenever either the edge device
or its cloud-based twin is idle, the frame at the head of the
pipeline is sent to the idle device for processing. Such a design
can greatly speed up the video processing, but it may neglect
some useful information due to frame omissions.

B. Evaluation Mechanism

The evaluation mechanism is used to predict the completion
times of a computation task on both the edge device and its
cloud-based twin. The completion time of a computation task
can be divided into computing time and data transfer time
[15]. The computing time is the time consumed to process the
video and generate the vehicle data. The data transfer time is
the time consumed to transfer the video to the computation
device plus the time to retrieve the execution results. The
evaluation mechanism works on one video at a time. Let .S
be the size of a video and v denote an approximated ratio
between the size of the task-execution results and the size of
the video. Usually, larger video files contain more vehicle data
[16]. One can obtain the value of v empirically by taking the
average of this ratio from past videos captured by the cameras
of the tracking system. Let b be the network bandwidth, which
can be measured when transferring the previous video and its
results or, if the previous video was too long ago, measured
periodically with test data between the edge device and its
twin during the long idle time. The anticipated transfer time
for the current video can be expressed as:

Ttran = (S + ’YS)/b (])

The number of machine instructions to process these data
is proportional to the video size [17]. The computing time of
a specific computation task is determined by the number of
instructions to be executed and the computational capability
of the CPU. The instructions processed by a CPU per second
(IPS) can be expressed as:

Main Frequency x Number of Cores
CPI ’

IPS = 2

where CPI denotes the average clock cycles consumed to
operate an instruction. The CPU with higher IPS has more
powerful computing capability.

If we have I instructions to operate for one video, the
computing time can expressed as:

Teare = 1/IPS. 3)

The number of instructions needed to process one video
is generally related to the video size. We may empirically
estimate a ratio between the number of instructions and the
video size based on the past videos captured by the cameras.

Another simpler approach that we adopt in our experiments
is based on an observation in the experiments that the comput-
ing time is generally proportional to the video size. Based on
this observation, we define a parameter called the computing
factor, denoted as «, which characterizes the video-processing
capability of a device. Roughly speaking, it is the average
amount of video data that the device can process in one unit
of time. This value can be obtained empirically from the past
videos. The computing time is expressed as:

Teale = S/a 4

The computing factor is denoted as aggge and ccioug for the
edge device and its cloud-based twin, respectively.

Combining equations (1) and (4), we have the completion
time for the cloud-based twin as follows:

1+v)8 S
TcoM. Cloud = ( bV) + . (5)
Q(Cloud
The completion time for the edge device is
TcoM. Edge = S/ OEqge- (6)

The computing factors of the edge device and its cloud-
based twin are fixed. The real-time parameters used by the
evaluation mechanism are the network bandwidth and the
video size.

V. EXPERIMENTS AND EVALUATION
A. Experimental Setting

To evaluate the performance of the proposed edge-twin
computing model, we implemented the vehicle tracking system
as explained in Section IIl. The system is designed to take
videos from one or multiple connected cameras. In our exper-
iments, we feed it with pre-recorded street traffic videos. The
edge device is a computer with Intel Core 17-2600 of 4 cores
at 3.4 GHz and 32 GB RAM. Its cloud-based twin is emulated
by a much more powerful server with Intel Core 17-9700, 12
MB Intel smart cache, 8 cores, and an internal GPU Intel
UHD Graphics 630, which can significantly speed up video
processing and license plate recognition. The peak network
bandwidth between the edge device and its twin is measured
at around 90Mbps. To evaluate the edge-twin operations under
different network bandwidth values, we implement a software
that controls the throughput between the edge and its twin
to any specified value. The vehicle tracking system works on
both the edge device and its cloud-based twin.
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The vehicle data are stored in a database at the edge
device. We compare the performance of the proposed edge-
twin computing model with the edge-alone model, which
performs all computation tasks at the edge device, and the
cloud-alone model, which performs all computation tasks at
the cloud.

B. Bulk Mode

The bulk mode processes all the frames of a video. We have
empirically determined from 10 videos that the ratio between
the execution results and video size, v, is close to 5%. We
have also experimented with 10 videos (which are of different
sizes) and measured the computing factors as acioug = 1.33
MB/s and aggee = 0.78 MB/s.

1) Network Bandwidth: The network bandwidth ranges
from 1 Mbps (megabits per second) to 40 Mbps. The video
size is 82.6 MB (megabytes) with 3626 frames. Fig. 3 com-
pares the completion time of the video processing under the
edge-twin computing, cloud-alone computing and edge-alone
computing models.

The completion times are equal when the network band-
width is 15.8 Mbps. Therefore, the video will be sent to the
cloud-based twin when the bandwidth is above 15.8 Mbps, and
it will be processed at the edge device when the bandwidth is
below 15.8 Mbps.

2) Selective Processing of Videos: Sometimes, we know
that the target vehicle only appears in a subset of the video
frames. We only need to process the part of the video that
contains the vehicle. In this section, we describe the experi-
ments with videos of different sizes; but in all the videos the
vehicle appearance time is fixed to be one second. Since the
video sizes are different, the percentage of the video to be
processed, which is denoted by P, varies for different videos.

The two completion times to be compared are:

(L+7)S , SP  SP

, .
b OCloud  O'Edge

(7

We set the network bandwidth to be 25Mbps. Fig. 4 shows
that if P is high, the cloud-based twin completes the task

2253
Video Size (Number of Frames)

Fig. 4: Completion time for videos of

different sizes. The vehicle appears in

each video for one second.

3626 5419 1 2 3 4 5

Number of Frames Processed per Second
Fig. 5: Completion time for different
numbers of frames to be processed

sooner than the edge device. If P is low, the edge device
completes sooner.

3) Dependency on the Number of Frames Processed:
Suppose the video is captured at 30 frames per second. For
some usage scenarios, there is no need to process every single
frame. In the edge-twin computing model, the decision of
where to execute the computation tasks may depend on the
number of frames to be processed per second.

In Fig. 5, we show a scenario where the network bandwidth
is 10 Mbps and the video has 3626 frames. When we need
to process more frames of the video, the computing time
occupies a larger portion of the completion time. Under such a
circumstance, the cloud-based twin completes the computation
task faster. Conversely, when we process fewer frames of the
video, the transfer time to the cloud becomes significant; in
that case, the edge device completes the task faster because
there is no need to transfer the video.

C. Frame Mode

The frame mode is more suitable for real-time processing.
It does not use the evaluation mechanism. Instead, it fully
utilizes the computational resources of both the edge device
and the cloud-based twin by sending the computation tasks to
either one that is idle. Specifically, we transform the frame into
an image. All the images to be processed wait in a pipeline.
Whenever the edge device or the cloud-based twin is idle, the
image at the head of the pipeline is sent to the idle device for
processing. Suppose the video is captured at 30 frames per
second.

1) Completion Time: We select a video of 7.8 MB with 246
frames and sample one frame to process for every 60 frames
[18]. That is, N = 0.5 frames per second. We compare the
completion time of the frame mode with that of the edge-
alone computing and cloud-alone computing. To increase the
performance difference between edge device and its cloud-
based twin, we constrain the maximum CPU utilization of the
edge device to be 10%. Thus, the edge device is much slower
than the cloud-based twin. We vary the bandwidth from 1
Mbps to 10 Mbps.
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From Fig. 6, we see that the cloud-based twin helps to re-
duce the completion time as the network bandwidth increases.
On the other hand, the edge device is not affected by the
network bandwidth. The frame mode performs much better
than edge-alone or cloud-alone computing and its performance
improves as the network bandwidth increases.

2) Maximum Processing Capability: The maximum pro-
cessing capability is the maximum number of frames that
can be processed per minute. Fig. 7 compares the maximum
processing capability of the three computing models. We see
that the maximum processing capability of the frame mode is
much higher than that of the edge-alone computing or cloud-
alone computing models. The performance of the frame mode
increases with the network bandwidth.

VI. CONCLUSION

In this paper, we describe the design and implementation of
the edge-twin computing model, which utilizes the computing
resources of both the edge device and its cloud-based twin. We
use a vehicle tracking system as an example to demonstrate
the proposed computing model. Within the edge-twin model,
we have designed two video-processing modes: the bulk mode
and the frame mode. The bulk mode is used for processing
large amounts of videos. The frame mode is used for real-
time video processing. Through experiments, we compare
the performance of the edge-twin model with the edge-alone
computing and cloud-alone computing models. We analyze
the factors that influence the performance of the edge-twin
model and we show that the edge-twin model performs much

better than the traditional edge-alone computing or cloud-alone
computing.
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