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Abstract—In multiple descriptions on distributed storage, a
source is stored in a shared fashion on multiple servers. When a
subset of servers are contacted, the source should be estimated
with a certain maximum distortion depending on the number of
servers. The problem considered in this paper is how to restore
the system operation when one of the servers fail and a new
server replaces it, that is, repair. The requirement is that the
distortions in the restored system should be no more than in
the original system. The question is how many extra bits are
needed for repair. We find the optimum solution for a two server
problem in the Gaussian case, and an achievable rate for general
n nodes. One conclusion is that it is necessary to design the
multiple description codes with repair in mind.

I. INTRODUCTION

A common problem in lossy source coding is to enable
decoding of a source with a distortion that depends on the
quality of the connection a user has: users with good con-
nections can decode with little distortion, while users with
poor connection can still obtain a low-quality replica of the
source. One variation of this problem is multiple-description
coding [1], [2]. In that case, the encoder produces multiple
descriptions of the source. The more of these descriptions
the decoder has access to, the lower the distortion of the
reconstruction is. Traditionally this has been aimed at packet
transmission networks, where some packet may be lost. In this
paper we consider a scenario where each description is stored
on a separate server. A user has access to one or multiple
servers, for example depending on network connection, phys-
ical location, delay, or cost. The more servers a user has access
to, the less distortion in reconstruction. Thus, the descriptions
are stored on a distributed storage system [3]. Clearly, this does
not change the multiple description problem as such. However,
a central issue in distributed storage is how to repair the system
when one or more of the servers fail or become unavailable
[3] and is replaced by new servers. In this paper we consider
repair specifically for multiple-description servers.
To simplify the problem we consider a symmetric multiple

description problem as in [4]. A multiple description coding
system is specified as follows: when a subset J ⊂ {1, . . . , n}
of servers are contacted, a source X should be restored with a
distortion at most DJ . If one (or multiple) of the servers fail,
we should be able to set up a replacement server with enough
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information so that the whole region DJ , J ⊂ {1, . . . , n} is
restored. We consider two scenarios
1) There is special (highly reliable) repair server that does

not participate in the usual operation of the system, but
only comes into action if another server fails. The repair
server can contact all other (non-failed) servers and use
their information combined with its own information to
restore the failed server (collaborative repair).

2) The repair information is stored in a distributed fashion
among the n servers (distributed repair).

For simplicity, in this paper we only consider failure of a single
server.
A straightforward solution is to separate the source coding

problem (multiple descriptions) and the repair problem. Any
existing code for multiple descriptions can then be used, and
repair can be done using minimum distance separable (MDS)
erasure codes as in traditional distributed storage [3]. We
will use this as baseline. For case 1 above, the repair server
can simply store the xor (sum modulo 2) of the bits on the
operational servers. When one server fails, the xor together
with the bits from the surviving servers can restore the failed
server. Thus, if each operational server stores lR bits, the
repair server also needs to store lR bits. For distributed repair,
the xor can instead be stored with an (n, n − 1) erasure
case. Therefore in addition to the lR bits for operation, each
server needs to store lR

n−1 bits for repair. It should be clear
that these rates are also optimal with separation: even if the
system knows in advance which server will fail, it cannot
store less information. We can consider this as a separate
source channel coding solution, with multiple descriptions
being source coding and the repair being channel coding.
It is know that in many information theory problems, joint
source-channel coding is superior to separation. This is then
the question we consider here: can we find a better joint source
channel coding solution that can beat the above rates?

II. PROBLEM DESCRIPTION
We consider a symmetric multiple description problem as

in [5], and use their notation. We have an i.i.d. (indepen-
dent identically distributed) source X that takes values in a
finite alphabet X and needs to be restored in the alphabet
X̂ , with generalizations to a Gaussian source through usual
quantization arguments [2]. We will first define the distributed



repair problem. For a source sequence xl of length l each
node stores lRt bits. For many achievable schemes, these
can be split into lR bits for normal operation and lRr

additional bits used only for repair. There are n encoding
functions fi : X l → {1, . . . , 2lRt} , 2n−1 decoding function
gJ : {1, . . . , 2lRt}|J| → X̂ l, J ⊂ In, and n repair functions
hi : {1, . . . , 2lRt}n−1 → {1, . . . , 2nRt}. We define the error
probability of repair as

P (n)
r = max

i=1,...,n
P
󰀃
hi(fIn−{i}(x

l)) ∕= fi(x
l)
󰀄

We now say that a a tuple (Rt, D1, . . . , Dn−1) is achievable
if there exists a sequence of (2lRt , l) codes with

lim
n→∞

max
J:|J|=m

E[d|J|(x
l, gJ(fJ(x

l)))] ≤ Dm

lim
n→∞

P (n)
r = 0 (1)

with the distortions d|J|(x
l, x̂l) =

1
l

󰁓l
i=1 d̃|J|(xi, x̂i), d̃|J|(xi, x̂i) ≥ 0. We call this strong

repair. The repaired node is required to be an exact copy of
the failed node, except that we allow a certain, vanishing,
error rate. Notice that the randomness in the system is purely
due to the source xl. Thus, for a given sequence xl either all
failures can be repaired exactly, and if they can be repaired
once, they can be repaired infinitely many times; or, some
failures can never be repaired. The probability of the source
sequences that are not repairable should be vanishing small.
For a dedicated repair node, each node stores lR bits and

the repair node lRr bits. The non-collaborative repair functions
are instead functions hi : {1, . . . , 2lRr} → {1, . . . , 2lR}, and
the collaborative repair functions are hi : {1, . . . , 2lRr} ×
{1, . . . , 2lR}n−1 → {1, . . . , 2lR}, with the other definitions
similar.

III. TWO NODES

We at first consider a problem with n = 2 nodes as this
is one of the only cases where the optimum rate distortion
region is known, in the Gaussian case [1] with mean-squared
distortion. If there is no repair node, the problem is trivial:
each node has to be able to achieve the distortion D2 by itself,
and they can therefore be copies of each other. We therefore
assume that there is a special repair node, and consider
the case when this has access to the surviving operational
nodes for repair, collaborative repair. The question is: what
is the minimum information the repair node can store, so that
(D1, D2) can be achieved without any increase in storage rate
of the operational nodes. Here Di is the required distortion
when i nodes are available.
The problem is most well posed in the Gaussian case, as

we know the exact rate distortion region (R,D1, D2). We
then want to find the minimum repair rate Rr for every point
on the boundary of the rate distortion region (R,D1, D2).
We also know that the El-Gamal Cover (EC) coding scheme
achieves the optimum rate-distortion region. The idea in the
EC scheme is that each node stores an index for use when only
that node is accessed, in addition to half the bits of an index

with refinement information that is only used when both nodes
are accessed. However, EC is clearly sub-optimum for repair.
Consider the point D2 = D1; in this point it is clear what is
the optimum solution. Each node has to be able to restore the
source by itself with distortion D2, and they can therefore be
copies of each other. Repair then is done simply by copying
from the surviving node and Rr = 0. Now if D2 is close to
D1 one would expect Rr to be small. On the other hand, in
EC the two nodes store independently generated codewords –
even if the joint distribution is not independent [1]. Therefore
to restore the EC code exactly, Rr = R is needed.
We therefore instead consider the Zhang-Berger (ZB)

scheme [6], [2]. In addition to the individual and refinement
information stored in the EC scheme, the nodes in the ZB
scheme store a common codeword. While this cannot decrease
rate in the Gaussian case, a common codeword is great for
repair, as it can be simply copied from the surviving node
without additional information from the repair node.
Instead of the original characterization of the ZB scheme,

we will describe it in the language of PPR [5], both to be
consistent with the general problem later, and because the PPR
more explicitly characterizes the information stored on nodes
in terms of auxiliary random variable, which is essential to
calculate repair rate.

Theorem 1 (Zhang-Berger). A rate R is achievable if

R > I(X;U1) +H(Y12|U1) +
1

2
H(Y2|Y12, Y11, U1)

− 1

2
H(Y12, Y11|X,U1)−

1

2
H(Y2|Y12, Y11, X, U1)

for some conditional pdf p(u1, y11, y12, y2|x) such that
E[d1(X, g1i(U1, Y1i))] ≤ D1, E[d2(X, g2(U1, Y1i))] ≤ D2.

Corollary 2. A repair rate Rr is achievable if

Rr > H(Y12|Y11, U1)−
1

2
H(Y12, Y11|X,U1)

+
1

2
H(Y2|Y12, Y11, U1)−

1

2
H(Y2|Y12, Y11, X, U1) (2)

We omit the proof, as it is a special case of Theorem 5 later.
It turns out the ZB is exactly optimum in the Gaussian case

Theorem 3. Consider a Gaussian source with E[X2] = 1.
The optimal repair rate is

Rr =

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

1
4 log

󰀓
1
D2

󰀔
D2 ≤ 2D1 − 1

1
2 log

󰀕
2
√

(1−D1)(D1−D2)

(D2−1)
√
D2

󰀖
2D1 − 1 ≤ D2 ≤ D1

2−D1

1
2 log

󰀓
D1

D2

󰀔
D1

2−D1
≤ D2

Proof: For achievable rate we let U1 = X +Qu1, Y1i =
X + Q1i, Y2 = X + Q2 with Q... zero-mean Gaussian,
E[Q2

u1] = σ2u1, E[Q2
1i] = σ2q1, E[Q2

2] = σ2q2, E[Q11Q12] =
ρ1σ

2
q1, and all other noise variables uncorrelated. We first



calculate the distortions,

D1 =
σ2q1σ

2
u1

σ2q1σ
2
u1 + σ2q1 + σ2u1

D2 =
(ρ1 + 1)σ2q1σ

2
q2σ

2
u1

(ρ1 + 1)σ2q1
󰀃
σ2q2σ

2
u1 + σ2q2 + σ2u1

󰀄
+ 2σ2q2σ

2
u1

(3)

The D1 distortion constraint is always satisfied with equality,
and therefore

σ2q1 =
D1σ

2
u1

σ2u1 −D1σ2u1 −D1
(4)

Using standard Gaussian calculations of differential entropy,
we get

R =
1

2
log

󰀕
1 +

1

σ2u1

󰀖
+

1

2
log

󰀣
σ2u1󰁳

1− ρ21D1 (σ2u1 + 1)

󰀤

+
1

4
log

󰀣
D1

󰀃
(ρ1−1)σ2q2

󰀃
σ2u1+1

󰀄
+(ρ1+1)σ2u1

󰀄
+2σ2q2σ

2
u1

σ2q2 (D1(ρ1−1) (σ2u1+1)+2σ2u1)

󰀤

(5)

and

Rr =
1

2
log

󰀣
1− ρ1󰁳

1− ρ21σ
2
q2σ

2
u1

󰀤
+

1

2
log

󰀃
2σ2q2σ

2
u1

D1

󰀃
(ρ1 − 1)σ2q2

󰀃
σ2u1 + 1

󰀄
+ (ρ1 + 1)σ2u1

󰀄󰀄
(6)

Following [2, Theorem 13.2], there are three regions for
D2 to consider. If D2 ≥ 2D1 − 1, the optimum solution can
be achieved without transmitting resolution information, i.e.,
σ2q2 = ∞. From (5) we get

R =
1

2
log

󰀣
1

D1

󰁳
1− ρ21

󰀤
(7)

independent of σ2u1. This region is again split into two. If
D2 > D1

2−D1
we can achieve R = 1

2 log
󰀓

1
D1

󰀔
, which is

achieved (and only achieved) for ρ1 = 0. What happens in
this region is that the two nodes have independent messages,
and the combination results in a distortion less than D2. But
independent messages are poor for repair. We cannot change
ρ1 because of (7), but we can use the common message in the
ZB scheme. We choose the power σ2u1 so that the combination
of the two nodes’ information gives exactly a distortion D2,
which gives σ2u1 = D1D2

2D2−D1D2−D1
. This solution is valid for

D2 >
D1

2−D1
. We then get from (6) that

Rr =
1

2
log

󰀕
D1

D2

󰀖

For the case D2 ≤ D1

2−D1
we need to decrease ρ1 from zero.

We store no common message. Then, solving (3) with respect
to ρ1 (for σ2q2 = ∞ and σ2u1 = ∞ ) gives ρ1 = D1D2+D1−2D2

D1(D2−1)

and

R =
1

2
log

󰀣
D2 − 1

2
󰁳

(D1 − 1)D2(D2 −D1)

󰀤

Rr =
1

2
log

󰀣
2
󰁳

(D1 − 1)(D2 −D1)

(D2 − 1)
√
D2

󰀤

In the region D2 ≤ 2D1 − 1 the optimum solution requires
storage of resolution information; we use no common message.
We get

R =
1

2
log

󰀣󰁶
1

D1D2(1− ρ1)(D1(ρ1 − 1) + 2)

󰀤

We minimize this with respect to ρ1 and get ρ1 = D1−1
D1

.
Inserting this we get

R = Rr =
1

2
log

󰀕
1√
D2

󰀖
(8)

For the converse, we can think of the problem as follows.
When the repair node has restored the failing operational
node, the two operational nodes should be able to estimate
X with a distortion (less than or equal to) D2. But that
also means that the surviving node and the repair node when
they cooperate must be able to estimate X with a distortion
D2. From standard rate-distortion theory we then must have
R+Rr ≥ 1

2 log
󰀓

1
D2

󰀔
. Now it is easy to see that in all three

regions above, we have R+Rr = 1
2 log

󰀓
1
D2

󰀔
.

We notice that in the low distortion case, D2 ≤ 2D1 −
1, separation is exactly optimal as seen from (8), but in the
other cases, joint coding for multiple descriptions and repair
performs better than separation.

IV. GENERAL n NODES

For more than two nodes the optimum rate distortion
region is not known, not even in the Gaussian case. There
are therefore many different schemes for multiple description
coding and we have to design repair for each specific method.
In this paper we will consider the PPR scheme [4], [5], as this
is specifically aimed at the symmetric case and is well-suited
to repair. The following is our repairable PPR scheme.

Theorem 4 (Distributed repair). For any symmetric
probability distribution [5] p(yIn−2,In ,uIn−2 , yn−1|x)
and decoding functions gJ the lower convex closure
of (R + Rr, D1, . . . , Dn−1) is achievable, where
E[d|J|(X, gJ(YI|J|J ,UI|J|)] ≤ D|J|, |J | ≤ n − 1 and
the information needed to encode operational information is

R > I(X;U1) +H(Y1n|U1) +

n−2󰁛

k=2

1

k
H(YkIk |YIk−1,IkUIk)

+
1

n− 1
I(Yn−1;X|YIn−2In−1 ,UIn−2)

− 1

n
H(YIn−2In |X,UIn−2)

+
n−2󰁛

k=1

1

k
(H(Uk|YIk−1Ik ,UIk−1

)−H(Uk|X,YIk−1In ,UIk−1
)



with additional information needed to encode repair informa-
tion

Rr >
1

n− 1

n−2󰁛

k=1

󰀗
H(Ykn|UIk ,YkIn−1

YIk−1In)

− 1

n
H(YkIn |X,Yk−1In ,UIk)

󰀘+

with [x]+ = max{0, x}

Proof: Space permits us only to outline how the coding
changes compared to [4], [5], and reading the proof therefore
requires familiarity with those two papers. A formal proof can
be found in [?]. Consider at first layer 1. We generate a code-
book Cu1 by picking 2lR

′
u1 elements uniformly randomly with

replacement from the typical set according to the distribution
pU1

(u1). We also generate n independent random codebooks
C1In drawn from the typical set according to pY11(y11) with
2lR

′
1 codewords. We need to be able to find a codeword in

Cu1 that is jointly typical with xl with high probability, which,
from standard rate distortion, is the case if

Ru1 = R′
u1 > H(U1)−H(U1|X) = I(X;U1)

This codeword is stored in all the nodes. We now need
to be able to find n codewords from C1In that are jointly
typical with xl and the chosen codeword ul1 ∈ Cu1. There
are about 2nlH(Y11) (marginally) typical sequences, and about
2lH(Y11,...,Y1n|U1,X) that are jointly typical with a given xl and
ul1 (see, e.g., [7, Section 15.2]); the probability that a given
codeword combination in C1In is jointly typical therefore is
about 2l(H(Y11,...,Y1n|U1,X)−nH(Y11)). The probability that no
codeword is jointly typical then is about [7], [2]

󰀓
1− 2l(H(Y11,...,Y1n|U1,X)−nH(Y11))

󰀔2nlR′
1

≤ exp
󰀓
−2l(nR

′
1−(nH(Y11)−H(Y11,...,Y1n|U1,X)))

󰀔
(9)

Thus, if

nR′
1 > nH(Y11)−H(Y11, . . . , Y1n|U1, X) (10)

there is a high probability that at least one of the 2nlR
′
1

codeword combinations is jointly typical.
The codewords in C1j are randomly binned into 2lR1 bins.

At the time of decoding, the common codeword ul1 ∈ Cu1
is available as well as the bin number i for the codeword
ylij ∈ C1j . The decoder looks for a codeword in bin i that is
typical with ul1. There is always one, the actual codeword, but
if there is more than one, the decoding results in error. The
probability that a random codeword in C1j is jointly typical
with ul1 is about 2

l(H(Y11|U1)−H(Y11)) as above, while there are
about 2l(R

′
1−R1) codewords in each bin. By the union bound,

the probability that there is at least one random codeword
in the bin jointly typical is approximately upper bounded by
2l(R

′
1−R1)2−l(H(Y11)−H(Y11|U1)). Thus, if

R′
1 −R1 < H(Y11)−H(Y11|U1) (11)

there is only one such codeword with high probability. Com-
bining (10) and (11) we get

R1 > H(Y11|U1)−H(Yi1, . . . , Yin|U1, X)

At layer k < n − 1 we similarly generate a random
codebook Cuk with 2lR

′
uk typical elements according to the

marginal distribution pUk(uk) and n independent random
codebooks CkIn according to the distribution pYk1(yk1) with
2lR

′
k codewords. We need to be able to find a codeword in Cuk

that is jointly typical with xl and all the codewords chosen in
the previous layers. This is possible if

R′
uk > H(Uk)−H(Uk|X,YIk−1In ,UIk−1

)

with the same argument as for (10). We also need to be able to
find an n-tuple of codewords from CkIn that are jointly typical
with all prior codewords and xl , which is possible with high
probability if (again as in (10))

nR′
k > nH(Yk1)−H(YkIn |X,Yk−1In ,UIk)

For Cuk we generate n independent binning partitions each
with 2lRuk elements. The bin number in the i-th partition
is stored in the i-th node. When the decoder has access
to k nodes, say nodes 1, . . . , k it needs to be able to be
able to find a unique codeword in the k bins jointly typ-
ical with codewords from previous layers. The probability
that a random selected codeword is jointly typical is about
2l(H(Uk|YIk−1Ik

,UIk−1
)−H(Uk)), as above. There are about

2lR
′
uk2−lkRuk in each combined bin. Therefore, if

kRuk > R′
uk +H(Uk|YIk−1Ik ,UIk−1

)−H(Uk)

or

Ruk>
1

k
(H(Uk|YIk−1Ik ,UIk−1

)−H(Uk|X,YIk−1In ,UIk−1
))

(12)
with high probability there is only one jointly typical code-
word in the combined bin. It also needs to find a single
codeword in the k bins for CkIk s that are jointly typical
with (UIk ,YIk−1Ik). The probability that a random codeword
is jointly typical is about 2l(H(YkIk

|UIk
,YIk−1Ik

)−kH(Yk1)),
while the number of codewords in the k joint bins is about
2lkR

′
k2−lkRk . With high probability there is only one such if

k(R′
k −Rk) < kH(Yk1)−H(YkIk |UIk ,YIk−1Ik)

or

Rk>
1

k
H(YkIk |UIk ,YIk−1Ik)−

1

n
H(YkIn |X,UIk ,YIk−1In)

(as in [4] this can be repeated for any collection of k nodes).
At layer n − 1 only a single codebook is generated, and

this is binned into n independent partitions. Upon receipt,
in analogy with (12), this can be found uniquely with high
probability if

Rn−1 >
1

n− 1
H(Yn−1|YIn−2In−1 ,UIn−2)

− 1

n− 1
H(Yn−1|X,YIn−2In ,UIn−2)



For repair, the joint 2nlR
′
k codewords in Ck1 × · · · × Ckn

at layer k < n − 1 are binned into 2lRrk bins. The single
bin number of the n chosen codewords is encoded with an
(n, n− 1) MDS erasure code.
Now suppose node n is lost, and needs to be recovered. The

repair node works from the bottom up. So, suppose the previ-
ous k − 1 layers have been recovered, that is, ylIk−1Ib

,ulIk−1

are known without error. First ulk is recovered, which can be
done since n− 1 ≥ k nodes are used. It can also decode the
codewords in CkIn−1

. It restores the bin number of the repair
codeword from the erasure code. There are approximately
2l(nR

′
k−Rrk) codewords in the bin, but since it knows the

codewords in CkIn−1
there are only about 2l(R

′
k−Rrk) valid

ones. It searches in the bin for valid codewords jointly typical
with ylkIn−1

,ylIk−1In
,ulIk . With high probability there is only

one such if

R′
k −Rrk < H(Ykn)−H(Ykn|UIk ,YkIn−1YIk−1In)

Rrk > H(Ykn|UIk ,YkIn−1YIk−1In)

− 1

n
H(YkIn |X,Yk−1In ,UIk) (13)

There is at least one codeword in the bin, namely the correct
one. Thus, if there is no error (more than one codeword),
the repair is exact, as required from the exact repairability
condition in Section II.

Theorem 5 (Collaborative repair node). For any symmetric
probability distribution p(yIn−1,In ,uIn−1 , yn|x) and decoding
functions gJ the lower convex closure of (R,D1, . . . , Dn) is
achievable, where E[d|J|(X, gJ(YI|J|J ,UI|J|)] ≤ D|J|, |J | ≤
n and

R > I(X;U1) +H(Y1n|U1) +

n−1󰁛

k=2

1

k
H(YkIk |YIk−1,IkUIk)

+
1

n
H(Yn|YIn−1In ,UIn−1)−

1

n
H(YIn−1In |X,UIn−1)

+
n−1󰁛

k=1

1

k
(H(Uk|YIk−1Ik ,UIk−1

)−H(Uk|X,YIk−1In ,UIk−1
))

The additional information the repair node has to store is

Rr >

n−1󰁛

k=1

󰀗
H(Ykn|UIk ,YkIn−1

YIk−1In)

− 1

n
H(YkIn |X,Yk−1In ,UIk)

󰀘+

+
1

n
H(Yn|YIn−1In ,UIn−1)−

1

n
H(YIn−1In |X,UIn−1)

A. Example Gaussian case

We consider a three node Gaussian case with mean-squared
distortion and with distributed repair. This is characterized by
(R+Rr, D1, D2).We put U = X+QU1, Y1i = X+Q1i, Y2 =
X + Q2 with Q... zero-mean Gaussian, E[Q2

u1] = σ2u1,
E[Q2

1i] = σ2q1, E[Q2
2] = σ2q2, E[Q1iQ1j ] = ρ1σ

2
q1, and all

other noise variables uncorrelated.
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2 nodes EC
3 nodes PRP
3 nodes modfied PRP
3 nodes with repair, no common message
3 nodes with repair, common message

Figure 1. Plots of R or R + Rr for (a) two nodes according to [1] (b)
Three nodes with at most two used, without repair according to PPR [5] or
Theorem 4 (modified PPR) and (c) Three nodes with distributed repair without
or without common message.

Figure 1 shows typical numerical results. First, from the
bottom, we have the curve for the optimum region for the
two node problem according to EC [1], [2]. Second, we have
the curves for the three node problem, but where we use at
most two nodes for reconstruction, either using [5, Section
V] directly (ignoring the D3 constraint), or using Theorem 4
without repair. Finally, we have the curves for repair. We see
that a common message gives a clear improvement.

V. CONCLUSION AND FUTURE WORK

The results show that multiple descriptions codes have to
be designed with repair in mind. We have shown optimality in
the two node case with a repair node. This can be generalized
to the n-node two-level case considered in [8], see [?].
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