
 

 Abstract— Lung ultrasound (LUS) has been used for point-of-

care diagnosis of respiratory diseases including COVID-19, with 

advantages such as low cost, safety, absence of radiation, and 

portability. The scanning procedure and assessment of LUS are 

highly operator-dependent, and the appearance of LUS images 

varies with the probe’s position, orientation, and contact force. 

Karamalis et al. introduced the concept of ultrasound confidence 

maps based on random walks to assess the ultrasound image 

quality algorithmically by estimating the per-pixel confidence in 

the image data. However, these confidence maps do not consider 

the clinical context of an image, such as anatomical feature 

visibility and diagnosability. This work proposes a deep 

convolutional network that detects important anatomical features 

in an LUS image to quantify its clinical context. This work 

introduces an Anatomical Feature-based Confidence (AFC) Map, 

quantifying an LUS image’s clinical context based on the visible 

anatomical features. We developed two U-net models, each 

segmenting one of the two classes crucial for analyzing an LUS 

image, namely 1) Bright Features: Pleural and Rib Lines and 2) 

Dark Features: Rib Shadows. Each model takes the LUS image as 

input and outputs the segmented regions with confidence values 

for the corresponding class. The evaluation dataset consists of 

ultrasound images extracted from videos of two sub-regions of the 

chest above the anterior axial line from three human subjects. The 

feature segmentation models achieved an average Dice score of 

0.72 on the model’s output for the testing data. The average of non-

zero confidence values in all the pixels was calculated and 

compared against the image quality scores. The confidence values 

were different between different image quality scores. The results 

demonstrated the relevance of using an AFC Map to quantify the 

clinical context of an LUS image. 
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I. INTRODUCTION 

Respiratory symptoms are the primary manifestation of 

infectious respiratory diseases, which in turn are frequently 

caused by respiratory viruses that infect the cells in the airways 

of the nose, throat, and lungs. These infections can cause 

myriad illnesses such as flu (influenza), severe acute respiratory 

syndrome (SARS), and COVID-19. Novel severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) has already 

caused a pandemic of epic proportions, affecting over 8 million 

 
 

humans in an estimated 100 countries [1]. Ultrasound imaging 

is used to diagnose various lung diseases such as pulmonary 

edema, pulmonary embolism, pneumonia, asthma, and 

pneumothorax [2]. Lung ultrasound (LUS) has emerged as a 

point-of-care alternative to chest CT and x-ray for rapid point-

of-care diagnosis with its advantage of low cost, enhanced 

safety, absence of radiation, and portability for bedside 

diagnosis [3-5]. It has been widely adopted for imaging 

COVID-19 patients with clinical guidelines already having 

been proposed [6-9]. However, LUS diagnostic accuracy is 

highly operator-dependent, affected by the diagnosability of the 

acquired LUS images. 

The LUS is acquired from the anterior, lateral, and posterior 

regions of the chest. An LUS image does not contain structured 

organs since the lung is filled with air that reflects the 

ultrasound wave. We will be able to see the lung only when 

there is consolidation or fluid in the lung. The presence of A-

lines, which appear as horizontal lines, indicate dry interlobular 

septa and removes the concerns for pulmonary edema. The 

presence of B-Lines, which appear as white lines from the 

pleura to the bottom of the image, means abnormal aeration, 

suggests pulmonary edema, and excludes pneumothorax. Lung 

sliding is defined by a subtle shimmering seen at the pleural line 

and needs to be observed to exclude pneumothorax with 

certainty. Other artifacts can be seen in a lung ultrasound, such 

as lung point, comet tail, ring down, and mirror image, etc. 

Though these different features are required for the diagnosis of 

LUS, the most important features that are always essential and 

present in any of these LUS images are the bright feature 

formed by pleural lines and rib lines, and dark feature represents 

rib shadows because the rib does not allow ultrasound to pass 

through. Thus, this paper aims to recognize these features to 

determine image diagnosability. 

Karamalis et al. introduced the concept of ultrasound 

confidence maps based on random walks to assess the 

ultrasound image quality algorithmically by estimating the per-

pixel confidence in the image data [10]. Yet, these confidence 

maps do not consider the clinical context, such as anatomical 

feature visibility and diagnosability. Toward recognizing the 

anatomical landmarks, Roy et al. explored deep learning for 

classification and localization of COVID-19 markers in point-
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of-care LUS, presenting a deep learning architecture to predict 

pathological scores from an LUS image sequence and optimally 

fuses them to produce a disease severity score for each video 

[11]. In another work, Smistad et al. introduced highlighting 

nerves and blood vessels for ultrasound-guided axillary nerve 

block procedures using neural networks [12] by using a 

convolutional U-net neural network to identify the 

musculocutaneous, median, ulnar, radial nerves, and blood 

vessels in ultrasound images. 

In this paper, we introduce a deep convolutional neural 

network that detects critical anatomical features in an LUS 

image to quantify its clinical context. This work introduces an 

Anatomical Feature-based Confidence (AFC) Map, quantifying 

an LUS image’s clinical context based on the visible anatomical 

features.  

II. METHODS 

A. Model Definition 

We developed two deep learning models, each segmenting 

one of the two features crucial for analyzing an LUS image, 

namely 1) Bright features: pleural and rib lines, and 2) Dark 

features: rib shadows. Each model takes a single LUS image as 

input and outputs the corresponding segmented regions. Each 

pixel in the output can be taken as the confidence in the original 

image belonging to the corresponding class. Figure 1 shows the 

flow of the data from input to output the AFC values. Two 

independent models taking varied image size data are used. 

When the whole image is resized to be fed to the model, bright 

features are almost invisible, making it hard for the model to 

recognize it. The input to the bright feature model is cropped 

out from the whole image and focuses on the top part of the 

LUS to help recognize the bright features. The dark feature 

model takes in the whole image as input and outputs the 

segmentation for dark features. 

Both the model architectures are identical and consist of an 

encoder stage and a decoder stage that finally outputs a 

segmentation of two classes: the corresponding feature and 

background. As shown in Fig. 2, the encoder stage performs 

two 3x3 convolutions in each layer followed by 2x2 max 

pooling. The decoder stage contains a 2x2 up-convolution layer 

followed by two 3x3 convolutions. The number of filters in 

convolution layers were doubled after each stage, starting from 

8 filters in the encoding stage and ending at 128 (5 stages). The 

filters were halved after each stage in the decoding stage and 

eventually a 1x1 convolution to output the segmentation. High-

resolution features from the downsampling path are combined 

with the upsampled images to localize. Successive convolution 

layers will learn to assemble more precise output based on this 

information [13]. The cropped image input to the first model 

lets the bright features be visible even after resizing and thus 

improves the prediction of these features 

The output of segmentation consists of two classes for each 

feature: (1) Bright features and (2) background for the first 

feature, and (1) dark features and (2) background for the second 

feature. The output values in the first layer are in the range 0 to 

1, which could also mean the AFC of a pixel to be a bright/dark 

feature. The average of all the values above 0.01 is taken and 

considered the output AFC for the corresponding feature. The 

output is multiplied by 255 to visualize the AFC maps. 

 

 
Fig. 2 The U-net architecture. Each grey box corresponds to a feature 

map. The number of channels is specified on top of each box—the 

white boxes denote the copied features. The operations denoted by 

each arrow are mentioned in the image. 

B. Loss Definition 

There is a class imbalance problem because most of the 

pixels belong to the background class. We used the Dice loss 

 
Fig. 1 The flowchart presents the cropped input image as input to Model 1 and the whole image as input to Model 2 to provide a segmentation 

output of bright (pleural and rib lines) and dark features (rib shadows) as the Anatomical Feature-based Confidence (AFC) map. 



 

function to resolve it. The models have Dice loss for the first 

class (bright/dark features) and categorical cross-entropy loss 

for the background. 

C. Data Collection and Annotation 

The dataset consists of ultrasound collected from three 

human subjects in two sub-regions of the chest above the 

anterior axial line on the left and right sides [14]. A total of 312 

ultrasound images were extracted from these videos that were 

used for diagnosing the lung. The bright and dark features were 

hand-labeled on 312 images as ground truth for the model. In 

addition, the LUS videos were scored from 1 to 5 to quantify 

the quality of clinical context appearance for each feature class.  

The data was split into 66% for training and 34% for testing. 

D. Augmentation, Flipping, Rotation, and Elastic 

Deformation 

The data is augmented to avoid overfitting the training data 

and allow the model to generalize better for unseen data. This 

also compensates for the few training samples available. The 

ground truth for segmentation was transformed with the same 

augmentation along with the images. The images were flipped 

horizontally with a probability of 0.5. Additionally, the images 

were rotated from a random angle between -10 ~ 10 degrees. 

This would let the model learn rotational invariance and help 

the model learn to recognize features from different probe 

orientations. Finally, elastic deformation was applied to the 

images with a random 3x3 grid and randomly selected sigma 

value from 0 to 5. 

E. Training and Evaluation 

The model was trained with Adam optimizer parameters on 

Tensorflow version 1.14, Keras version 2.3.1, Ubuntu 18.04, 

NVIDIA RTX 2060 for 20000 epochs, with a batch size of 4. 

Training time was 16 hours with 5 networks training in parallel. 

Dice score was used to evaluate the performance of the 

segmentation model. The correlation of the output AFC of the 

models with the labeled scores was used to determine the 

model’s performance in predicting the visibility of the bright 

and dark features. 

III. RESULTS 

The feature segmentation models achieved an average Dice 

score of 0.72 on the testing data output. The example outputs of 

AFC maps are shown in Fig. 3. 

The average of non-zero AFC values in all the pixels was 

calculated and plotted against the image quality scores in Figs. 

4(a-b). The confidence values were different between scores 

with correlation, especially in the rib shadow detection. The 

results demonstrated the relevance of using an AFC Map to 

quantify the clinical context of an LUS image. A similar 

analysis is performed using the conventional confidence map 

[10]. The results are plotted in Fig. 4(c-d). While the variations 

of confidence values between different visibility scores are 

observed, the trend is less obvious compared to the AFC map.  

 

 
Fig.  3 Example outputs of the models: (a) An image with high feature 

visibility, and (b) an image with low feature visibility.  

 

 
Fig. 4 (a) Average AFC values using Model 1 with respect to the 

ground truth bright feature visibility scores, and (b) Average AFC 

values using Model 2 with respect to the ground truth dark feature 

visibility scores. Corresponding comparison results using the 

conventional confidence map [10] for bright and dark features are 

shown in (c-d), respectively. 

IV. DISCUSSION AND CONCLUSIONS 

The AFC map based on the U-net architecture performs well 

on the given dataset and provides valuable information about 

the diagnosability of lung ultrasound images. The results show 

that the model could recognize the critical features from a lung 

ultrasound image. The AFC map could predict the visibility of 

a given feature in a given image. 

One potential use of the AFC map is to guide a human 

operator by providing feedback to optimize the probe position 

and orientation. For example, if bright features are visible in the 

center of an ultrasound image between two rib shadows, the 

probe position likely is at the right location to observe the 

pleural movements. Recognizing such features could aid in 

identifying which direction the probe should go towards to 

acquire good images. If the position and orientation are proper 

while the confidence value is still low, it may suggest increasing 



 

the contact force to improve the image quality. This model 

could also provide feedback and guide a robot arm to acquire 

lung ultrasound images. This could be especially handy when 

diagnosing diseases like COVID-19 that have a high risk for the 

operator. It could be used to provide valuable insights in a 

teleoperation setting [14]. Conventional confidence maps have 

been used for robot control [10]. Similarly, the proposed AFC 

map could be used to attain better quality images, especially 

ensuring the inclusion of clinically relevant anatomical 

features.   

The future scopes could be studying how the change in the 

probe’s position, orientation, and force would affect the output 

AFC of the features from the models. With more data from 

many human subjects, the model could be improved in both 

training and testing. The current dataset consists only of images 

of healthy lungs, and most of these images contain good quality 

images with the features visible. Hence collecting more diverse 

data could improve the model. This paper has considered only 

two anterior regions in the chest for training the model. This 

work could be extended to other regions of the chest to observe 

its performance variation.  
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