IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, XX 2020

Machine Learning on Volatile Instances:
Convergence, Runtime, and Cost Tradeoffs

Xiaoxi Zhang, Member, IEEE, Jianyu Wang, Student Member, IEEE, Li-Feng Lee, Tom Yang, Akansha Kalra,
Gauri Joshi, Member, IEEE, and Carlee Joe-Wong, Member, IEEE

Abstract—Due to the massive size of the neural network models
and training datasets used in machine learning today, it is impera-
tive to distribute stochastic gradient descent (SGD) by splitting up
tasks such as gradient evaluation across multiple worker nodes.
However, running distributed SGD can be prohibitively expensive
because it may require specialized computing resources such as
GPUs for extended periods of time. We propose cost-effective
strategies to exploit volatile cloud instances that are cheaper
than standard instances, but may be interrupted by higher
priority workloads. To the best of our knowledge, this work
is the first to quantify how variations in the number of active
worker nodes (as a result of preemption) affect SGD convergence
and the time to train the model. By understanding these trade-
offs between preemption probability of the instances, accuracy,
and training time, we are able to derive practical strategies
for configuring distributed SGD jobs on volatile instances such
as Amazon EC2 spot instances and other preemptible cloud
instances. Experimental results show that our strategies achieve
good training performance at substantially lower cost.

Index Terms—Machine learning, Stochastic Gradient Descent,
volatile cloud instances, bidding strategies

I. INTRODUCTION

Stochastic gradient descent (SGD) is the core algorithm
used by most state-of-the-art machine learning (ML) problems
today [3]-[5]. Yet as ever more complex models are trained on
ever larger amounts of data, most SGD implementations have
been forced to distribute the task of computing gradients across
multiple “worker” nodes, thus reducing the computational bur-
den on any single node while speeding up the model training
through parallelization. Currently, even distributed training
jobs require high-performance computing infrastructure such
as GPUs to finish in a reasonable amount of time. However,
purchasing GPUs outright is expensive and requires intensive
setup and maintenance. Renting such machines as on-demand
instances from services like Amazon EC2 can reduce setup
costs, but may still be prohibitively expensive since distributed
training jobs can take hours or even days to complete.

A common way to save money on cloud instances is
to utilize volatile, or transient, instances, which have lower
prices but experience interruptions [6]-[8]. Examples of such
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instances include Google Cloud Platform’s preemptible in-
stances [7] and Azure’s low-priority virtual machines [8]; both
give users access to virtual machines that can be preempted at
any time, but charge a significantly lower hourly price than on-
demand instances with availability guarantees. Amazon EC2’s
spot instances offer a similar service, but provide users addi-
tional flexibility by dynamically changing the price charged
for using spot instances. Users can then specify the maximum
price they are willing to pay, and they do not receive access
to the instance when the prevailing spot price exceeds their
specified maximum price [9]. Volatile computing resources
may also be used to train ML jobs outside of traditional cloud
contexts, e.g., in datacenters that run on ‘“stranded power.”
Such datacenters only activate instances when the energy
network supplying power to the datacenter has excess energy
that needs to be burned off [10], [11], leading to substantial
temporal volatility in resource availability. SGD variants are
also commonly used to train machine learning models in
edge or fog computing contexts, where resource volatility is a
significant practical challenge [12]-[14].

SGD algorithms can be run on volatile instances by deploy-
ing each worker on a single instance, and deploying a param-
eter server on an on-demand or reserved instance that is never
interrupted [15]. This deployment strategy, however, has draw-
backs: since the workers may be interrupted throughout the
training process, they cannot update the model parameters as
frequently, increasing the error of the trained model compared
to deploying workers on on-demand instances. Compensating
for this increased error would require either training the model
for a larger number of iterations or increasing the number of
provisioned workers, both of which will increase the training
cost. In this paper, we quantify the performance trade-offs
between error, cost, and training time for volatile instances.
We then use our analysis to propose practical strategies for op-
timizing these trade-offs in realistic preemption environments.
We first consider Amazon spot instances, for which users can
indirectly control their preemptions by setting maximum bids,
and derive the resulting optimal bidding strategies. We then
derive the optimal number of iterations and workers when
users cannot control their instances’ preemptions, as in GCP’s
preemptible instances and Azure’s low-priority VMs. More
specifically, this work makes the following contributions:

1) Quantifying training error convergence with dynamic num-
bers of workers (Section III). Using volatile instances that can
be interrupted and may rejoin later presents a new research
challenge: prior analyses of distributed SGD algorithms do
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not consider the possibility that the number of active workers
will change over time. We derive new error bounds on the
convergence of SGD methods when the number of workers
varies over time and show that the bound is proportional to
the expected reciprocal of the number of active workers.

2) Deriving optimal spot bidding strategies (Section 1IV). To
the best of our knowledge, no works have yet explored bidding
strategies for distributed machine learning jobs that consider
the bidding’s effect on error convergence and random iteration
runtimes. We analyze a unique three-way trade-off between
the cost, error, and training time, using which we can design
optimal bidding strategies to control the preemptions of spot
instances. For tractability, we focus on two scenarios where
each worker submits the same bid, or one of two distinct bids,
and then extend to more general bid types in special cases.
3) Deriving the optimal number of workers (Section V). For
scenarios where users cannot control the preemption proba-
bility, we propose a general model to relate the number of
provisioned workers to the expected reciprocal of the number
of active workers, which can capture practical preemption
distributions. Using this model, we then provide mathematical
expressions to jointly optimize the number of provisioned
workers and iterations. We also propose a strategy to dynam-
ically adjust the number of provisioned workers, which can
further improve the error convergence.

4) Experimental validation on Amazon EC2 (Section VI). We
validate our results by running distributed SGD jobs analyzing
the CIFAR-10 [16] dataset on Amazon EC2. We show that
our derived optimal bid prices can reduce users’ cost by
65% on real, and 62% on synthetic, spot price traces while
meeting the same error and completion time requirements,
compared with bidding a high price to minimize interruptions
as suggested in [17]. Moreover, we implement our proposed
dynamic strategy with an increasing number of workers over
time and validate that it can reduce the cost and yield a better
cost/completion time/error trade-off by: (i) adding workers
later in the job and re-optimizing the bids according to
the realized error and training time so far on Amazon spot
instances [6], and (ii) exponentially increasing the number of
provisioned workers and running for a logarithmic number of
iterations on GCP preemptible instances [18].

II. RELATED WORK

Our work is broadly related to prior works on convergence
analysis for distributed machine learning, as well as exploiting
spot instances to efficiently run computational jobs.

Distributed machine learning generally assumes that mul-
tiple workers send local computation results to be aggregated
at a central server, which then sends them updated parameter
values. The SGD algorithm [3], in which workers compute
the gradients of a given objective function with respect to
model parameters, is particularly popular. In SGD, workers
individually compute the gradient over stochastic samples
(usually a mini-batch [19]) chosen from data residing at each
worker in each iteration. Recent work has attempted to limit
device-server communication to reduce the training time of
SGD and related models [12], [20]-[22], while others analyze

the effect of the mini-batch size [19] or learning rate [23], [24]
on SGD algorithms’ training error. Bottou et al. [24] analyze
the convergence of training error in SGD but do not consider
the runtime per iteration. Dutta et al. [23] analyze the trade-off
between the training error and the (wall-clock) training time
of distributed SGD, accounting for stochastic runtimes for the
gradient computations at different workers [25]. Our work is
similar in spirit but focuses on volatile instances, introducing
cost as another performance metric. We also go beyond [23],
[24] to derive error bounds when the number of active workers
changes in different iterations.

Utilizing spot and other transient cloud resources for
computing jobs has been extensively studied. Zheng et al. [15]
design optimal bids to minimize the cost of completing jobs
with a pre-determined execution time and no deadline. Other
works derive cost-aware bidding strategies that consider jobs’
deadline constraints [26] or jointly optimize the use of spot and
on-demand instances [27]. However, these frameworks cannot
handle distributed SGD’s dependencies between workers. An-
other line of work instead optimizes the markets in which users
bid for spot instances. Sharma et al. [17] advocate bidding the
price of an on-demand instance and migrating to VM instances
in other spot markets upon interruptions. The resulting migra-
tion overhead, however, requires complex checkpointing and
migration strategies due to SGD’s substantial communication
dependencies between workers, realizing limited savings [28].
Some software frameworks have been designed for running
big data analytics on transient instances [29], but they do not
include theoretical ML performance analyses.

III. ERROR AND RUNTIME ANALYSIS OF DISTRIBUTED
SGD WITH VOLATILE WORKERS

The number of active computing nodes used for distributed
SGD training affects the convergence of the training error
versus the number of SGD iterations as well as the runtime
spent per iteration. Unlike most previous works in the opti-
mization theory literature, which focus only on error-versus-
iterations convergence, we consider both these factors and
analyze the true convergence of SGD with respect to the wall-
clock time. Moreover, to the best of our knowledge this is
the first work that presents an error and runtime analysis for
volatile computing instances, which can result in a changing
number of active workers during training.

We formally introduce distributed SGD in Section III-A.
In Section III-B, we quantify how worker volatility adversely
affects error convergence because having fewer active workers
yields more noisy gradients. In Section III-C, we analyze the
effect of worker volatility on the training runtime, which is
affected in two opposing ways. A higher preemption proba-
bility results in longer “dead” time intervals with zero active
workers. Although a lower preemption probability yields more
active workers, it can increase synchronization delays in
waiting for straggling nodes. This error and runtime analysis
lays the foundation for subsequent results on bidding strategies
that can dynamically control the availability of each individual
worker node and the number of active worker nodes.

In Sections IV and V, we use our results on the error and
runtime analysis from this section to minimize the cost of
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training a job, subject to constraints on the maximum allow-
able error and runtime. Our goal is to solve the optimization:

minimize : Expected total cost E[C] (D
st.. Expected training error E[¢] < e, 2)
Expected completion time E[r] < 0, (3)

where ¢ and 6 denote the maximum allowed error and the
(wall-clock) job completion time respectively.

A. Distributed SGD Primer

Most state-of-the-art machine learning systems employ
Stochastic Gradient Descent (SGD) to train a neural network
model so as to minimize the empirical risk function G : R¢ —
R over a training dataset S, which is defined as

G(w) = ;Z;l(h(xs,w),ys), 4)

where the vector w denotes the model parameters (for ex-
ample, the weights and biases of a neural network model),
and the loss I(h(zs, W), ys) compares our model’s prediction
h(zs,w) to the true output ys, for each sample (x, ys).

The mini-batch SGD algorithm iteratively minimizes G(w)
by computing gradients of [ over a small, randomly chosen
subset of data samples S; in each iteration j and updat-
ing w as per the update rule w;11 = w; — a;g(w;).
Here «; is the (pre-specified) step size and g(w;) =
>oses; VUh(zs, wj),ys)/|S;|, the gradient computed using
samples in the mini-batch S;.

Synchronous Distributed SGD. To further speed up the
training, many practical implementations parallelize gradient
computation by using the parameter server framework shown
in Fig. 2 [23]. In this framework, there is a central parameter
server and n worker nodes. Each worker has access to a subset
of the data, and in each iteration each worker fetches the
current parameters w; from the parameter server, computes
the gradients of I(h(zs,wW;),ys) over one mini-batch of its
data, and pushes them to the parameter server. For fully-
synchronous SGD as we elaborate below, the parameter server
waits for gradients from all n workers before updating the
parameters to W;4q as per

n
Wjt1 =W, — % > 9D (w;), (5)
i=1
where ¢()(w;) is the mini-batch gradient returned by the
i" worker. The updated w; is then sent to all workers,
and the process repeats. This gradient aggregation method is
commonly referred to as synchronous SGD. Asynchronous
gradient aggregation can reduce the delays in waiting for strag-
gling workers, but causes staleness in the gradients returned
by workers, which can give inferior SGD convergence [23].
Based on the gradient aggregation method used by the
server, we consider three variants of synchronous SGD, as
shown in Figure 1.
1. Fully-synchronous SGD: In each iteration j, the param-
eter server waits for all workers to finish processing their mini-
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Fig. 1: Gradient computations on three workers for two
iterations in fully, N = 2-, and N = 2-batch synchronous
SGD. The x-axis indicates time, and lighter colored arrows
indicate workers cancelled by the Parameter Server (PS).

More |, Zero , Fewer
Active | Active | Active

Parameter Server : :
Workers | Workers | Workers

Wit1 = Ww; — ag(w;)

W ﬁ(w)

Worker 1 ‘Worker 2

Error
Cost

Worker 3

Wallclock Time

Fig. 2: Parameter Server Model and an illustration of how
error and cost vary versus training time when the number of
workers varies with time. Having more active workers results
in a faster decrease in error, but a faster increase in cost.

batches and push the computed gradients, before updating the
parameters w11 to all workers for the next iteration.

2. N-synchronous SGD: In fully synchronous SGD, wait-
ing for the slowest worker to finish its gradient computation
can bottleneck an iteration’s completion time. To overcome
this bottleneck, in IN-synchronous SGD the parameter server
waits for the first N out of n workers to push their computed
gradients. It updates the parameters to w1 according to these
N gradients, and pushes w; to all workers, canceling the
outstanding gradient computations at slow workers.

3. N-batch-synchronous SGD: To further reduce syn-
chronization delays, upon finishing a gradient computation,
each worker continues to process another mini-batch using
the same parameters w; until N mini-batches are finished
collectively by the workers. In contrast to N-synchronous
SGD, the parameter server waits for the first NV mini-batches to
be finished rather than the first N workers. Once the parameter
server receives N gradient updates, it cancels the remaining
gradient computations, and updates w at all workers.

Distributed SGD on Volatile Workers. In this work we
consider that the parameter server is run on an on-demand
instance, while the n workers are run on volatile instances that
can be interrupted or preempted during the training process, as
illustrated in Fig. 2. Let y; denote the number of active (i.e.,
not preempted) workers in iteration j, such that 0 < y; < n for
allj =1,...,J, where J is the total number of iterations. The
sequence y1, Y2, - - . Y can be considered as a random process.
We do not count “iterations” where the number of active
workers is 0, as there is then no gradient update. However,
having zero workers will increase the total training completion
time, which we will account for in Section III-C.
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B. SGD Error Convergence with Variable Number of Workers

Since the number of active workers may vary over time, the
number of gradient contributions used to update the parameters
can be variable for the fully-synchronous SGD, while there are
always a total of IV gradient computes aggregated per iteration
in a N-synchronous and /N-batch-synchronous SGD. This fact
leads to a more complex analysis of the error convergence for
fully-synchronous SGD with dynamic workers. In the follow-
ing, we first give an upper-bound on the expected training
error in terms of y;, j = 1,...J for fully-synchronous SGD
(see Theorem 1); the error bounds for N-synchronous and V-
batch-synchronous SGD directly follow. For error convergence
analysis we make the following assumptions on the objective
function GG, which are common in most prior works on SGD
convergence analysis [23], [24].

Assumption 1 (Lipschitz-smoothness). The objective function
G(w) : R® — R is L-Lipschitz smooth, i.e., it is continuously
differentiable and there exists L > 0 such that

| VG(w) = VG(W) [|2< L || w — W' |2, Yw, w' € R? (6)

Assumption 2 (First and Second Moments). Let
Es, [VG(w;,S;)] and G(w) represent the expected gradient
at iteration j for a mini-batch S; of the training data and
the gradient for the full data, respectively. Then there exist
scalars pg > p > 0 such that

VG(w;) Es, [VG(w;,8)] > u | VG(w;) I3 (D)
and || Es, [VG(W;,8;)] 2 < pe | VG(W;) Iz (8)
and scalars M, My > 0 with Mg = My + ,uG such that
Es, [| VG(w;,8)) 3] < M + Mg || VG(w)) 3. )
for any given size of mini-batch S; on one worker.

Theorem 1 (Error Bound with Dynamic Active Workers).
Suppose that the objective function G(-) satisfies Assumptions
I- 2 and is c-strongly convex [30] with parameter ¢ < L.
Assuming G* > 0, for a fixed step size 0 < o < ¢} and
given w, the expected training error, defined as the expected
gap between the objective value of running a fully-synchronous
SGD after J iterations and the optimum G*, is

E[G(Wy1) — G < (1 - acp) E[G(w)] +
J
O‘QsM ;(1 —acu)JJ‘]EBj]; (10)

N

Taking E[%} = L in (10) gives the error bound for an N -
synchronous SGD and N -batch-synchronous SGD.

The proof is given in the Appendix of our technical re-
port [2], where we also extend Theorem 1 to handle non-
convex objective functions and a diminishing step size, by
analyzing the convergence speed to a stationary point instead
of the error defined as E [G(w 1) — G*].

Discussion of the Assumptions. Assumption 1 and the c-
strongly convexity assume a lower bound and an upper bound
of G(y) at any point y respectively, meaning G(-) is a function
that does not change its value too fast or too slowly, as these

two assumptions lead to: G(z) + VG(z)(y — x) + ¢/2||z —
yll3 <= Gly) <= G(x) + VG(z)(y — z) + L/2[|z — y|[3.
with 0 < ¢ < L and any given two points z,y in the
feasible region of G/(-). Assumption 2 first states in (7) and (8)
that, in expectation, the vector —VG(w;, S;) is a direction of
sufficient descent for G(-) from w; with a norm comparable
to the norm of the gradient. In particular, a special case
pe = p = 1 means tha VG(w;,S;) is an unbiased estimate
of the full gradient VG(wj). It then assumes in (9) that the
variance of VG(w;, S;) is restricted, but is allowed to increase
linearly with the squared norm of the full gradient.

Our Theorems 1 and 2 also assume i.i.d. workers’ mini-
batches. It generally holds when each worker’s mini-batches
are ii.d. drawn from a portion of data partitioned from the
original dataset uniformly at random, but might not hold
if each portion is large and fixed during the training. One
method to address this is to establish a shared “data lake”
from which workers draw their mini-batches in an i.i.d. manner
in each epoch, which would reduce the storage gains from
parallelizing the data storage across multiple workers though.
We leave the implementation of the data distribution to ensure
this i.i.d. assumption into our future work.

Remark 1 (Penalty for Using Volatile Instances). The error
bound in Theorem 1 given the expected number of active
workers E [y;] is minimized when y; is not a random variable,
i.e., SGD is run on on-demand instead of volatile instances.
This result follows from the convexity of yj_l; using Jensen’s
inequality we can show that fixing the number of active
workers to y = E [y;] minimizes E [y;'].

Remark 2 (Error and Preemption Probability). Suppose that
a worker is preempted with probability ¢ in each iteration.
Then the bound in Theorem 1 increases with ¢ because
E[1/y;] increases with g. Thus, more frequent preemption or
interruption of workers yields worse error convergence.

Dynamic Numbers of Provisioned Workers for Fully-
Synchronous SGD. While Theorem 1 gives us the error
bound for a fixed number (n) of provisioned workers over
iterations, ML practitioners often increase the number of
workers over time [31]-[33]. Intuitively, in the later training
stages, the parameter values are closer to convergence, and
thus it is crucial that the gradient updates are accurate, i.e.,
averaged over a larger number of worker mini-batches. More

’s contnbutlon to the
error bound increases exponentially with j by ;—-—. This
observation motives us to increase the number of prov1s1oned
workers over iterations so that E[L ,
error decay is further improved. Having smaller numbers of
active workers in the early iterations (for which j << J)
can further reduce the incurred cost, without affecting the

error much due to the smaller contribution of IE{ } to the

error bound. In fact, guided by the above intuition, we have
the following improved error bound when the number of
provisioned workers exponentially increases with iterations.

formally, Theorem 1 shows that E[

will decrease and the

Theorem 2 (Error with Increasing Provisioned Workers).
Suppose nj, the number of provisioned workers in iteration
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J, satisfies n; = {nmj_l] for some ny > 0,1 > 1, and the

number of active workers y; satisfies E[i} < % for some
x > 0,d > 0. Then for any a < ﬁ the expected training
error of running fully-synchronous SGD after J iterations is:

E[G(Wyt1) = G*] < (1 - acp) E[G(w1)]+

)J_lll—x‘]

B

ny 1—

2
where © = and B = %.

1
nX(1—acp)

Theorem 2 shows that the error bound can converge to
0 asymptotically with J if nX > ﬁ, in contrast to
converging to a positive constant when using a static number
of workers as shown in Theorem 1. It also implies that for any
given increasing rate of the number of provisioned workers
n > 1, there always exists a step size « such that the error
bound decreases in the order of .

One can similarly exponentially increase the batch size of
each worker while using the same number of workers over
iterations [34], but doing so will exponentially increase the
runtime of each iteration. We prove in Corollary 1 that our
dynamic strategy achieves the same error convergence rate and
a better asymptotic error bound with a significantly smaller
number of iterations than using a static number of workers.

Corollary 1 (Reduced Iterations with Extra Workers). Sup-
pose the number of active workers y; satisfies E yi <
J

O (%) for some x > 0. Then for any n > 1 and J sufficiently
large, provisioning [n1n'~"| workers in iteration j and run-
ning fully-synchronous SGD for [lognx 1+ (n- 1)J)] itera-
tions can achieve an error bound no larger than provisioning
ny workers for J iterations.

Remark 3 (Bounded Number of Provisioned Workers). If
there is an upper limit of the number of provisioned workers,
denoted by 1,42, then the error bound (11) will be:

E[G(Wys1) = G < (1 = acp) E[G(w1)]
(1—acu)’11—2/ 1-(1- ac,u)‘]} (12)

+B-max{

n¥(1—x) Nz QClL
2
where 2 = ———— and B = ©LMd |t means that the error
X (1—acp) 2
aLMd

will converge to S instead of zero. One can verify that
cunNraz

the asymptotic error in this case is equal to always using 7,4z

provisioned workers each iteration (setting E[zﬂ =% in
J

Nmax

Theorem 1), but clearly will consume much less cost as there
are much fewer workers used in the early iterations.

Note that Theorem 2 and Corollary 1 hold only for fully-
synchronous SGD, as a greater number of gradient updates
are gained from having more active workers in each iteration,
which can decrease the variance of the gradients computed
from random mini-batches. The error convergence rates of N-
synchronous and N-batch-synchronous SGDs, in contrast, are
not improved by increasing the number of provisioned workers
due to constantly processing N mini-batches per iteration,
but the runtime can be reduced which we will discuss in
Section III-C. To achieve a better convergence by increasing

the number of workers, we can simply modify these two SGD
variants to be N;-(batch)-synchronous, with an increasing N;.

Remark 4 (Theorem 2 Adaptation for SGD Variants). The-
orem 2 can be applied to the N-synchronous and N-batch-
synchronous SGD variants if we set the number of provisioned
workers as required by Theorem 2 and modify N, the number
of mini-batches to finish in iteration, so that it exponentially
increases with the number of iterations, e.g., N; = ni~*
where 1 < n < njp,1 <7 <n. Similar to (11), the expected
training error after J iterations is at most

1—2a/
11—z’

(1 — acp)’E[G(w1)] + g (1 —acp)’ 1 (13)

1 _ o*LMd
= and B = «=74,

where x =
Remark 5 (Step Size Choice for Dynamic Workers). Theorem
2 can generalize to allowing a dynamic step size «; that varies
with the number of iterations j = 1,--- , J. We can show that
a static step size can achieve the fastest error decay rate, due
to the fact (shown formally in the Appendix of our technical
report [2]) that the error bound adapted from (11) will still
consist of a term that is proportional to E[G(w)] and a term
proportional to the variance bound (cf. the two terms in (11)).
Moreover, the error bound is dominated by H}]:1(1 — ajcp)
as in the first term since the maximum variance per iteration
is diminishing with EL

number of provisione

% due to the exponentially increased
J

“workers. We can finally show that a
e
cp

static step size 0 < a < can minimize the error bound.

C. SGD Runtime Analysis with Volatile Workers

Now let us analyze how using volatile workers affects the
training runtime. The runtime has two components: 1) the time
required to complete the J SGD iterations, and 2) the idle time
when no workers are active and thus no iterations can be run.

Let R(y;) denote the runtime of the j" iteration in which
we have the set ); of y; active workers. Suppose each worker
takes time r; to compute its gradient, where r; is a random
variable, for k = 1,---,y;. Fluctuations in computation
time are common especially in cloud infrastructure due to
background processes, node outages, network delays etc. [35].
Since the parameter server has to wait for all y; workers to
finish their gradient computations in a fully-synchronous SGD,
the runtime per iteration is,

R(y;) = max T + A, (14)
where A is the time taken by the parameter server to update
w and push it to the y; workers. The expected runtime
E[R(y,)] increases with the number of active workers. For
example, if r, ~ exp(u), an exponential random variable that
is ii.d. across workers and mini-batches, then E[R(y;)] =~
(logy;)/p + A. For N-synchronous SGD, we have

R(yj) :T(N) +A7 (15)

for any given y; > N, where () is the Nth order statistic of
random variables {ry }rcy,, which is the largest runtime of N
fastest workers among the active ones. In contrast to the fully-
synchronous counterpart, E[R(y;)] in (15) decreases with y;
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and we have E[R(y;)] ~ (log -“5)/pu + A if r), ~ exp(u).
For a N-batch-synchronous SGD, the general form of R(y,) is
intractable, but for r ~ exp(u), it is equivalent to modeling
the arrival of the gradient update of each mini-batch as an
independent Poisson process with rate p running in parallel,
and thus the total arrival rate of y; workers equals py; for
any given y;. Since we aggregate N gradient updates each
iteration, we have E[R(y,)] ~ %

Adding this per-iteration runtime to the idle time when no
workers are active, we can show that the expected wall-clock
time required to complete the J SGD iterations is

J
E[r] = ZIE [R(y;)] + E[idle time with no active workers]
j=1

We assume that if workers are interrupted during any iteration
i, we can store the intermediate results of the gradient compu-
tations when the workers receive the interruption notifications.
If iteration ¢ + 1 starts before the workers resume from the in-
terruptions, the stored intermediate gradients will be discarded,
which can happen in the following cases: (1) for fully-sync
SGD, at least one worker was active and has finished the mini-
batch for iteration 7; (2) for N-sync and N-batch-sync SGD, N
mini-batches (from N active workers or any y; < N workers)
have been finished for iteration ¢. Otherwise, the resumed
workers continue the gradient computation based on the stored
results as they are still in iteration 7. For example, when each
worker is preempted uniformly at random with probability ¢
in each iteration (as described in Remark 2), then the expected
completion time becomes E[r] = ijl E[R(y;)] /(1 —q™).
In fact, the ratio of the total time that the job is running to the
total completion time equals the probability that at least one
worker is active, if this probability is static over time. This
observation leads to Lemma 1 in Section IV.

IV. OPTIMIZING SPOT INSTANCE BIDS

In this section, we use the results of Section III to derive
the bid prices and number of iterations that minimize the
cost of running distributed SGD with workers placed on spot
instances. We first consider the simple case in which we
submit the same bid for each worker in Section IV-A and
then consider the heterogeneous bid case in Section I'V-B.

Spot Price and Bidding Model. Let p, denote the spot price
of each instance at time ¢. We assume p; is i.i.d. and is bounded
between a lower-bound p and an upper-bound p, similar to
prior works on optimal bidding in spot markets [15]. Let f(-)
and F'(-) denote the probability density function (PDF) [36]
and the cumulative density function (CDF) [37] of p;. When
a bid b is placed for an instance, we consider that the provider
assigns available spot capacity to users in descending order
of their bids, stopping at users with bids below the prevailing
spot price. Thus, a worker is active only if its bid price exceeds
the current spot price. Hence, without loss of generality the
range of the bid price can also be assumed to be p < b <
p. Whenever a worker is active (b > p;), the per-time cost
incurred for running it is equal to the prevailing spot price
p: (not the bid price). According to AWS’s policy for spot
instances [6], the bids are placed before instances are launched

and cannot be changed after that; therefore, we assume that
each worker’s bid is fixed throughout the model training.

A. Identical Worker Bids

Suppose we choose bid price b for each of the n provisioned
workers. We first simplify the error and runtime in Section III
for this case, and then solve the cost minimization problem (1)-
(3). Our results hold for all possible distributions of worker
running times (Theorem 3) and all our considered SGD
variants by using their respective error bounds (Theorem 1)
and expected runtime per iteration (Section III-C).

Observe that the n provisioned workers are either all avail-
able or all interrupted depending on the bid price b. This
insight implies that E [y;l] = 1/n, and thus that the error
bound in Theorem 1 is independent of the bid b: this bid
affects only the frequency with which iterations are executed,
not the number of active workers in an iteration. We can thus
rewrite the error bound (10) as a function of .J, the number
of iterations required to reach error €. Formally, we set cf) to
be the right-hand side of (10) and J > ¢~ !(¢), where ¢~ ()
is the number of iterations required to ensure that (our upper
bound on) the expected error is no larger than e.

We further observe that, the number of active workers y;
always equals n when the job is running. Thus, the expected
runtime per iteration can be rewritten as E [R(y;)] = E[R(n)].
Accounting for the idle time we can show that the expected
completion time is monotonic with b:

Lemma 1 (Completion Time in Terms of Bid Price). Using
the same bid price b for all workers, the expected completion
time to complete J iterations of synchronous SGD is

E[r] = JE[R(n)]/F (D), (16)

which increases with J and is non-increasing in the bid price
b. The function F'(-) is the CDF of the spot price.

We can further show the expected cost (defined in (1)) is
monotonically non-decreasing with b and J.

Lemma 2 (Cost in Terms of Bid Price). Using one bid price
for all workers, the expected cost of finishing a synchronous

SGD job is given by
b
E[C] = JnE[R(n)] (]_o-i-/ ( - };EZ;) dp) , a7

which is non-decreasing in the bid price b and J. The function
F(-) is the CDF of the spot price.

Since both E[7] and E[C] increase with .J, we should set .J
to be equal to ¢~ !(¢) in order to reach the target error in the
minimum time and at the minimum cost.

Optimizing the Bid Price. Having shown that J = ¢~ (e),
we now find the optimal bid b that minimizes the expected cost
(17) to solve the optimization problem (1)—(3).

According to Amazon’s policy [6], b is determined upon the
job submission without knowing the future spot prices and will
be fixed for the job’s lifetime. Although the user can effectively
change the bid price by terminating the original request and re-
bidding for a new VM, doing so induces significant migration
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overhead. Thus, we assume that users employ persistent spot
requests: a worker with a persistent request will be resumed
once the spot price falls below its bid price, exiting the system
once its job completes. Using Lemma 1 and Lemma 2, we can
show the following theorem for the optimal bid price b.

Theorem 3 (Optimal Uniform Bid). When we make an iden-
tical bid b for n workers and use them to perform distributed
synchronous SGD to reach error € within time 0, the optimal
bid price that minimizes the cost is b* = F~1 (M>

Theorem 3 provides a general form of the optimal bid price,
given the number of workers per iteration, n, the deadline 6,
and the target error bound ¢, for any distributions of the spot
price and training runtime per iteration. In particular, it holds
for all our considered SGD variants by using their respective
E[R(n)] as discussed in Section III-C.

B. Optimal Heterogeneous Bids

We next extend our results from Section IV-A to find the
optimal bidding strategy allowing different bids for different
workers. This strategy is motivated by the observation that
bidding lower prices for some workers yields a larger number
of active workers when the spot price is relatively low, which
possibly improves the training error but may not cost much.

To solve for the closed-form expression of the optimal
bids from this optimization problem, we first examine two
distinct bid prices by, and b; for two groups of workers for a
fully-synchronous SGD with arbitrary runtime distribution in
Section IV-B1, and then derive the optimal bids when allowing
a more flexible choice of bids for N-synchronous and N-
batch-synchronous SGD with exponential runtime distribution
in Sections IV-B2 and IV-B3.

1) F ully-synchronous SGD: Formally, we place bids of bh
for workers 1, - - - ,ny and b; (< bh) for workers np+1,--- ,n.
We define the random variable y(b) € {ny,, n} as the number
of active workers when the bid prices are b = (b, by); y; is
then a realization of y(l_;) Recall that the times when 0 workers
are active are not considered as an SGD ‘iteration’. Thus, y(g)
can only be either nj, (with probability W) or n (with
probability F'(b;)/F(by,)) in each iteration.

Optimized Bids. We initially assume that ny, the number
of workers in the first group, and .J, the required number of
iterations, are fixed; thus, we optimize the trade-off between
the expected cost, expected completion time, and the expected
training error using only the bid prices b. After deriving the
closed-form optimal solutions of b, and b; in Theorem 4, we
discuss co-optimizing n;, and J with the bids b. The expected
cost minimization problem (1)—(3) then becomes:

b
. " = = f(p)

J E|R(b d 18

min 7 [ E[RG|uErghe 09

subject to: {q@(_‘)} € (Error constraint) (19)
J " T ] (D)

E|R(b dp <6 20

p=bp>2b >2p, Vi<j (21)

To derive the cost and completion time expressions in (18)
and (20) respectively, we express the expected runtime of
iteration j as E[R(E, p)}, a function of the bids and price.
For simplicity, we assume that the spot prices do not change
within each iteration. In practice, the spot price changes at
most once per hour [38], compared to a runtime of several
minutes per iteration, and thus this assumption usually holds.
Note that we did not need this assumption for the identical bid
case in Section IV-A since all workers become active/inactive
at the same time with a uniform bid.

To derive the optimal bid prices, we first relate the dis-
tribution of the spot price and our bid prices to the training
error through the number of active workers, i.e., y(l;) From
Theorem 1, the expected error is at most € if y(l?) satisfies:

Ella] - 2cp (e — (1 — acp)’E[G(w1)]) ,
y(b)

aLM (1 — (1 — acp)’) =0
Further, we simplify E[R(E, p)} to be function E[R(X)], the
expected runtime per iteration given X workers are active.
We then provide closed-form expressions for the optimal bid
prices through Theorem 4.

(22)

Theorem 4 (Optimal-Two Bids with a Fixed J). Suppose
the objective function G(-) satisfies Assumptions 1-2. Given a
number of iterations (J) and maximum allowed error (€) that
can guarantee 1/n < Q(e) < 1/np (Q(€) is defined as the
right-hand side of (22)) ', a fixed step size o, and a feasible
deadline (0 > JE[R(n)|), we have the optimal bid prices b;,
and b} :

L Qe
ﬂi)j(@mmﬂﬁmmMDW1f¥)+EmmwO
Fe) = 22D 23)

for any i.i.d. spot prices and any i.i.d. runtime per mini-batch,
i.e, F(-) and E[R(n)] (or E[R(ny)]) do not change during
the training process.

For brevity, we use Figure 3 to illustrate our proof of
Theorem 4. The key steps are: (i) change the variables of the
optimization problem (18) to be F'(by) and v = 5((52) (ii)
show that the expected cost, completion time, and error are
monotonic w.r.t. to F'(by) and ~. Intuitively, the expected error
should depend only on the number of active workers given that
some workers are active, which is controlled by the relative
difference between F'(by,) and F(b;): 7. Formally, the error

bound decreases with IE{y(l_)')_1 . Applying ]E{y(l_f)_l} =
&m)( (bh)nhF(bz) + (bz) — 1 _1 L_l> to (22)

nh vy \ np n
gives us the optimal +, since the expected cost increases with

both F'(by,) and y. We then choose F'(b};) to the one that yields
E[r] = 0 (making constraint (20) tight). Intuitively, F'(b})

UIf € and J are so large such that Q(e) > 1/ny, it means that using nj,
workers when the job is running is sufficient to achieve the training error
(trivial setting); else if Q(e) < 1/n, it means that even having n workers all
active whenever the job is running cannot satisfy the error bound requirement
(infeasible setting). We omit these two problem settings.
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Fig. 3: Illustration of how the expected cost, completion time and error vary w.r.t. F'(b;) and v = Flon)* As a larger v leads
to a smaller expected error (Fig. 3a) but a larger expected cost (Fig. 3b) and completion time (Fig. 3e), and the expected error
is only controlled by ~, the optimal  should be the smallest possible ~, i.e., the one that yields error = e. The optimal F'(by,)
should be the one that yields the completion time equal to the deadline under the optimal ~ (Fig. 3d).

should be high enough to guarantee that some workers are
active often enough that the job completes before the deadline.
Co-optimizing n; and b. If ny, is not a known input but a
variable to be co-optimized with 5, we can write ny, and b} in
terms of F'(b}) according to (23) and plug them into (18)-(21)
to solve for bj; first, and then derive b and the optimal ny,.
Co-optimizing J and b. Taking J as an optimization
variable may allow us to further reduce the job’s cost. For
instance, allowing the job to run for more iterations, i.e.,
increasing .J, increases Q)(e) (the right-hand side of (22)). We

can then increase E ﬁ by submitting lower bids b;, making
it less likely that workers ny, + 1,...,n will be active, while
still satisfying (22). A lower b; may decrease the expected cost
by making workers less expensive, though this may be offset
by the increased number of iterations. To co-optimize J, we

show it is a function of b and e:

Corollary 2 (Relationship of J and E), To guarantee a training
error < €, the number of iterations J should be at least

el

E[G(w)] - SEE| L

J =log (24)

1—acp)

For brevity, we show the idea of co-optimizing J and b:
We first replace J in (18) and (20) by (24). Constraint (19)
is already guaranteed by (24) and can be removed. We then
solve for the remaining optimization variables, the bids b.

2) N-synchronous SGD: We now consider N-synchronous
SGD, where in each iteration, the parameter server waits for
N (< n) workers. For this SGD variant, we guarantee that at
least N workers are active when the job is running (p; < by),
avoiding cases where fewer than N workers are active at the
start of the iteration and the algorithm must wait to start the
next iteration until the spot price falls sufficiently far that more
workers become active. Hence, we suppose that N +1 workers
have the same bid price by, and that the bid prices for workers
N+2,--- nare by, ,b,_n, respectively with by > by >
...>byp_n. Thus, N < y(pt,g) <n when p < p; < by.

Since we allow a distinct bid price for each remaining
worker, the above model is harder to analyze than the two bid
prices for two groups of workers adopted in Theorem 4. To
derive the closed-form of the optimal bid prices, we simplify
the problem by assuming that the running time per mini-

batch is randomly drawn from an exponential distribution, as
assumed in [23], [39]. Surprisingly, we can prove that the
optimal bid prices should be the same for all workers:

Theorem 5 (N-Sync SGD with Exponential Runtimes). Sup-
pose the running time per iteration is i.i.d. drawn from an
exponential distribution exp(\) over all time and all workers
and the number of iterations J = ¢~ (N, €). Then the optimal
bid prices are:

5=1(e, N) log —2
bz‘:bj:F_1<¢ ( ;0 g”N>.

Intuitively, since N-synchronous SGD always processes N
mini-batches per iteration, having more workers active when
the spot price is low does not change the error. It does,
however, increase the cost due to paying for all workers’
computing usage. If the mini-batch runtimes are exponentially
distributed, this is not offset by the lower iteration runtime due
to canceling stragglers. It is then optimal to have the same
number of active workers in each iteration, i.e., uniform bids.

Proof Sketch. While the formal proof can be found in the
Appendix of our technical report [2], we provide the outline
of the proof here. The basic idea to prove Theorem 5 consists
of three parts: 1) the expected runtime per iteration and the
expected completion time will be non-increasing with {b;}7_;;
2) the expected cost is non-decreasing with the highest bid
price b; while 3) non-increasing with all the other (lower)
bid prices. The third part can be intuitively explained: if any
b;(2 <1i < mn — N) increases, the probability of having only
workers 1,---, N 4+ ¢ — 1 active is non-increasing while the
probability of having workers 1,--- | N + ¢ active is non-
decreasing; and the potential decrease in cost due to the former
probability change is at least the increase in cost due to the
latter given the particular form of the expected runtime per
iteration and workers in this scenario. O

3) N-batch-synchronous SGD: We finally consider N-
batch-synchronous SGD, where the parameters are updated
and a new iteration begins once /N mini-batches are processed.
We consider a more general bidding model where each worker
is allowed to have a distinct bid price, denoting the bid prices
for workers 1,--- ,mn as by > by > --- > b,.
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As in Section IV-B2, we assume that the wall-clock time of
finishing each mini-batch for all workers is an i.i.d. random
variable drawn from an exponential distribution with parameter
A. Unlike N-synchronous SGD, for N-batch-synchronous
SGD, workers can continuously process mini-batches in each
iteration, until a total of /N mini-batches are finished. There-
fore, the arrival rate of mini-batch completion at each time
equals y(py, b)A. We then observe that the product of the num-

ber of active workers y(pt,l_;) and the running time " (plg))\
ty

will be % a constant. This product is the Resource-time, which
is the total amount of resource units in each iteration we need
to pay for. Since it is a constant, the expected cost of each
iteration will be determined only by the spot price distribution,
the largest bid price b;, and A. This result implies that the
optimal bid prices are the same for all workers:

Theorem 6 (N-Batch-Sync SGD with Exponential Runtime).
Given a deadline 6 and maximum error threshold €, suppose
the runtime per iteration follows an exponential distribution
exp(A) for all workers. Then the optimal cost-minimizing bid

prices equal F~1 (W) for each worker.

The proof of Theorem 6 is given in the Appendix of [2].

Theorem 6 indicates that a smaller bid price comes with
a larger number of workers (n), a larger deadline (#), and
a smaller number of required mini-batches (N¢~(e, N)) to
achieve a smaller-than-e error. Further, it also implies that as
we increase the number of workers, n, the expected cost keeps
decreasing until it becomes M x p. This non-intuitive
conclusion follows from the exponentially distributed running
times per mini-batch, under which the expected running time
per iteration converges to zero as n — oo.

V. OPTIMAL NUMBER OF PREEMPTIBLE INSTANCES

In this section, we consider preemptible instances offered by
other cloud platforms, e.g., low priority VMs from Microsoft
Azure [8] and preemptible instances from Google Cloud
Platform [7]. Unlike spot instances where users can specify the
maximum prices they are willing to pay, on these platforms
users can only decide the number of provisioned instances to
request in each iteration, as well as the number of iterations.
Therefore, in this section, we choose to optimize the number
of instances (workers) and assume the instance price is stable
during the entire training time [7]. To better quantify the
relationship between the number of active workers y; and
provisioned workers n, we consider the two preemption dis-
tributions in Lemma 3: a uniform distribution and a binomial
distribution where each worker has an equal and independent
probability of being preempted. We will make use of the fact
that for both distributions, there exists a parameter x > 0 such

that ]E{i} <O ( ) (same as the upper-bound assumption

on E [i} in our error bounds from Theorem 2 and Corollary
1). The problem of minimizing the job cost is then equivalent
to minimizing E {ijl y;iR (yj)}, subject to the completion
time and error constraints.

Lemma 3 (Example Distributions of y;). If the number of
active workers y; follows a uniform distribution Ply; = k| =

1
- Vk = < O (n 2); if each
worker is preempted with probability q each iteration, we have
E{i} <0 (rTX for some x € (0,1).

Yi | —

,nj, we have E[
vj

We use our error bound derived in Theorem 1 and the above
relationship E i] <0 (,%x) to find closed-form solutions
for the optimal number of workers n and iterations .J when
x > 1 in Theorem 7, which holds for the fully-synchronous,
N-synchronous, and N-batch-synchronous SGD algorithms.
We then optimize our strategy of exponentially increasing the
number of provisioned workers over iterations by using our
improved error bound with a dynamic number of workers from
Theorem 2.

Theorem 7 (Co-optimizing n and J). Suppose Ely;] o« n and
E [i} < % (d > 0), the probability of no active workers does
not depend on n, and the runtime per iteration is deterministic.
Then the completion time constraint (3) is simply J < 60
where § is a constant, and the optimal J and n (denoted by
J* and n*) satisfy:

* = min<{ argmin BJ(1 - )
7= {Je{%l ) = B)(e— AB7) Le‘”}’

i S AR (Tmb+1-57)
J1:[JJ;J2:’V—‘7 ﬂ(Jln*—l) =6
. { B(1 - 87) W

(1= B)(e—ABT) |

where 8 =1 — acy, A =E[G(w1)], and B = %.

Cost Minimization with Negligible Stragglers. We also
consider the strategy of increasing the provisioned workers
per iteration as in Theorem 2 and optimize 7, the rate of
increasing the number of provisioned workers, to minimize
the expected cost, subject to the error and completion time
constraints. If we ignore straggler effects, we can define
E[R(y;)] = R, Vj. Suppose z; denotes the number of
active workers including the case z; = 0, and z; follows
a binomial distribution with parameter n; and probability ¢
(the probability that each instance is inactive), namely, the
probability that z; = 0 equals q””"J_l. Given the error bound
in Theorem 2, E[y;] = n;(1 — ¢q) = ni(1 — ¢)p’ !, and
£[3] -

n% for some 0 < x < 1 according to Theorem 2,
our cost minimization problem can be modified as follows.

J

minimize, ZR (1 —q)nin’~ (25)
Jj=1
J

subject to: > R/(1—¢™" ) <0 (26)
j=1

B J—1 (1 (6717X)])
ABT + <e (20
nX (1 _ 1 )
1 Bnx
n*>1/B, (28)

where 8 =1 — acy, A = E[G(w;

)], and B = %. For
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any given J, both the objective function and constraints are
convex functions of 7 (refer to the operations that preserve
convexity in [30]). Therefore, we can use standard algorithms
for convex optimization to solve for the optimal 7.

Modified (26) to Capture Straggling: We can also solve
for the optimal 7 when workers’s per-iteration runtimes follow
an exponential distribution (exp(\)), capturing some straggler
effects, and each worker is preempted with probability gq.
We first consider the fully-synchronous SGD. We replace
the constant per-iteration runtime R in (25) and (26) with
E[R(y;)] =~ 1log(ni(1—q)p"~') in the completion time
constraint (3), assuming n1(1 — ¢) > 1 to ensure that the
approximated [E [R(y;)] is valid. This constraint accounts for
the fact that as we have more active workers in each iteration,
the per-iteration runtime will likely increase because we need
to wait for the slowest worker to finish. Similar to the case
without stragglers, for each fixed J, our optimization problem
for this case has a convex objective function and monotonic
error constraint in 7. For the completion time constraint with
any fixed J, the left-hand side of (26) is monotonically
increasing if ijl L(1—¢") +log((1 — q)z)q" log(q) > 0,
where x := ny7/~!, which essentially means that if J and
(or) ny are (is) sufficiently large and (or) ¢ is relatively
low, the expected completion time will monotonically increase
with 7. For example, one can verify that if ¢ < 0.8, the
above monotonicity holds for any J and z. For large ¢
that approaches 1, the expected completion time could first
decrease with n when 7 is small and then increase with n
when 7 is large. Therefore, we can solve for the optimal
n with any fixed J by first converting (26) and (27) to be
feasible ranges of 7 and then solve for the 7 by minimizing
(25) within the feasible range. Moreover, there exists a finite
maximum number of iterations .JJ for which the modified (26)
is feasible. Thus, we can jointly optimize the optimal rate of
increase in the number of workers, 7, and J by iterating over
all possible values of .J.

Other SGD variants. We next consider NN;-synchronous
and Nj-batch-synchronous SGD, where we wait for N; =
n7/ ! mini-batches to be processed in each iteration j. Based
on our Remark 4, the appropriate error constraint can be
adapted from (27) by replacing n{ and nX by @ and 7,
respectively, where 1 < 7 < 1,1 < n < gni, ensuring
that in each iteration the number of mini-batches to wait
for is no larger than the expected number of active workers.
We can approximate the expected runtime per iteration by

E[R(y;)] =~ %log((l_;§;1€2_fjﬁi;;_j_l) for N;-synchronous
aqgl !

SGD and E [R(y;)] ~ (= qgmr=T for Nj-batch-synchronous
SGD. One can verify that the expected cost is convex in 7 for
Nj-synchronous and is a constant for IV;-batch-synchronous
SGD. The error constraint is then no longer dependent with 7,
and the expected completion time is monotonically decreasing
with 7, meaning constraint (26) is equivalent to a lower-bound
on 7. Combined with the assumption that n > 7 > 1, the
optimal 7 can be found by minimizing the convex objective
function subject to a lower-bound of 7, for each J. Similar to
the fully-synchronous case, for both /V;-synchronous and V;-
batch-synchronous SGD, we can jointly optimize the optimal

rate of increase in the number of workers, 7, and J by iterating
over all possible values of J.

VI. EXPERIMENTAL VALIDATION

We evaluate our bidding strategies from Section IV and our
strategy to optimize the number of provisioned workers from
Section V on the CIFAR-10 image classification benchmark
dataset in three sets of experiments. We test the ResNet-
50 [40] model on our local cluster with multiple NVIDIA
TitanX GPUs, a small Convolutional Neural Network (CNN)
[41] with two convolutional layers and three fully connected
layers on Amazon EC2’s c5.xlarge spot instances, and a
larger CNN featuring two convolutional layers with more
channels and two fully connected layers on Google Cloud
Platform’s Preemptible nl-standard-2 VM Instances [18]. We
use synthetic pricing data and historical price traces of AWS
Spot instances to test our bidding strategies in the first and
second sets of experiments, while experiments on the GCP
Preemptible instances are subject to the prevailing prices and
preemptions imposed by the GCP platform while the experi-
ments ran. The distributed SGD algorithms for all experiments
are implemented based on Ray [42] and Tensorflow [43].

Choosing the Experiment Parameters. By default, we
run J = 5000 iterations for our ResNet-50 experiments and
J = 10000 iterations for the experiments on both the Spot
instances and GCP Preemptible instances. We set the deadline
() to be twice the estimated runtime of using 8 workers to
process J iterations without interruptions and the step size a
to be 0.1 by default. We estimate that Q(e) € [+, ;-] for our
choices of ¢ and J (¢ = 0.98 for ResNet-50 and ¢ = 0.65
for the small CNN), demonstrating the robustness of our opti-
mized strategies to mis-estimations. To estimate the probability
distribution of the spot prices, we first consider two synthetic
spot price distributions for the ResNet-50 experiments: a
uniform distribution in the range [0.2,1] and a Gaussian
distribution with mean and variance equal to 0.6 and 0.175;
we draw the spot price when each iteration starts and re-draw
it every 4 seconds after the job is interrupted. We download
the historical price traces of c5.xlarge spot instances using
Amazon EC2’s DescribeSpotPriceHistory API for the small
CNN experiments, demonstrating that our bidding strategy is
robust to non-i.i.d spot prices.

A. Advantage of our Bidding Strategies.

We evaluate the bidding strategies with both the optimal
single bid price for all workers (Optimal-one-bid) and the
optimal bid prices for two groups of workers derived in
Theorem 4 (Optimal-two-bids) against an aggressive No-
interruptions strategy that chooses a bid price larger than
the maximum spot price. To further minimize the expected
total cost while guaranteeing a low training/test error, we
propose a Dynamic strategy, which updates the optimal two
bid prices when increasing the total number of workers. More
specifically, we initially launch four workers (n; = 2, n = 4)
and apply our optimal two bid prices. After completing 4000
iterations, we add four more workers (n; = 4,n = 8) and re-
compute the optimal bids by subtracting the consumed time
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from the original deadline ¢ and taking J to be the number of
remaining iterations. This dynamic strategy can be regarded
as a coarse grained version of our strategy of exponentially
increasing the number of provisioned workers each iteration
(cf. Theorem 2 and Section V) — it adds extra workers once
instead of persistently adding workers in each iteration.

Figures 4 and 5 compare the performance of our strategies
on synthetic and real spot prices, respectively. Figures 4a
and 4b show that our dynamic strategy leads to a lower cost
and the no interruptions benchmark to a higher cost for any
given accuracy, compared to the optimal-one-bid and optimal-
two-bids strategies. In Figures 4c and 4d, we indicate the
cumulative cost as we run the jobs. The markers indicate the
costs where we achieve 90% training accuracy; while the no
interruptions benchmark achieves this accuracy much faster, it
costs nearly three times as much as our dynamic strategy and
twice as much as our optimal-two-bids strategy. Figures 5a
and 5b show that our optimal-one-bid and optimal-two-bids
strategies can significantly reduce the cost under the real spot
prices while achieving almost the same training accuracy as
the no interruptions benchmark.

B. Advantage of Our Choices of the Number of Workers.

To verify our results in Section V, we conduct experiments
on both AWS Spot instances and GCP Preemptible instances.

1) AWS experiments: We first simulate No preemption by
running 2 workers for 10000 iterations without preemption
and observe that the final accuracy can approach 63%. We
then suppose instances are preempted with probability p = 0.5
and provision n = 4 workers, using the fact that the optimal
n for each fixed J is proportional to 1/(1 — p) and aiming
to achieve the same accuracy 65%. Co-optimizing n and .J
(Theorem 7) may yield further cost improvements. Figure 6a
shows that using our estimated n achieves a better accuracy
per dollar than randomly choosing n. Note that to simulate
various preemption probability distributions used in Figure
6a, we manually set the random preemption events in our
code and use on-demand prices as our bids to simulate a
lack of control over bidding as considered in Section V. We
further show in Figure 6b that our strategy Dynamic nj, which
exponentially increases n; by a fixed rate 1.0004 and runs for
a much smaller number of iterations set according to Theorem
2, achieves a better accuracy per dollar, compared with using
1 worker for J = 10000 iterations (Static n=1).

2) GCP experiments: Following Figure 6b, we compare our
dynamic strategy with the rate 7 = 1.0004 and a maximum
number of workers n; < 16 with the strategy of always using
16 workers (Static n=16). Using 16 workers for the entire
training leads to a faster accuracy convergence than gradually
increasing the workers to 16 as shown in Figure 7a. However,
gradually increasing the number of workers leads to a higher
accuracy per dollar, shown in Figure 7a, demonstrating the
advantage of our dynamic strategy in cost reduction subject
to the accuracy constraint. To further evaluate our strategy
of using dynamic workers with a fixed rate n, we compare
different choices of 7 in Figure 8 where the choices for n > 1
and 1 < 1 represent increasing and decreasing the number

of the workers over iteration, respectively. Figures 8a and
8b show that increasing the number of workers can achieve
both a steady accuracy increase and a smaller accuracy per
dollar, compared to decreasing the number of workers over
iterations, verifying our motivation observed from Theorem 1
that increasing the number of workers over iterations achieves
a better error bound as proven in Theorem 2.

C. Improving the Step Size based on Our Error Bounds

While picking the right step size « is crucial to the training
success of ML jobs [23], [24], in practice the step size is
estimated based on experimental experience with few studies
showing how the number of workers affects the best choice
of step size. From our Theorem 1, we observe that when the
number of iterations is sufficiently large, the error bound is

dominated by the term 3aLM Z}]:1 (1—acu)’—IE [yi} and
J

converges to %E [i] when J — 400, i.e., approximately
QQLT]LW when preemption rarely happens. This observation mo-
tivates us to use a larger & when n is larger, which decreases
the error bound faster for early iterations (where (1 — acp)”
dominates (10)) while a larger n can offset the increased
asymptotic error due to using a larger a. In the following
experiments, we evaluate this insight by choosing oo = 0.03n
in Figure 9a. The results verify our theoretical insight that
proportionally increasing the step size with the number of
workers n accelerates the accuracy convergence compared
to using a step size independent of n, while achieving a
slightly better asymptotic error. In contrast, in Figure 9b, all
experiments use the same step size 0.1 and show a similar
convergence rate throughout the training. Figure 9a indicates
that in practice we could use increase the learning rate on
the same order of the increase of the number of workers to
achieve our target accuracy in a shorter training time, which
is consistent with a recent strategy of linearly scaling the step
size when the mini-batch size is increased [44].

We further verify our insights gained from Theorem 2 for
our strategy of increasing the number of workers with a fixed
rate 1 over iterations. Theoretically, for static provisioned
workers, an O(%) diminishing step size can improve the
asymptotic error to be zero, in contrast to the error converging
to a positive constant as achieved with a static step size (see
our Theorem 1). However, no existing study shows the best
choice of step size for dynamic provisioned workers. Our
Theorem 2 indicates that the standard O(%) diminishing step
size does not further improve the exponential error decay
rate achieved by using a static step size when the number
of workers geometrically increases over the iterations. To
verify our hypothesis, we first construct four choices of step
size: 1) @ = 0.1; 2) @; = min (0.03 X 1.2lm]wJ,0.18);
3) aj = 0.03 + %; and 4) o; = %. Figure
10a shows that when the number of workers  is static, the
diminishing step sizes (Choices 3 and 4) achieve a faster
convergence than both a static step size (Choice 1) and an
increasing step size (Choice 2). In contrast, Figure 10b shows
that the accuracy convergence is nearly independent of our
step size choice when the number of workers geometrically
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Fig. 4: The dynamic strategy (a,b) achieves the highest training
accuracy under any given cost using the ResNet-50 model for
CIFAR-10 classification

, under synthetic spot prices. The markers on the curves in
(c,d) show the cost when achieving a 90% training accuracy;

at which point No-interruptions, Optimal-one-bid, and

Optimal-two-bids respectively increase the cost by 134%,
82%, 46% under the uniform distribution, and 103%, 101%,
43% under the Gaussian distribution relative to the dynamic

strategy.
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Fig. 5: Under historical price traces of the cS5x.large spot
instances in the region of us-west-2a (Oregon) and using a
small CNN for CIFAR-10 classification
, Optimal-one-bid and Optimal-two-bids can reduce the cost
by 26.27% and 65.46% respectively compared with
No-interruptions (Figure 5b) while achieving 96.78% and
96.46% of the training accuracy that No-interruptions
achieves (Figure 5a).

increases. This result verifies our Theorem 2 and Remark 5,
which indicate that any sequence of step sizes that is upper-
1

- . .
bounded by Clj" can achieve exponential decay convergence

when using geometrically increased numbers of workers.

VII. DISCUSSION AND CONCLUSION

In this work, we consider the use of volatile workers that run
distributed SGD algorithms to train machine learning models.
We first focus on Amazon EC2 spot instances, which allow
users to reduce job cost at the expense of a longer training time
to achieve the same model accuracy. Spot instances allow users
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Fig. 6: Using n estimated based on Theorem 7 achieves
higher accuracy per dollar than randomly setting n (Figure
6a). Compared with using 1 worker for J = 10000 iterations,
dynamically setting n; = 1.0004’~! and the number of
iterations according to Theorem 2 with y = 1 achieves higher
accuracy per dollar on EC2 spot instances.
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n; = min{1.00047~1,16} achieves the same accuracy after
10000 iterations (Figure 7a), but can reduce the cost by at
least 46% (Figure 7b).
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(v = 0.1 in Figure 9b).
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improves the accuracy when using a static n = 4 provisioned
workers (Figure 10a), but does not significantly affect the
dynamic strategy which increases the number of workers with
a constant rate (7 = 1.0002 in Figure 10b).

to choose how much they are willing to pay for computing
resources, thus allowing them to control the trade off between
a higher cost and a longer completion time or higher training
error. We quantify these trade-offs and derive new bounds
on the training error when using time-varying numbers of
workers. We finally use these results to derive optimized
bidding strategies for users on spot instances and propose
practical strategies for scenarios when users cannot control
preemption of their instances by submitting bids. We validate
these strategies by comparing them to heuristics when training
neural network models on the CIFAR-10 image dataset.

Our proposed strategies are an initial step towards a more
comprehensive set of methods that allow distributed ML
algorithms to exploit the benefits of volatile instances. As
a simple extension, one might adapt the bids over time as
we obtain better estimates of the iteration running time. Our
bidding strategies might also be generalized to allow different
bids for each worker. Even more generally, one can envision
dividing a resource budget across workers, with the budget
controlling each worker’s availability. This budget might be
a monetary budget when workers are run on cloud instances,
but if the workers are instead run on mobile devices, it might
instead represent a power budget that controls how often these
devices can afford to process data. We will also investigate
adjusting the step size (learning rate) based on the worker
volatility, as our theoretical results and experiments for our
dynamic strategy imply that the optimal way to set the step
size in improving the accuracy can depend on our strategy to
adjust the number of workers.
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