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Abstract—Minimum description length (MDL) is an estab-
lished method for model selection. For supervised learning
problems, cross-validation is often used for model selection in
practice. Reasons are 1) MDL is difficult to apply directly to
data; 2) MDL may make restrictive statistical assumptions that
decrease performance; and 3) MDL does not directly aim to
minimize generalization error. In this paper, we introduce a
modification to MDL, which we call differential description length
(DDL). DDL partitions the data so that the codelength(s) it
computes, reflects the conditional probability of seeing ‘new’
data given ‘old’ data. This differential codelength is what allows
DDL to estimate generalization error like cross-validation. DDL
is also better than cross-validation because it allows the learning
algorithm to use the entire data without having to withhold
subsets for validation and testing. Compared with MDL, DDL
has both better performance (in finding models with smaller
generalization error) and is easier to compute. Experiments with
linear regression and deep neural networks show that DDL also
outperforms cross-validation.

I. INTRODUCTION

Consider the supervised learning problem with fea-
tures = and labels y. Given a set of training data
((x1,91),- -+, (Tn,yn)), the goal is to build a predictor
f(x,0n,h) of the y. The parameters of the model, 0, are
estimated from the training data. The set of hyperparameters,
h, are chosen before the learning process; hyperparameters are
values that control the characteristics of 6. Examples of hy-
perparameters are the model order in regression, regularization
parameters, and early stopping times [1]. Consequently, the
performance and computational efficiency of learning models
depend on using an optimal h.

The goal of learning is to minimize the theoretical risk (also
called generalization error)

Ex,y[L(y,f(x;Gh,h))}, (1)

where L(-) is some loss function. In practice, we usually have
only a subset of data available and therefore can only compute
the empirical risk
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Finding the optimal hyperparameters A by minimizing em-
pirical risk can lead to overfitting [1], [2]. Cross-validation is
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a common heuristic in which the performance of the model is
tested with data independent from the training data. However,
there are also downsides to cross-validation: 1) having to hold
out data for validation, thereby reducing the amount of data
used for training the model; 2) computation complexity since
we have to search through a combination of hyperparameter
values; 3) lack of theoretical analysis of performance.

An ideal hyperparameter selection method should combine
the ability of cross-validation to work directly with the data via
generalization error and also the statistical formalism of gen-
eral model selection methods such as Bayes factor/ Bayesian
information criteria (BIC), Akaike information criteria (AIC),
and minimum description length (MDL) [3]-[6]. In this paper,
we propose just such a method called differential description
length (DDL), which is a modification of MDL.

A few notes on notation. All logarithms referred to in
this paper are base 2. Let (z7,y]) denote the set of features
and labels ((IZ', ’yz), (Ii+17 yi—i-l)v ey (l‘j, yj)) Let (In, yn)
denote the entire set of data. We call a subset of the entire
data set, (2™, y™), m < n, the initialization set.

II. MINIMUM DESCRIPTION LENGTH (MDL) AND
DIFFERENTIAL DESCRIPTION LENGTH (DDL)

A. Minimum description length (MDL)

Consider a set of data with features =" and labels y".
Bayesian model selection [1, Section 3.4] picks the ith model
that maximizes

Pi(y"|z") = /P(yn|$n>9i;i)Pi(Hi)d9i~ 3)

where P;(0;) is a prior distribution. MDL can be considered
as a variation of the Bayesian approach to model selection.
MDL was developed in the pioneering papers by Rissanen [3]-
[5]. Rather than considering the posterior probability, MDL
uses the codelength C;(y™|x™) to choose the best ith model.
MDL is closely related to the Bayesian approach due to Kraft
inequality [7], which relates codelength to (sub)probability
distribution
2—C,i(y"\a:") _ Pz(yn|xn)’

which can then be used for model selection. The advantage
of MDL over the Bayesian approach is that we do not need
to learn/assume a prior distribution P;(6;), nor do we need to
calculate the integral (3).



In traditional MDL, codelength is often approximated, as
the maximum likelihood (ML) solution plus a term that takes
into account complexity. For example, the original formula in
[4] is

= min — log P(y"[2"; O

On

Ol £y, B) + 5 dogn,
where 6y, (2, y™) is the ML estimator of the model parameters
using the dataset (z™,y™), and K is the number of unknown
parameters. The codelength can be used for model selection
by picking the model with the shortest C'(y™|z™).

The issue with Bayes and MDL for model selection is that
it does not directly consider the theoretical risk underlying a
statistical learning problem. Our aim is not to find the “correct”
model, or the model that makes the observed data most likely,
but the model that minimizes the theoretical risk (1).

B. Cross-Validation

Cross-validation is one of the most often used methods for
model selection. Cross-validation (also called K-fold cross-
validation) divides the data (z",y™) into K chunks. The
empirical risk is computed for each of the kth chunk. The
cross-validation score is the average of the K empirical risks
as an estimate of the theoretical risk. We choose the model
with the smallest cross-validation score.

When K = n, the cross-validation is called leave one
out cross validation (LOOCYV). This becomes prohibitively
expensive for all but the simplest model.

C. Differential Description Length (DDL)

While differential description length (DDL) uses codelength
like MDL, it also leverages the availability of data for esti-
mating theoretical risk like in cross-validation. Like simple
cross-validation, DDL divides the data into (2™,y™),m < n
and (x7, 1,7 1) To select the best model, we calculate the
codelength C;(y;, . 1|™,y™), and choose the ith model with
the shortest codelength. We call such conditional description
length the differential description length (DDL).

Through Kraft’s inequality, we can interpret the DDL code-
length, C;(y7, +1|x ,y™), as a representation of the condi-
tional probability, P;(y", H\a: ,y™), which is the likelihood
of seeing the dataset (z]), ..y, 1) given the “past” dataset
(™, y™), thereby taking into account the learning aspect of
the problem compared to MDL. This can be interpreted in the
Bayesian model selection context as

PGl ™) = [ P a70361 )P0l ™)
“4)
DDL is different from cross-validation because

Ci(yp4112™,y™) is not computed based on a fixed parameter
0, (z™, y™). Instead @ is updated with (7, 41: Y1), subject
to a decodability condition.

In cross-validation, separate validation trials has to be done
for different model parameter #. In DDL, our estimate of
0 updates iteratively as we see more and more of the data.
This is because the codelength C;(y;;, 1 |2™,y™) is related to

the distribution P;(y;, 1|27 415 6(z™,y™), h), for which 6 is
iteratively updated.

III. ANALYSIS

DDL requires that we set aside some portion of the data,
(™, y™),m < n for initialization. In this section, we will
analyze how the performance of DDL depends on a = .
For illustration purposes, we will work with a simple model
selection problem. Unfortunately, even for this simple prob-
lem, exact analysis is infeasible, so some approximations will
be made.

The features z is from a finite alphabet with K symbols,
while the labels y are binary. We consider two possible models:
(model 1) y is independent of x, or (model 2) y is dependent
on z. In the latter case, the model parameter, 6, is the set of
K conditional distributions P(y|z). Let

P(1llz) = Py = 1jx),z € {1,...,
We consider the loss function to be log-loss or cross-entropy
G = E [~log Py(y|z)] . ®))

The optimum discriminative model is the one minimizing (5),
which may not be the model that actually generated the data.

K}.

A. Model selection using exact generalization loss

For both of these models, we can calculate the generaliza-
tion loss exactly, up to an o(-) term.
For model 1: independent model, the generalization loss is
P(1])?

Gy =H(Y)+ D(P|P)
1
PO[)(1— P(1]) In 4 (E) ©

(P} —
where P(1]-) denotes P(y = 1), independent of z.
For model 2: dependent model, the generalization loss is

Ga = H(Y|X) + D(P| P)

— H(Y) +

K
:E:Hawmpx D(P(Y|z)||P(Y |z))P(x)
= IM) (HxDQ

+0<%). 7)

In both cases, H is entropy and D(-||) is relative entropy
[7], P(1]z) is an estimate of P(1|x), which can be taken as
the ML estimate, and the last equality is obtained by series
expansion of D(-||-).

We choose the dependent model (model 2) if G; — G2 > 0.
This means we would choose model 2 if the threshold, ¢4t
is less than or equal to the mutual information, I(Y; X):

P(1jz) - P(1]2))?
tezact = ; 1|$ 1 — 1‘3’,‘))11’14]3(56)
(P(1]) — P(1]))?
A —Pama = (X @



ignoring the o(-) terms.

B. Model selection using approximate generalization loss

We will now show how coding can be used for model
selection. It is clear that for coding (and estimation) the data
can be divided into K independent substreams corresponding
to z; € {1,..., K}. Each substream can then be coded as in
[7, Section 13.2]. In practice, there are many ways codelength
can be computed. The different methods all give approximately
the same codelength. Therefore in this paper, we do not go into
detail of the differences in computing codelength. We can use
a block coder to encode the different substreams. The encoder
counts the number k, of ones in y™ for the samples where
x = x;. It transmits k, using logn, bits ( n, is the number
of samples where x = z;). It then tells the decoder which

sequences with k, bits were seen; this requires log ( ey bits.

The codelengths can be calculated quite accurately from [8§]

1 . 1
C(y"™|x") an (—m> +§log%+e<ﬁ> 9)

where H(-) is entropy and the term € (1) — 0 as n — oc.
We can estimate the generalization error from the code-

length by

Cly™[z™)

)

o Cllem) -
n—m
Under model 1: independent model, the codelength (9) is

k 1 n 1
") = nH (2] + 2 log 2 =
Cy™z™) =n (n)+20g2—|—e<n>

=nH(Y)+

1 n
Zlog —
2 2 R

+nlog (P(1[-)™" = 1) (Pu(1) —

The approximate generalization error is

P(])).  (10)

Gy ~ HY)+ mbg% + log (P(l\-)_1 — 1)
x (”p”(”'y)l”:f’"(l") —P(1-)> (11)

For model 2: dependent model, we can approximate the
codelength (9) using series expansion

v '5” ZP H (P 1|x))+21nlogp(x)+
(1)
— H(Y|X) + i[ P() — P(a)) H(P(1]2))
1og( 1:|a: —1) (P(1]z) — P(1|z))
3 og 2 )} +logn+o(i) (12)

The approximate generalization error derived from codelength
is

log —
2(n —m) Sm

o '
. Z (np"(xi_ :;Pm@ _ p(:c)) H(P(1]z))
1 1)

Pu(l]a) = mPy(lz) p(ux))

n—m

Gy~ HY|X) +

x|

+ Y P(z)log (P(1]z)~

X

(13)
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We choose the dependent model (model 2) if Gi1— Gy > 0:
n

L P
2(n —m) & m

<nzf>n(x) — mBy, ()

tapproa: =

+
i M=

- P(x)) H(P(1]z))
P(z)log (P(1|z)~' — 1)

Pu(lla) = mP(lz) p<1x>)

=) log P log (P(1])~' — 1)

y <nﬁn(17)l:zﬁm(1) B

P(ll‘)> <I(Y;X) (14

C. Choosing o =

In this example, a reasonable measure of performance of
using codelength for model selection is to compare topprox
with t.zqc. If the thresholds are identical, then model selection
using codelength will always result in the correct choice. We
can find the o that minimizes the mean square difference of
tappro;c with texact

_texact)2]~ (15)
For simplification, we ignore the high order terms

(K-1)?%
SR St |
4n2(1 — a)? og ot

arg rr}lin E(tapprox

f(K)
n(l—-a)
(16)
where f(K) < 3 is some function. We can find the « that
minimizes this by taking the derivative with respect to «

E[(tapprow - tewact>2] ~

nf(K)In2In4
_ (K —1)*W (W) _ (K-1)? Inn
ar nf(K)In2ln4 T f(K)ln2In4 n
a7

where W is the Lambert function.

The optimum value of o« converges to zero as n — oo,
i.e., as the dataset gets larger, the fraction of prior knowl-
edge we need to initialize the coder decreases. This might
be somewhat surprising. In cross-validation, usually a fixed
percentage of data is used for validation. If one thinks of the
data (Tyma1, Ymt1), - - -5 (Tn, Yn) as 'validation” data in DDL,
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Fig. 1. The MSE for DDL as a function of « for K = 10 and f(K) = 1.

almost the entire training set is used for validation. Of course,
ordinary MDL in principle corresponds to o = 0, so in some
sense this validates using MDL for machine learning. Yet,
o = 0 gives an infinite error in (16), so the take away is that
the gain from DDL is to avoid this singularity. Another insight
is that the optimum value of « increases as (K — 1)? with the
number of parameters. The factor f(K) is less predictable,
but f(K)~! is also an expression of model complexity: for
example, if all probabilities are % in the dependent model,
f(K) = 3. Butif y is a deterministic function of z, f(K) = 0.
Thus, complex models require a large value of a.

The function in (16) is also quite insensitive to «. This
means that the performance of DDL does not depend on any
particular « value. This is most easily seen numerically, see
Fig. 1. There is a large plateau from approximately o = 0.1
to 0.8 where the error is close to the minimum.

IV. FINDING OPTIMAL REGULARIZATION PARAMETERS

In this section, we show how DDL can be used for choosing
the optimum regularization parameter, A, in more realistic
model selection scenarios. In these more complex scenarios,
we do not have a way to compute the exact (or even ap-
proximately realistic) codelengths mathematically. Therefore,
codelength must be derived from data by using methods that
actually encode the data. These methods, such as Rissanen’s
predictive MDL [5], sequential normalized maximum likeli-
hood [9], and the sufficient statistic method [10], generally
proceed in a sequential fashion through the dataset.

Using the method in [5]

n—1

Ca(Wpirle™y™) = = > log P(yitalziga; (2, '), h),

o (18)
where 6, (x%, ") is the ML estimate derived using the dataset

(in’ yq) = ((mla 91)7 (.132, yQ)a R (mia yl))
We will measure the performance of using codelength for
estimating generalization error using regret

Regret =E, ,[L(y, f(w; 6, h))] — inf By y[L(y, f(x; 00, 1))):
(19)

A. Linear Regression

Consider a linear regression model where the predictor,
f(z;0p, h), is a linear function of the features . The unknown
parameters 6, are the weights, and the noise variance. We want
to choose a predictor that minimizes the loss function

n
min " L(yi, (@500, 1)) + Allon]l1,
i=1
where L(-) is the mean-square error loss, which is also the
log loss in this case. We generate the data using the following
rules. Let X; ~ N(0,1) for i < 5 and X; ~ N(0,10) for
5 <1 <20, and let
K
Y = Z X+ W
i=1

where W ~ N(0,1). Because the variance of X; is 10 for
7 > b, regularization is crucial to avoid including these in the
sum. We compute the codelength of encoding the features and
labels using (18); we assume that the conditional probability
is Gaussian.

In Fig. 2 we show regret versus «. This confirms the
theoretical predictions that o should be fairly small, but that
the specific value is of less importance. We can also conclude
that DDL is indeed better than MDL. Again recall that MDL in
principle corresponds to o = 0, although we cannot calculate
it as (18) is not defined for m = 0. Still, as o becomes very
small, there is a sharp increase in generalization error. Thus,
DDL both increases performance and makes computation
feasible compared to MDL.

We can also see how regret (19) depends on the proportion
of initialization dataset «. Fig. 2 shows how « affects the
performance of using DDL choosing A in order to minimize
generalization error. We see that the best o should be small but
not too small. In this example, we pick an optimum a = 0.25.

We compare the performance of choosing A with DDL
versus LOOCYV. LOOCYV is generally considered the best way
to do cross-validation [2]. We run our experiment 5000 times
to obtain the empirical distribution of regret (19) for both
DDL and LOOCV. We can see from Fig. 3 that DDL is more
likely to choose A such that the result predictor has smaller
generalization error than LOOCV.

1200
—— 70 observations
1000 —e— 120 observations
—-— 200 observations
800
o
o
g
2 600
400
200

0.2 0.4 0.6
a

Fig. 2. Average generalization error of DDL for linear regression versus a.
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Fig. 3. Distribution of regret for linear regression with 120 observations.

B. Neural Networks

In this section, we show that it is feasible to use DDL
to optimally select regularization parameter (Lo in this case)
for training neural networks using large dataset. We test our
methodology on the IMDB dataset [11]. A multi-layer neural
network composed of an encoding module followed by two
fully connected layers is used. The encoding module is a
multi-hot encoder that converts the input sequences of words,
restricted to top 5,000 most frequently occurring words, into a
vector of Os and 1s. Each of fully connected layers are made up
of 16 neurons with ReLU activation function followed by the
dropout layer with the rate of 0.5. Finally, a sigmoid function
is applied to map output into [0, 1] range.

Since we do not know the conditional distribution of label
given features, we can not compute the codelength using
(18). Instead, we know the following methods to obtain a
codelength. First, we notice that if the output layer is a sigmoid
or softmax function, we can interpret it as a probability that
can be used in (18). Second, to use (18), we need to initialize
the coder with our best estimate of our model parameter
using the prior knowledge data set é(xm,ym). This is more
complicated for neural networks than it is for linear regression
for the following reasons: 1) the unknown parameters, 6,
for neural networks are the weights of the network. And
this has very high dimensionality; 2) the loss function for
linear regression is convex. Therefore, we are guaranteed that
G (z™,y™) will converge to ), (z"y™) as m increases. This
is not a guarantee in general for neural networks.

For neural networks, our method for ensuring that
G (2™, y™) will converge to fj, (2™, y™) as m increases is the
following heuristic:

1) Train the neural network with the entire data set to find

éh (z™,y™)

2) Train the neural network with a subset of the data
(2™, y™), but with 6, (z™,y™) as the initialization point
to obtain “related” solution

3) Using (18) to compute codelength

We compare the performance of choosing A with DDL
versus holdout cross-validation (but not LOOCYV as that would
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Fig. 4. Distribution of regret for binary classification on IMDB dataset.

be prohibitively expensive to compute) where 20% of the data
is held out for validation. We run our experiment 50 times to
obtain the empirical distribution of regret (19).

We can see from Fig. 4 that DDL is more likely to choose A
such that the result predictor has smaller generalization error
than cross-validation.

V. CONCLUSION

This paper has developed the framework for DDL. DDL
can be seen as a modification of MDL so it is better suited for
machine learning problems. DDL has two advantages. First,
the paper has shown both theoretically experimentally that
DDL performs better than MDL in selecting a model with
the small generalization error; this is because DDL specifi-
cally addresses generalization. Second, it has computational
advantages, in that it overcomes the initialization problems of
certain MDL methods.

We also have experimental results showing DDL performing
better than cross-validation, even LOOCYV.
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