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Abstract— Under the ceaseless global COVID-19 pandemic,
lung ultrasound (LUS) is the emerging way for effective
diagnosis and severeness evaluation of respiratory diseases.
However, close physical contact is unavoidable in conventional
clinical ultrasound, increasing the infection risk for health-
care workers. Hence, a scanning approach involving minimal
physical contact between an operator and a patient is vital
to maximize the safety of clinical ultrasound procedures. A
robotic ultrasound platform can satisfy this need by remotely
manipulating the ultrasound probe with a robotic arm. This
paper proposes a robotic LUS system that incorporates the
automatic identification and execution of the ultrasound probe
placement pose without manual input. An RGB-D camera
is utilized to recognize the scanning targets on the patient
through a learning-based human pose estimation algorithm and
solve for the landing pose to attach the probe vertically to
the tissue surface; A position/force controller is designed to
handle intraoperative probe pose adjustment for maintaining
the contact force. We evaluated the scanning area localization
accuracy, motion execution accuracy, and ultrasound image
acquisition capability using an upper torso mannequin and a
realistic lung ultrasound phantom with healthy and COVID-
19-infected lung anatomy. Results demonstrated the overall
scanning target localization accuracy of 19.67 ± 4.92 mm and
the probe landing pose estimation accuracy of 6.92 ± 2.75 mm
in translation, 10.35 ± 2.97 deg in rotation. The contact force-
controlled robotic scanning allowed the successful ultrasound
image collection, capturing pathological landmarks.

I. INTRODUCTION

As the Coronavirus Disease 2019 (COVID-19) continues
to overwhelm global medical resources, a cost-effective
diagnostic approach capable of monitoring the severeness
of infection on COVID-19 patients is highly desirable.
Computed tomography (CT) and X-ray are considered the
gold-standard diagnostic imaging for lung-related diseases
[1]. However, their accessibility is growingly limited due to
the overwhelming amount of COVID-19 patients around the
globe [2]. Ultrasound (US) imaging, in comparison, is easier
to access, more affordable, radiation-free, highly sensitive to
pneumonia, and has the real-time capability [3]. Therefore
lung ultrasound (LUS) becomes an alternative accessible
approach to diagnose COVID-19 and other contagious lung
pathology (e.g., in medical equipment restricted places) [4].
An effective LUS scans a wide area of the chest. Several
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protocols are introduced to standardize the LUS procedure.
Bedside LUS in an emergency modified (BLUE) protocol [5]
is an accepted standard in which the anterior chest area is
divided into a few regions, and the centroid of each region
is considered the scanning target. The operator places the
US probe perpendicularly on each target with an appropriate
amount of force applied, followed by fine-tuning movements
to search for pathological features, and all the targets are
to be covered sequentially. However, the LUS procedure
is highly operator-dependent and requires physical contact
between the operator and patient for a substantial amount of
time, increasing the operator’s vulnerability. A less contact-
intensive LUS procedure could significantly reduce transmis-
sion risk when handling patients with infective respiratory
diseases but is difficult to achieve with conventional freehand
US. The robotic US (RUS), which uses a robot manipulator
equipped with an US transducer to perform an US scan,
on the other hand, is a feasible solution to address the
clinical need by isolating patients from operators [6]. In
recent years, RUS has been actively studied to augment
human-operated US [7], [8] for various clinical applications,
including thyroid [9], [10], spine [11], vascular [12], [13]
and joint [14] imaging. To assure the safety and efficacy of
the RUS system, the scanning procedure should be close to
the real clinical practice and should avoid excessive pressure
being applied on the patient [15].

A. Related Works

Attempts have been made to develop tele-operative RUS
systems for LUS applications. Tsumura et al. proposed
a gantry-based platform for LUS using a novel passive-
actuated force control mechanism that maintains constant
contact force with the patient while achieving a large
workspace [16]. Ye et al. implemented a remote teleoperated
RUS system communicating via 5G network which was
deployed to Wuhan, China, for COVID-19 patient diagnosis
[17].

Though tele-operative systems allow remote and contact-
less US imaging, the procedure is still heavily operator-
dependent and may require special training on the user. In
this sense, RUS systems with higher-level autonomy could
be more clinically valuable. Huang et al. demonstrated a
framework using an RGB-D camera to segment the scan-
ning target via color thresholding, meanwhile computing the
desired probe position and orientation from the point cloud
data [18]. Virga et al. and Hennersperger et al. adopted the
patient-to-MRI registration to solve for the probe pose that
covers the organ to be examined [19], [20], Yorozu et al.



and Jiang et al. implemented US confidence map [21] to
find the optimal probe in-plane orientation for maximizing
the US signal quality [22], [23]. Similarly, Visual-servoing
is applied to adjust the probe’s rotation so that the artifact
of interest is centered in the field of view (FOV) in the US
image [24], [26], [27].

The workflow of a RUS system can be decomposed into
two phases. In the first phase, the scanning target is identified
in 3D space. A rough probe landing pose is estimated and
converted into robot motion. The second phase further opti-
mizes the probe placement, aiming to obtain a high-quality
US image while assuring patient’s safety. While several
previous studies have investigated the US probe placement
optimization [18] – [27], few works explicitly tackle the first
phase. Many of them (e.g. [19], [20]) require pre-operative
inputs such as CT/MRI scan for each patient, compromis-
ing cost-effectiveness and accessibility. Some adopt patient
recognition methods such as color thresholding (e.g. [18]),
which involves environmental constraints, requiring further
generalization. Without first automating the first phase, the
second phase can hardly eliminate manual assistance for
initial positioning, therefore downgrading the autonomous
RUS approach.

B. Contribution

This work focuses on the scanning target localization,
highlighted as the first phase in the previous section, to
bring the autonomous RUS a step forward. The scanning
targets are designed based on the BLUE protocol that has
been used for LUS. For the purpose of recognizing scanning
targets automatically and dynamically and being less subject
to an individual patient, we implement a learning-based
human pose estimation algorithm using an RGB-D camera
in real-time. RGB images are used to localize targets first
in 2D, and then the detected 2D targets are extended to
3D by combining with depth sensing. We also develop
the pipeline of implementing the target localization with
the RUS execution. A serial manipulator places the US
probe vertical to each target based on the previous-step
localization with the desired contact force. Once the probe
is placed automatically, the operator can perform the further
pose refinement manually by observing real-time US images
displayed, as semi-autonomous scanning. The contributions
of this work fold under two aspects. i) We introduce the
novel framework for autonomous robotic US probe place-
ment based on scanning target localization without requiring
manual input. The pipeline combines human segmentation in
2D and vertical landing pose calculation in 3D for robotic US
probe placement. ii) We implement and evaluate the safety
and efficacy of the semi-autonomous RUS system for LUS
diagnosis by imaging an upper torso mannequin and a lung
ultrasound phantom.

II. MATERIALS AND METHODS

This section introduces the implementation detail of the
proposed system. The proposed system will automatically
recognize the pre-assigned scanning region through visual

Fig. 1. An example visualization of extracting chest region using Dense-
Pose. a) shows DensePose output format. b) shows the anterior chest region
mask overlaid on the input image. c) shows the vertical u coordinate of the
mapping from each pixel on chest region to the SMPL model. d) shows the
horizontal v coordinate of the same mapping. b)-d) are from our previous
work in [29].

sensing and determine the position and orientation for the
US probe placement at the right spot with desired contact
force using a robotic arm. The workflow can be presented in
three major tasks: Task 1) RGB image-based perception that
segments the patient torso from the background and localizes
the desired scanning targets on the patient’s body in 2D;
Task 2) US probe pose identification in 3D by converting
the target localized in 2D to 3D transformation describing the
robot’s end-effector pose through depth sensing. The probe
is set perpendicular to the tissue surface, given that such
placement grants the maximum echo signals for collecting
good US image quality [25]; Task 3) Robot position/force
control scheme that determines the trajectory generation and
path planning and controls the US probe placement with
desired contacting force applied for safety and compliance.

As the implementation overview, the state-of-art 3D hu-
man dense pose estimation pipeline, DensePose, is applied
to segment the human body from the background and map
human anatomical locations as pixels in the image frame
to vertices on the 3D skinned multi-person linear (SMPL)
mesh model [28] (for Task 1). An RGB-D camera (D435i,
RealSense, Intel, USA) is used to implement Task 2. The
RGB image is used to infer the scanning targets with
DensePose, and the depth image is used for solving the
3D normal pose of the probe. For Task 3, a velocity-based
controller with position/force feedback is implemented on
the 7 degree-of-freedom (DoF) robotic arm (Panda, Franka
Emika, Germany), which holds an US transducer. Finally,
the above components are integrated and can be executed as
an interconnected system.

A. Scanning Target Recognition with DensePose

DensePose uses the Mask R-CNN for instance segmenta-
tion and regresses the 2D coordinates representing anatom-
ical locations as vertices on the SMPL model. It outputs
a 3-channel matrix with the same dimension as the input
image (see Fig. 1a). The first channel is the classification



Fig. 2. Mapping of a 2D target to a 3D pose. a) DensePose output from an input image. The red mask is the segmented chest area, R1 to R4 are the
scanning regions in [5], the center of the white circles marked with 1 to 4 corresponds to the 2D scanning targets. b) The generated patch in image space.
c) The deprojected patch in 3D and the calculation of one sub-plane normal vector V12 given by P ′

1P
′
0 × P ′

2P
′
0. d) The averaged normal vector Vsum

(dashed orange line) by summing all sub-plane normal (solid orange line) and its normalized unite vector Vavg (solid blue line).

Fig. 3. Robot setup and coordinate frame convention. The left figure shows
the robot’s home configuration and its coordinate frame definitions. The right
figure shows the robot working under contact mode. Cd is the displacement
along the normal. (red arrow represents x-aixs, green represents y-axis, blue
represents z-axis)

for each pixel (the class ID ranges from 0 to 24, where
0 refers to the background, 1 to 24 each corresponds to a
part of the body, e.g., head, arm, leg, etc.). The second and
third dimensions, denoted as set U and V , are the mapped
2D human mesh coordinates consisting of u (vertical) and v
(horizontal) coordinates for all body parts. A 2D pixel [r, c]ᵀ

can be one-to-one mapped into human mesh coordinates as
[u = U(r, c), v = V (r, c)]ᵀ. To map from mesh coordinates
[u, v]ᵀ to a pixel [r, c]ᵀ, which is not guaranteed to be one-
to-one, (1) is adopted, where n is the number of possible
[ri, ci]

ᵀ pairs.

[
r
c

]
=

1

n

n∑
i=1

{
[
ri
ci

]
| U(ri, ci) = u, V (ri, ci) = v} (1)

A graphical interpretation of the above workflow can be
seen in Fig. 1b-d. The desired targets to be automatically
detected must first be specified in [u, v]ᵀ. Then, these targets
in the pixel [r, c]ᵀ can be solved from arbitrary camera pose
relative to the patient using (1) but referring to the same
position on the chest ideally. The detailed implementation to
define the reference target locations [u, v]ᵀ will be covered
in Section III.

B. 3D Probe Pose Computation

Based on the recognized 2D scanning targets in the image
space, we need to compute the end-effector pose of the robot
under the camera frame normal to the scanning surface,
expressed as a transformation matrix T cam

tar ∈ SE(3). Depth
information is used to bridge 2D to 3D. We first align the
depth frame to the color frame to ensure the 2D targets
in the color image remain unchanged in the depth image
before applying spatial filtering and hole filling techniques
to smoothen the depth data. The deprojection operation D :
R2 → R3, which maps a pixel in the depth image to a 3D
point in the point cloud, is provided as an API in RealSense
SDK. Therefore, a general 2D target P0 can correspond to
the 3D point P ′0 in the point cloud through D(P0).

The calculation of the surface normal originated at P ′0 is
illustrated in Fig. 2. 3 unique points on a surface are required
to determine the normal vector of a given surface. However,
the depth measure introduces a significant amount of noise
that leads to fluctuating 3D coordinates reading. Our solution
is to find supplementary points neighboring to the target,
providing additional normal vectors that can be averaged into
a steady one. After specifying P0, 8 more points (P1 to P8

in Fig. 2b) are indexed from the depth image such that they
form a square patch with edge length L. Inside the patch,
8 sub-planes, each consisting of 3 points, can be found (S1

to S8 in Fig. 2b). Deprojection of P0 to P8 results in a
surface where each sub-plane contributes a normal vector.
Averaging and normalizing all 8 normal gives the estimated
surface normal Vavg (see Figs. 3c–d).

The desired end-effector pose under the camera frame can
be decomposed into the rotational part Rtar ∈ SO(3) and
the translational part Ptar = P ′0. The approach vector Vz in
the rotation matrix should be −Vavg so that it points out-
wards from the end-effector tip, leaving only the orientation
vector Vx of the probe’s long axis undetermined. In lung
examination, the long axis is usually parallel to the body’s
midsagittal plane to visualize the ribs. In our case, Vx should
be parallel to the x-axis of the robot base frame, then Vy

can be calculated according to the right-hand rule. The final



Fig. 4. System Integration. a) The hardware & software integration of the proposed RUS system. b) The workflow of the system to perform the LUS
scanning. c) The robot configuration when scanning each of the four anterior targets.

target pose is given in (2).

T cam
tar =

[
Vx Vy = Vz×Vx

‖Vy‖ Vz = −Vavg P ′0
0 0 0 1

]
(2)

C. Position and Force Control of the Robot

The Franka Emika 7-DoF manipulator provides a direct
Cartesian space control interface and is equipped with joint
torque sensors in all 7 joints, making task space wrench
estimation possible. The hardware setup of the robot can
be seen in Fig. 3: we designed an end-effector in [10] that
holds a linear ultrasound probe and the RealSense camera,
mounted to the flange of the manipulator. Based on the
mechanical data of the end-effector, the transformation T eef

cam

from the end-effector frame Feef to the camera frame Fcam

is obtained. Further, the transformation T base
tar from the target

frame Ftar to the robot base frame Fbase can be solved from
(3).

T base
tar = T base

eef · T eef
cam · T cam

tar (3)

The robot operates under two different modes: non-contact
mode for executing non-collision motion and contact mode
for maintaining constant contact force with the tissue surface.
For safety considerations, an entry pose Fent above the target
pose Ftar along Vavg with displacement Cd is set as the goal
under non-contact mode instead of Ftar. Once the entry pose
Fent is reached, the robot enters contact mode where force
is exerted by reducing Cd (see Fig. 3). The equation to set
Cd is given below:

Cd = kp · (F̂z − Fz) (4)

where kp is the proportional gain, F̂z is the desired contact
force along the end-effector’s z-axis, which in our case
is set to 5 N, Fz is the estimated force along the end-
effector’s z-axis read directly from the robot. With the
orientation unchanged, the new translational component P ′tar
after applying Cd is:

P ′tar = P ′0 + Cd · Vavg (5)

The control to the robot is a task space twist defined as
[vx, vy, vz, wx, wy, wz], representing linear velocities along
x, y, z axes and angular velocities along the three axes. The
rotation part of T base

tar is converted to roll pitch and yaw
angles to ease angular velocity calculation. A PD controller is
implemented to command end-effector velocity using errors
of translational components and roll pitch yaw angles, as well
as derivative of the errors. The elbow joint angle is limited
to 180 degrees to avoid singularities.

D. System Integration

The overall system diagram and a flowchart of the LUS
procedure using the developed system are shown in Fig. 4.
The software architecture in Fig. 4a is built upon ROS (Robot
Operating System). DensePose runs at 2fps on 480 by 480
image input to infer the scanning targets, which are later
converted to end-effector poses in terms of translational goal
and rotational goal relative to the robot base by incorporating
with depth sensing and robot pose measurement. Motion
errors are then calculated to be fed into the PD controller,
which gives the velocity twist command to the robot. Mean-
while, a state machine is designed to determine a Boolean
variable isContact that controls the switch between contact
mode and non-contact mode. isContact is assigned to 1 if the
robot’s motion error is within the sufficiently small threshold
(2 mm in translation, 0.03 rad in rotation) and 0 elsewhere.

Fig. 4b presents the implemented workflow of the LUS
procedure: 4 targets are computed and queued at the be-
ginning of the procedure. The robot reaches the targets
sequentially and stays on each target for 20 seconds for US
image acquisition.

III. EXPERIMENTAL SETUP

In this section, experiments are designed to validate the
proposed RUS system. The experimental evaluations of the
system are formulated as: i) 2D scanning target localization,
ii) 3D probe pose calculation, iii) Robot motion control,
and iv) US image acquisition. i) is the foundational step
for accurately localizing scanning targets from a 2D image



before ii) can be built upon i) to determine the correct probe
placement. iii) guarantees i) and ii) to be precisely translated
into actual robot motion. Lastly, iv) using the proposed RUS
system serves the evaluation of the entire procedure.

A. Validation of 2D Scanning Targets Localization

We aim to localize four scanning targets on the anterior
chest using the DensePose based framework and quantita-
tively evaluate the influence of subject positioning on the
localization accuracy. A mannequin (CPR-AED Training
Manikin, Prestan, USA) with human-mimicking anterior
anatomy is used as the experiment subject. As stated in
section II, the targets need to be specified in [u, v]ᵀ. We place
four ArUco markers empirically on the mannequin and read
their centroid positions in the image while simultaneously
running DensePose to acquire U and V data. The robot is
configured at the home position during this process because
DensePose achieves the best accuracy and stability when the
input image captures the front view of the mannequin. The
scanning targets in [u, v]ᵀ can be obtained by plugging the
markers’ centroid positions into U and V , The targets in im-
age coordinates are then localized using (1). To quantify the
localization accuracy, we keep the markers on the mannequin
and use their centroid position as the ground truth, then
place the mannequin at different locations. The mannequin is
translated horizontally and vertically on the test table plane,
altogether covering 15 locations starting from the default
location. The 2D targets are calculated using DensePose at
each location and sampled 100 times before being compared
with the ground truth.

B. Validation of 3D Probe Pose Calculation

The 3D probe pose calculation is evaluated through the
preciseness of 3D target point localization and normal vector
calculation. Without loss of generality, a 3 by 4 virtual grid
(see Fig. 6a) covering a whole anterior chest area, including
the four anterior targets, is overlaid on the same mannequin.
We place the ArUco marker at the center of each cell and
estimate its 3D pose with OpenCV, knowing the camera
intrinsic. The translational component and the approach
vector of the marker’s pose are used as the 3D target ground
truth and normal vector ground truth, respectively. We then
deproject the 2D target at the center of the marker to 3D
using the depth camera and calculate the normal vector using
our patch-based method to get an estimation of the same
variables and calculate the error accordingly. Similar to the
validation in A., the error contains 100 samples to exhibit
the stability of the calculation.

C. Validation of Robot Motion

Based on the defined target, we examine the robot’s motion
when moving to the designated pose using the mannequin
above. The system runs in a complete loop as depicted in
Fig. 4b, covering all four anterior targets. The robot motion
data is logged at a frequency of 10 Hz.

Fig. 5. Validation of 2D scanning targets. VERT and HORIZ correspond
to vertical and horizontal direction of the test table respectively. 0 offset
is the default location to place the mannequin. The error bar reflects the
standard deviation.

D. Validation of US Image Acquisition and Force Control

To evaluate the imaging capability of the proposed semi-
autonomous RUS system, a lung phantom (COVID-19 Live
Lung Ultrasound Simulator, CAE Blue Phantom™, USA)
simulating healthy lung and pathological landmarks (thick-
ened pleural lining, diffused bilateral B-lines, sub-pleural
consolidation) is used as the testing subject. The phantom
simulates the respiratory motion of the lung during breathing
as well. Since the phantom geometry is limited to the left
anterior chest and does not have any external body feature
for DensePose to recognize, the 2D scanning targets are
assigned manually. Diagnostic landmarks are supposed to
be observable in the US image if the system is effective.
Comparing with the mannequin, the rigidity of the phantom
is closer to the actual human chest; hence we recorded the
end-effector force at 10 Hz during scanning to validate the
force control.

IV. RESULTS

A. Evaluation of 2D Scanning Targets

Fig. 2a shows the inferred 2D scanning targets on the man-
nequin when placed at the default location with 0 horizontal
and vertical offset. Fig. 5 shows the error, defined as the
Euclidean distance between the averaged pixel position of the
inferred targets and the ground truth with respect to varied
mannequin locations. The averaged errors for the four targets
in pixels are 20.97 ± 5.40, 26.59 ± 6.36, 21.95 ± 6.28 and
25.31 ± 5.67, approximately corresponding to 17.41 ± 4.48
mm, 22.07 ± 5.28 mm, 18.22 ± 5.21 mm, and 21.00 ± 4.71
mm, respectively, showing good reproducible 2D localization
precision. The bounding region (see Fig. 2a) of each scanning
target is roughly 70 mm by 70 mm in size; hence the errors
account for 21% to 34% of the region’s diagonal length,
which is considered satisfactory for a rough landing. Such



Fig. 6. Validation of 3D probe pose. a) The virtual gird overlay placed
on top of the mannequin, where cell (1,2), (1,3), (2,2), (2,3) cover the four
anterior targets respectively. b) The error of the targets’ 3D position (top)
and the error of their normal vectors (bottom). The error bar reflects the
standard deviation.

rough landing can be corrected through the following manual
refinement of the probe placement.

B. Evaluation of 3D Probe Pose

The distribution of the errors on the virtual grid is shown
in Fig. 6b, where the rotational error is defined as the
absolute angle difference between the estimated and ground
truth normal vectors, the translational error is defined as the
Euclidean distance between the 3D target point measured
using the depth camera and the ground truth. In terms of
translation, the mean error for all the cells is 7.76 ± 2.71
mm, among which around 59% are along the z direction of
the camera frame, whereas errors along x and y direction
are mostly ignorable. The rotation error for all the cells is
12.61 ± 3.32 deg. In cells containing the anterior scanning
targets, the mean translational error is 6.92 ± 2.75 mm, and
the mean rotational error is 10.35 ± 2.97 deg, both of which
are lower than the all-inclusive mean and meet our rough
landing requirement. Nonetheless, the unbalanced scattering
of errors suggests the necessity to improve consistency.

C. Evaluation of Robot Motion

The recorded robot motion is shown in Fig. 7. The errors
when moving to entry poses are calculated by subtracting
the current end-effector pose from the entry pose (defined
as Fent in Fig. 3) of each target; the errors when moving
to target poses are calculated by subtracting the current
end-effector pose from the target pose (defined as Ftar

in Fig. 3). From the plot, both translational and rotational
errors converge when moving to the entry poses, proving
the effectiveness of the PD controller. While rotational error
continues to stay low when reaching the target poses, the
steady-state error is noticed in the z direction in translation.

D. Evaluation of US Imaging and Force Control

Representative US images when setting the desired con-
stant contact force at 5 N are shown in Fig. 8c. The healthy

part of the phantom (target A) presented no respiratory ab-
normality where the rib and pleural lines are clearly visible.
The thickened plural lines were imaged in the other part
of the phantom (target B), simulating typical pathological
abnormalities that appear in COVID-19 patients. Capturing
these features supports the effectiveness of the proposed
probe placement approach, including the probe orientation
control and desired contact force selection. The appearance
of air gaps on the top-left corner suggests further image
quality improvement through manual fine adjustment. The
recorded force while turning on the breathing motion is
shown in Fig. 8b. The error was stabilized at around 70%
of the desired force with limited oscillation even during
breathing. However, zero-drifting can be observed before
landing, along with an overshoot of 1 N when scanning target
B, indicating room for further optimization.

V. DISCUSSION AND CONCLUSIONS

This manuscript presents a feasibility study of the scan-
ning target localization based on a neural network-driven
architecture to support its extension toward autonomous
RUS scanning. It is worth noticing that our system has
considerable extensibility: the scanning protocol adopted is
applicable to not only COVID-19 patients but also general
LUS procedures. Moreover, DensePose can classify the hu-
man body into 23 parts, and these classes can potentially be
used for automating US scans on other anatomical regions
based on a similar implementation pipeline.

Evaluations on 2D target localization and 3D pose cal-
culation accuracy imply an overall 2D scanning target lo-
calization accuracy of 19.67 ± 4.92 mm and 3D pose
solver accuracy of 6.92 ± 2.75 mm in translation, 10.35
± 2.97 deg in rotation. The pose solver performance using
an RGB-D camera can be subject primarily to the physical
environment which is indicated by the notable difference
in the distribution of errors on the virtual grid caused by
the unevenly lighted scan surface. The performance may
be improved with a better light condition in the real-world
clinical environment.

The robot motion accuracy is high, with translational error
under 2 mm and rotational error under 0.03 rad. When
contacting the tissue, the translation along x and y direction
aligns with the pre-calculated 3D target position, evidencing
good localizing of the 3D target point on the x-y plane.
In Fig. 8b, the contact force is observed to stabilize at
around 1.5 N below the desired value. Distinct initial force
reading at time 0 and the amount of overshoot when the
probe lands from different poses are also noticed. Usually,
the deviation from the desired value can be alleviated by
increasing the control gain, yet an overly large value will
lead to a robot collision-protective behavior. A damping term
in the force control law in (4) may mitigate this problem.
The inconsistent initial force reading and overshoot amount
imply the force sensing to be a function of the end-effector
pose, which suggests our parameterization of the custom end-
effector based on the CAD model is not accurate enough for
the built-in gravity compensation to work properly. More



Fig. 7. Recorded robot motion when executing the trajectory for targets 1 to 4 a) The translational error relative to the robot base. b) The rotational error
relative to the robot base.

Fig. 8. Results scanning the lung phantom. a) The lung phantom picture
with the two manually selected scanning targets labeled as A and B,
respectively. The target A simulates the lung of healthy patients and the
target B simulates that of the COVID-19 patients. b) The logged end-
effector force when scanning targets A and B during the presence of
respiratory motion. c) Example US images collected at target A and target
B, respectively.

advanced payload identification methods can be investigated
to address the issue. Nevertheless, landmarks are visible in
the collected US images and could be used for diagnosis
purposes. This signifies the importance of including more US
image-based evaluation over straightforward force reading
when assessing the system efficacy.

Some limitations exist in this study. First, this study
targets the anterior chest for detection and assumes no
patient movement based on the nature of the experimental
conditions. Including additional cameras in addition to the
one mounted on the robot end-effector can enlarge the field
of view and continuously update the patient pose, allowing

the scans in the lateral and posterior chests to fully cover the
modified BLUE protocol [5]; Second, the landing motion
is purely force-based. Yet, ideally, US image should be
incorporated as another feedback (e.g., the work in [23] uses
both force and US image to adjust the probe orientation) to
grant high-quality diagnostic ability; Third, the custom end-
effector design has room to improve. The total length of the
end-effector needs to be optimized for better dexterity. The
current design requires US gel to be manually applied in
advance to enhance image quality. A more compact design
embedded with an automatic gel dispensing mechanism is
desired; Fourth, restricted by the experiment subject, there
is no evaluation of how well the 2D targets regressed
from DensePose accommodate the variation of body shapes.
Including human subjects in future study will allow us to
assess the adaptability of the scanning target localization
approach; Fifth, the patient transverse direction is assumed to
be parallel to the robot base’s x axis for simplicity. The final
probe alignment and adjustment are performed manually
through a teleoperative control.

For future work, we will adopt a more clinically practical
hardware setup (e.g., place the robot at the bedside) and
incorporate scanning direction alignment based on the patient
orientation and posture.
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