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Abstract

We give the first statistical-query lower bounds for agnostically learning any non-
polynomial activation with respect to Gaussian marginals (e.g., ReLU, sigmoid, sign).
For the specific problem of ReLLU regression (equivalently, agnostically learning a ReLU),
we show that any statistical-query algorithm with tolerance n~(1/ 9" must use at least
2""¢ queries for some constant b, ¢ > 0, where n is the dimension and e is the accuracy
parameter. Our results rule out general (as opposed to correlational) SQ learning al-
gorithms, which is unusual for real-valued learning problems. Our techniques involve a
gradient boosting procedure for “amplifying” recent lower bounds due to Diakonikolas
et al. (COLT 2020) and Goel et al. (ICML 2020) on the SQ dimension of functions
computed by two-layer neural networks. The crucial new ingredient is the use of a
nonstandard convex functional during the boosting procedure. This also yields a best-
possible reduction between two commonly studied models of learning: agnostic learning
and probabilistic concepts.
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1 Introduction

In this paper we continue a recent line of research exploring the computational complexity of
fundamental primitives from the theory of deep learning [GKK19, YS19, DKKZ20, YS20,
DGK™20, FCG20]. In particular, we consider the problem of fitting a single nonlinear
activation to a joint distribution on R™ x R. When the nonlinear activation is ReLU,
this problem is referred to as ReLU regression or agnostically learning a ReLU. When the
nonlinear activation is sign and the labels are Boolean, this problem is equivalent to the
well-studied challenge of agnostically learning a halfspace [KKMSO08].

We consider arguably the simplest possible setting—when the marginal distribution
is Gaussian—and give the first statistical-query lower bounds for learning broad classes of
nonlinear activations. The statistical-query model is a well-studied framework for analyzing
the sample complexity of learning problems and captures most known learning algorithms.
For common activations such as ReLU, sigmoid, and sign, we give complementary upper
bounds, showing that our results cannot be significantly improved.

Let H be a function class on R"™, and let D be a labeled distribution on R™ x R such
that the marginal on R"™ is D = N(0,1,). We say that a learner learns H under D with
error € if it outputs a function f such that

E z)yl >max E |h(x)y|] —e.
(m,yym[f( )y] = max (W)ND[ (z)y]

One can show that this loss captures 0-1 error in the Boolean case, as well as squared
loss in the ReLLU case whenever the learner is required to output a nontrivial hypothesis
(i.e., a hypothesis with norm bounded below by some constant ¢ > 0). (See Appendices E
and F for details.)

For ReLU regression, we obtain the following exponential lower bound:

Theorem 1.1. Let Hreru be the class of ReLUs on R™ with unit weight vectors. Suppose
that there is an SQ learner capable of learning Hreru under D with error € using q(n, €, T)
queries of tolerance 7. Then for any €, there exists T = n=(/9" such that q(n,e,7) > 2"
for some 0 < b,c < 1/2. That is, a learner must either use tolerance smaller than n—(1/¢)"
or more than 2™ ¢ queries.

Prior work due to Goel et al. [GKK19] gave a quasipolynomial SQ lower bound (with
respect to correlational queries) for ReLLU regression when the learner is required to output
a ReLU as its hypothesis.

For the sigmoid activation we obtain the following lower bound:

Theorem 1.2. Consider the above setup with H,, the class of unit-weight sigmoid units on
R™. For any e, there exists T = n—0008>1/€) gych that q(n,e,T) > 2% for some 0 < ¢ < 1/2.

We are not aware of any prior work on the hardness of agnostically learning a sigmoid
with respect to Gaussian marginals.

For the case of halfspaces, a result of Kalai et al. [KKMSO08] showed that any halfspace
can be agnostically learned with respect to Gaussian marginals in time and sample com-
plexity no/ 64), which was later improved to n®(/ <) [DKN10]. The only known hardness
result for this problem is due to Klivans and Kothari [KK14] who gave a quasipolynomial



lower bound based on the hardness of learning sparse parity with noise. Here we give the
first exponential lower bound:

Theorem 1.3. Consider the above setup with Hps, the class of unit-weight halfspaces on
R™. For any ¢, there exists 7 = n~91/9) such that q(n,e,7) > 2"€ for some fived constant
0<c<1/2.

Since it takes ©(1/72) samples to simulate a query of tolerance T, our constraint on
7 here can be interpreted as saying that to avoid the exponential query lower bound, one
needs sample complexity at least ©(1/72) = n®(1/9) nearly matching the upper bound of
[KKMS08, DKN10].

These results are formally stated and proved in Section 5. More generally, we show
in Section 6 that our results give superpolynomial SQ lower bounds for agnostically learn-
ing any non-polynomial activation. (See Appendix A for some discussion of subtleties in
interpreting these bounds.)

A notable property of our lower bounds is that they hold for general statistical queries.
As noted by several authors [APVZ14, VW19], proving SQ lower bounds for real-valued
learning problems often requires further restrictions on the types of queries the learner is
allowed to make (e.g., correlational or Lipschitz queries).

Another consequence of our framework is the first SQ lower bound for agnostically
learning monomials with respect to Gaussian marginals. In contrast, for the realizable
(noiseless) setting, recent work due to Andoni et al. [ADHV19] gave an attribute-efficient
SQ algorithm for learning monomials. They left open the problem of making their results
noise-tolerant. We show in Section 7 that in the agnostic setting, no efficient SQ algorithm
exists.

Theorem 1.4. Consider the above setup with Hmon, the class of multilinear monomials of
degree at most d on R™. For any € < exp(—0(d)) and 7 < €2, q(n, e,7) > n®D75/2,

Our Approach Our approach deviates from the standard template for proving SQ lower
bounds and may be of independent interest. In almost all prior work, SQ lower bounds
are derived by constructing a sufficiently large family of nearly orthogonal functions with
respect to the underlying marginal distribution. Instead, we will use a reduction-based
approach:

e We show that an algorithm for agnostically learning a single nonlinear activation
¢ can be used as a subroutine for learning depth-two neural networks of the form
(X, ¢(w'-x)) where 9 is any monotone, Lipschitz activation. This reduction involves
an application of functional gradient descent via the Frank—Wolfe method with respect
to a (nonstandard) convex surrogate loss.

e We apply recent work due to [DKKZ20] and [GGJT20] that gives SQ lower bounds
for learning depth-two neural networks of the above form in the probabilistic concept
model. For technical reasons, our lower bound depends on the norms of these depth-
two networks, and we explicitly calculate them for ReLLU and sigmoid.

e We prove that the above reduction can be performed using only statistical queries. To
do so, we make use of some subtle properties of the surrogate loss and the functional
gradient method itself.



Our reduction implies the following new relationship between two well-studied models of
learning: if concept class C is efficiently agnostically learnable, then the class of monotone,
Lipschitz functions of linear combinations of C is learnable in the probabilistic concept model
due to Kearns and Schapire [KS94]. We cannot hope to further strengthen the conclusion
to agnostic learnability of monotone, Lipschitz functions of combinations of C: the concept
class of literals s agnostically learnable, but we show exponential SQ lower bounds for
agnostically learning the class of majorities of literals, i.e., halfspaces (see also [KK14]).

Related Work Several recent papers have considered the computational complexity of
learning simple neural networks [Bac17, GKKT17, YS20, FCG20, KK14, LSSS14, SVWX17,
VW19, GKK19, GGJT20, DKKZ20]. The above works either consider one-layer neural
networks (as opposed to learning single neurons), or make use of discrete distributions
(rather than Gaussian marginals), or hold for narrower classes of algorithms (rather than
SQ algorithms). Goel et al. [GKK19] give a quasipolynomial correlational SQ lower bound
for proper agnostic learning of ReLLUs with respect to Gaussian marginals. They additionally
give a similar computational lower bound assuming the hardness of learning sparse parity
with noise.

The idea of using functional gradient descent to learn one hidden layer neural networks
appears in work due to Bach [Bacl7], who considered an “incremental conditional gradi-
ent algorithm” that at each iteration implicitly requires an agnostic learner to complete a
“Frank—Wolfe step.” A key idea in our work is to optimize with respect to a particular
convex functional (surrogate loss) in order to obtain SQ learnability for depth-two neural
networks with a monlinear output activation. We can then leverage SQ lower bounds for
this broader class of neural networks.

Functional gradient descent or gradient boosting methods have been used frequently in
learning theory, especially in online learning (see e.g., [Fri0l, MBBF00, SF12, BHKL15,
Haz16].)

For Boolean functions, the idea to use boosting to learn majorities of a base class
appeared in Jackson [Jac97], who boosted a weak parity learning algorithm in order to learn
thresholds of parities (TOP). Agnostic, distribution-specific boosting algorithms for Boolean
functions have appeared in works due to Kalai and Kanade [KK09] and also Feldman [Fel10].
Agnostic boosting in the context of the SQ model is explored in [Fel12], where an SQ lower
bound is given for agnostically learning monotone conjunctions with respect to the uniform
distribution on the Boolean hypercube.

The SQ lower bounds we obtain for agnostically learning halfspaces can be derived using
one of the above boosting algorithms due to Kalai and Kanade [KK09] or Feldman [Fel10]
in place of functional gradient descent, as halfspaces are Boolean functions.

Independent Work Independently and concurrently, Diakonikolas et al. [DKZ20] have
obtained similar results for agnostically learning halfspaces and ReLLUs. Rather than using
a reduction-based approach, they construct a hard family of Boolean functions. They
show that an agnostic learner for halfspaces or ReLLUs would yield a learner for this family,
which would solve a hard unsupervised distribution-learning problem considered in [DKS17].
Quantitatively, the lower bound they obtain is that agnostic learning of halfspaces or ReLLUs
up to excess error € using queries of tolerance n~ Poly(1/€) requires at least nP°Y(1/€) queries.



These results are technically incomparable with ours. For queries of similar tolerance, our
bound of 2™°¢ scales exponentially with n whereas theirs only scales polynomially, so that
for any constant ¢ our bound is exponentially stronger. But our bound does not scale
directly with 1/e (other than via the induced constraint on tolerance, which does scale as
p—poly(1/ E)). Our work also extends to general non-polynomial activations, while theirs does
not.

Organization We cover the essential definitions, models and existing lower bounds that
we need in the preliminaries. Our main reduction, which says that if we could agnostically
learn a single neuron, then we could learn depth-two neural networks composed of such
neurons, is set up as follows. In Section 3 we explain our usage of functional gradient descent,
with Assumption 3.1 formally stating the kind of agnostic learning guarantee we require
for a single neuron. The main reduction itself is Theorem 4.1, the subject of Section 4. In
Sections 5, 6 and 7 we derive the formal lower bounds which follow as a consequence of
our reduction. Finally in Section 8, we contrast these lower bounds by also including some
simple upper bounds.

2 Preliminaries

Notation Let D be a distribution over R™, which for us will be the standard Gaussian
N(0,1,,) throughout. We will work with the L? space L?(R™, D) of functions from R" to
R, with the inner product given by (f,g)p = Ep[fg]. The corresponding norm is || f||p =
VED[f?]. We refer to the ball of radius R as Bp(R) = {f € L2 (R",D) | ||fllp < R}. We
will omit the subscripts when the meaning is clear from context. Given vectors u,v € R",
we will refer to their Euclidean dot product by u-v and the Euclidean norm by ||ull. Given
a function ¢(a, b) we denote its partial derivative with respect to its first parameter, % (a,b),
by 81€ (CL, b)

A Boolean probabilistic concept, or p-concept, is a function that maps each point x
to a random {£1}-valued label y in such a way that E[y|z] = f*(z) for a fixed function
f*:R™ — [—1,1], known as its conditional mean function. We will use Dy« to refer to the
(unique) induced labeled distribution on R™ x {£1}, i.e. we say (x,y) ~ Dy~ if the marginal
distribution of z is D and Ely|z] = f*(z). We also sometimes use y ~ f*(z) to say that
y € {21} and Elylz] = f*(2).

Statistical Query (SQ) Model A statistical query is specified by a query function
¢:R" xR — [~1,1]. Given a labeled distribution D on R" x R, the SQ model allows access
to an SQ oracle (known as the STAT oracle in the SQ literature) that accepts a query ¢ of
specified tolerance 7, and responds with a value in [E(, ) p[¢(x, y)] =7, E(g y)plo(z, y)|47].
One can interpret the tolerance T as capturing the notion of sample complexity in traditional
PAC algorithms. Specifically, it takes ©(1/72) samples to simulate a query of tolerance 7,
and this is sometimes referred to as the estimation complexity of an SQ algorithm.

Let C be a class of Boolean p-concepts over R"™, and let D be a distribution on R".
We say that a learner learns C with respect to D up to L? error e if, given only SQ oracle
access to Dy« for some unknown f* € C, and using arbitrary queries, it is able to output
f:R™ — [—1,1] such that || f — f*||p < €. It is worth emphasizing that a query to Dy- takes



in a Boolean rather than a real-valued label, i.e. is really of the form ¢ : R" x{+1} — [-1,1].
In contrast, a query to a generic distribution D on R™ x R takes in real-valued labels, and
in Assumption 3.1 we define a form of learning that operates in this more generic setting.

One of the chief features of the SQ model is that one can give strong information theoretic
lower bounds on learning a class C in terms of its so-called statistical dimension.

Definition 2.1. Let D be a distribution on R", and let C be a real-valued or Boolean
concept class on R"™. The average (un-normalized) correlation of C is defined to be pp(C) =
ﬁ > ceecl{e;d)pl. The statistical dimension on average at threshold v, SDAp(C,7), is
the largest d such that for all ¢’ C C with |C'| > |C|/d, pp(C’) < 7.

In the p-concept setting, lower bounds against general queries in terms of SDA were
first formally shown in [GGJ™20].

Theorem 2.2 ([GGJT20], Cor. 4.6). Let D be a distribution on R™, and let C be a p-concept
class on R™. Say our queries are of tolerance T, the final desired L? error is €, and that the
functions in C satisfy || f*|| > B for all f* € C. For technical reasons, we will require 7 < €2,
€ < B/3 (see Appendiz A for some discussion). Then learning C up to L* error e (we may
pick € as large as 3/3) requires at least SDAp(C,72) queries of tolerance 7.

A recent result of Diakonikolas et al [DKKZ20] gave the following construction of
one-layer neural networks on R™ with & hidden units, i.e. functions of the form g(z) =
¢(Ef:1 a;¢(x - w;)) for activation functions ¥, ¢ : R — R and weights w; € R",a; € R.

Theorem 2.3 ([DKKZ20]). There ezists a class G of one-layer neural networks on R™ with

k hidden units such that for some universal constant 0 < ¢ < 1/2 and v = n®k(=1/2)),

SDA(G,~) > 2"°. This holds for any v : R — [~1,1] that is odd, and ¢ € L*(R,N(0,1))
that has a nonzero Hermite coefficient of degree greater than k/2. Further, the weights
satisfy |a;| = 1/k and |w;||2 = 1 for all i.

We will be interested in the following special cases. Full details of the construction and
proofs of the norm lower bounds are in Appendix B.

Corollary 2.4. For the following instantiations of G, with accompanying norm lower bound
B (i.e. such that ||g|| > B for all g € G), there exist 7 = n~®%) and e > 7 such that learning
G up to L? error € requires at least 2 queries of tolerance T, for some 0 < ¢ < 1/2.

(a) ReLU nets: 1) = tanh, ¢ = ReLU. Then B = Q(1/k%) (Lemma B.J), so we may take
e =O(1/k").

(b) Sigmoid nets: 1 = tanh, ¢ = o. Then = exp(—O(Vk)) (Lemma B.6), so we may
take € = exp(—O(VE)).

(¢) Magority of halfspaces: 1» = ¢ = sign. Being Boolean functions, here =1 exactly, so
we may take € = O(1).

Convex Optimization Basics Over a general inner product space Z, a function p :
Z — Ris convex if for all @ € [0,1] and z,2" € Z, p(az+ (1 — a)2') < ap(z) + (1 — a)p(2’).



We say that s € Z is a subgradient of p at z if p(z + h) — p(z) > (s, h). We say that p is
B-smoothly convex if for all z,h € Z and any subgradient s of p at z,

plz+h) —p() — (5, h) < 2 Al

If there is a unique subgradient of p at z, we simply refer to it as the gradient Vp(z).
It is easily proven that smoothly convex functions have unique subgradients at all points.
Another standard property is the following: for any 2,2’ € Z,

p(z) = p(2') <(Vp(2),z = &) — %IIVp(z) — V()% (1)

In this paper we will be concerned with convex optimization using the Frank—Wolfe
variant of gradient descent, also known as conditional gradient descent. In order to even-
tually apply this framework to improper learning, we will consider a slight generalization
of the standard setup. Let Z’ C Z both be compact, convex subsets of our generic inner
product space. Say we have a S-smoothly convex function p : Z — R, and we want to solve
min, ¢z p(z), i.e. optimize over the smaller domain, while allowing ourselves the freedom of
finding subgradients that lie in the larger Z. The Frank—Wolfe algorithm in this “improper”
setting is Algorithm 1.

Algorithm 1 Frank—Wolfe gradient descent over a generic inner product space
Start with an arbitrary zg € Z.
fort=0,...,7 do
Let Yt = H‘LQ
Find s € Z such that (s, —Vp(z)) > maxyez(s', —Vp(z)) — 367%Cp.
Let ze41 = (1 — )zt + 8.
end for

The following theorem holds by standard analysis (see e.g. [Jagl3]). For convenience,
we provide a self-contained proof in Appendix D.

Theorem 2.5. Let Z' C Z be convex sets, and let p : Z — R be a [-smoothly convex
function. Let C, = fdiam(Z)2. For everyt, the iterates of Algorithm 1 satisfy

20
— mi N < p
P~ mig Pl < 0

(1+90).

3 Functional gradient descent

Let £ : R xR — R be a loss function. Given a p-concept f* and its corresponding
labeled distribution D+, the population loss of a function f : R"” — R is given by
L(f) = E@y)~p,. [0(f(2),y)]. We will view L as a mapping from L?(R™, D) to R, and
refer to it as the loss functional. The general idea of functional gradient descent is to try to
find an f in a class of functions F that minimizes L(f) by performing gradient descent in
function space. When using Frank—Wolfe gradient descent, the key step in every iteration
is to find the vector that has the greatest projection along the negative gradient, which
amounts to solving a linear optimization problem over the domain. When F is the convex



hull conv(#) of a simpler class H, this can be done using a sufficiently powerful agnostic
learning primitive for H. Thus we can “boost” such a primitive in a black-box manner to
minimize L(f).

Let # C L*(R", D) be a base hypothesis class for which we have an agnostic learner
with the following guarantee:

Assumption 3.1. There is an SQ learner for H with the following guarantee. Let D be
any labeled distribution on R™ x R such that the marginal on R™ is D = N(0,1,). Given
only SQ access to D, the learner outputs a function f € B(diam(H)/2) such that

B [f(z)y] Zmax E [h(z)y] —e

(z,y)~D ~ heH (z,y)~D
using q(n,€,7) queries of tolerance T.

Notice that we do not require f to lie in H, i.e. the learner is allowed to be improper, but
we do require it to have norm at most diam(H)/2. This is to make the competitive guarantee
against H meaningful, since otherwise the correlation can be made to scale arbitrarily with
the norm.

With such an H in place, we define F = conv(H). We assume that f* € F. Our objective
will be to agnostically learn F: to solve minscr L(f) in such a way that L(f) — L(f*) <.
To be able to use Frank—Wolfe, we require some assumptions on the loss function /.

Assumption 3.2. The loss function £ : R x R — R is S-smoothly convex in its first
parameter.

From this assumption, orresponding properties of the loss functional L now follow. First
we establish the subgradient, which will itself be an element of L?(R™, D), i.e. a function
from R” to R. Let f,h: R™ — R. Observe that at for every z € R”,y € R, the subgradient
property of £ tells us that

((f () + h(z),y) — 6(f(x),y) = 0l(f(2),y)h(z).

Taking expectations over (x,y) ~ Dy«, this yields

L(f+h)=L(f) > E _[0ul(f(z),y)h(z)]
(z,y)~Dyx

— E [E[0((f(x),y)h(x)]

z~D y|x

= <S,h>,

where

s:x— E[ol(f(x),y)] = E [010(f (), )]
ylz y~f*(z)

is thus a subgradient of L at f. [-smooth convexity is also easily established. Taking
expectations over (z,y) ~ Dy« of the inequality

Uf (@) + h(z),y) — £(f(2),y) — Ol(f(x), y)h(z) < Fh(z)?,



we get
L(f + 1)~ L() — (s, 1) < 5 P

for the same subgradient s. By smooth convexity, this subgradient is unique and so we can
say that the gradient of L at f is given by VL(f) : @ = Ey e () [014(f (), 9)].

Example 3.3. The canonical example is the squared loss functional, with fsq(a,b) = (a —
b)2, which is 2-smoothly convex. Here the gradient has a very simple form, since O1lsq(a,b) =
2(a — b), and so

ywﬁ(x)[alﬁsq(f(w), y)l = yNﬁ(m)B(f(SC) —y)l =2(f(z) = f*(2)),

ie. VLsq(f) =2(f — f*). In fact, it is easily calculated that

— T) — 2 = x 2 _ X 2
L(f)= B, U@ -9fl= & [Fef]-2 B [+ E
= Ef@7 -2 B [{@) Bl +  E [y

It is also useful to note that
Leq(f) = Lsq(f*) = Ilf — f*II*. (2)

Frank—Wolfe using statistical queries We see that our loss functional is a S-smoothly
convex functional on the space L?(R™, D). We can now use Frank—Wolfe if we can solve its
main subproblem: finding an approximate solution to maxye#{(h, —VL(f)), where f is the
current hypothesis during some iteration. Since this is a linear optimization objective and
F = conv(H), this is the same as solving maxpey (h, —VL(f)). This is almost the guarantee
that Assumption 3.1 gives us, but some care is in order. What we have SQ access to is the
labeled distribution D« on R™ x {£1}. It is not clear that we can rewrite the optimization
objective in such a way that

/
max B [—h(z)VL(f)(z)] = max (x,fjw[h(“)y ] (3)
for some distribution D on R™ x R that we can simulate SQ access to. Naively, we might
try to do this by letting D be the distribution of (z, =V L(f)(z)) for x ~ D, so that a query
¢ : R xR — R to D can be answered with E¢, ,np[d(z,y')] = Ezuplp(z, =VL(f)(z))].
But the issue is that in general VL(f)(z) will depend on f*(z), which we do not know —
all we have access to is Dy.
It turns out that for the loss functions we are interested in, we can indeed find a suitable
such D. We turn to the details now.

4 Functional gradient descent guarantees on surrogate loss

The functional GD approach applied directly to squared loss would allow us to learn F =
conv(H) using a learner for H (that satisfied Assumption 3.1). But by considering a certain



surrogate loss, we can use the same learner to actually learn ) o F = {¢po f | f € F} for an
outer activation function 1. This is particularly useful as we can now capture p-concepts
corresponding to functions in F by using a suitable ¢ : R — [—1,1]. For example, the
common softmax activation corresponds to taking ¢ = tanh.

Assume that Ely|z] = ¢(f*(x)) for some activation 1 : R — R which is non-decreasing
and A-Lipschitz. Instead of the squared loss, we will consider the following surrogate loss:

lowr(a,b) = /0 " () — b)du.

It is not hard to see that s, (a,b) is convex in its first parameter due to the non-decreasing
property of ¥, and that 01y (a,b) = ¢(a) —b. In fact it is A-smoothly convex:

lsur(a +t,0) — loyr(a, b) — O1lsyc(a, b)t
a+t a
~ [ 0w - vdu- [ ) - bdu - (w(a) - b
0 0
a+t
- / ((u) — b)du — ((a) — D)t

a+t
- / ((u) — ¥(a))du

a+t
< / AMu — a)du

=5
The gradient of the surrogate loss functional, Lg, (f) = Bz y)~D - Wsur (f (), )], is

given by

Visu(f):x— yww(lj@*(m))[aﬂsur(f(w), y)l =o(f (@) —¢(f*(2)),

e, Viw(f) = o f — o f*.
We still need to show that the Frank—Wolfe subproblem can be solved using access to
just Dyoyr«. Observe that

E =)V Lsur ()(@)] = E_[h(2)((f"(x)) = ¥ (f(2)))]

x~D z~D
_ & [h(x) <MI§* R «ﬁ(f(x)))}

(
= E o (h@)(y - ¢(f(2)))]

(xvy)NDwof*
= K [h(x)yl]v

(z,y")~D

where D is the distribution of (x,y — ¥(f(x))) for (z,y) ~ Dyos+. We can easily simulate
SQ access to this using Dyoyp+: if ¢ is any query to D, then

E [py)= E  [p@y—v(f@))= E [¢@y) (4)

(:B,y,)ND (w7y)NDwof* (wyy)NDwof*

10



for the modified query ¢'(z,y) = ¢(z,y — ¥ (f(x))). This means we can rewrite the opti-
mization objective to fit the form in Eq. (3). Thus for our surrogate loss, Assumption 3.1
allows us to solve the Frank—Wolfe subproblem, giving us Algorithm 2 for learning F.

Algorithm 2 Frank-Wolfe for solving min e 7 Lsur(f)

Start with an arbitrary fy € B(diam(H)/2).
fort=0,...,7 do
Let v be H—%
Let D; be the distribution of (z,y — (fi(x))) for (x,y) ~ Dyoy«-

Using Assumption 3.1, find h € B(diam(#)/2) such that

1
E  [h(z)y]>max E [h'(2)y] — =y, )\ diam(H)?
@quDJ ()y]__weﬁ(%yyﬂ%[ (2)y] 5 (H)
Let fir1 = (1 — ) fi +ih.
end for

Theorem 4.1. Let H be a class for which Assumption 3.1 holds, and let F = conv(H).
Given SQ access to Dyop« for a known non-decreasing \-Lipschitz activation 1 and an
unknown f* € F, suppose we wish to learn o f* in terms of surrogate loss, i.e. to minimize
Lsw (f). Then after T iterations of Algorithm 2, we have the following guarantee:

N A\ diam(H)?
Lsur(fT) - Lsur(f ) S T(Z)

1 ; * _ Adiam(H)?\ .
In particular, we can achieve Lsu(fr) — Lsur(f*) < € after T = O(=———-=) iterations.
Assuming our queries are of tolerance T, the total number of queries used is at most
Tq(n,e/4,7) = O(*2 L g(n, /4,7)).

Proof. By the preceding discussion, the surrogate loss functional is A-smoothly convex,
and Algorithm 2 is a valid special case of Algorithm 1, with Z = B(diam(#)/2) and

Z' = conv(F). Thus the guarantee follows directly from Theorem 2.5 (setting 6 = 1).
: 2
To bound the number of queries, observe that it is sufficient to run for 7" = M -2

rounds. In the #*® iteration, we invoke Assumption 3.1 with

2 _ A diam(#H)? < Adiam(H)? €

t+2 - T+2 4

1
€ = 5%)\ diam(H)

Since q(n, €, 7) < q(n,€/4,7), the bound follows. O

Lastly, we can show that minimizing surrogate loss also minimizes the squared loss.
Observe first that VLe,(f*) = 0. Thus, applying Eq. (1) with z = f* and 2/ = f, we
obtain

Lsur(f) - Lsur(f*) 2 %Hvz/sur(f) - vLsur(f*)H2
o 1 * 112
= 5lwos—wo | (5)
1

- ﬁ(quw o f) = Lsq(¢ 0 7)),
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where Lgq is squared loss w.r.t. Dyos« and the last equality is Eq. (2). In particular, Eq. (5)
implies that 1) o f achieves the following L? error with respect to 1) o f*:

[0 f =¥ o f*| < vV2X (Leur(f) — Leur (f*))- (6)

5 Lower bounds on learning ReLUs, sigmoids, and halfspaces

The machinery so far has shown that if we could agnostically learn a single unit (e.g. a
ReLU or a sigmoid), we could learn depth-two neural networks composed of such units.
Since we have lower bounds on the latter problem, this yields the following lower bounds
on the former.

Theorem 5.1. Let Hreru = {x — £ ReLU(w - z) | ||w||2 < 1} be the class of ReLUs on
R™ with unit weight vectors.! Suppose that Assumption 3.1 holds for Hreru. Then for any
€, there exists T = n=O€ ) such that q(n,e,7) > 2" for some 0 < ¢ < 1/2.

Proof. Since all our lower bound proofs are similar, to set a template we lay out all the
steps as clearly as possible.

e Consider the class G from Theorem 2.3 instantiated with ¢ = tanh (which is 1-
Lipschitz, so A = 1) and ¢ = ReLU. By the conditions on the weights, we see
that G C tanh oFreru, where Freu = conv(Hgeru). This construction has a free
parameter k, which we will set based on e.

e By our main reduction (Assumption 3.1 and Theorem 4.1), we can learn tanh oFreru
with respect to Lg,, up to agnostic error € using O(%q(n, £, 7)) queries of tolerance 7.
By Eq. (6), this implies learning G up to L? error v/2e.

e We know that learning G should be hard. Specifically, Corollary 2.4(a) states that if

o(k)

¢ = O(1/k%) and the queries are of tolerance 7 = n~®®¥) then learning up to L? error

. c .
¢’ should require 2" queries.

e The loss our reduction achieves is € = v/2¢, so we require v2e < ©(1/k5) for the
bound to hold. Accordingly, we pick k = ©(e~/12), so that 7 = n=9%) = n—O 1)

e Thus we must have %q(n, T) > 27°. Rearranging and rescaling e gives the result.
O

Theorem 5.2. Let Hy = {z — *o(w - x) | |w|2 < 1}, where o is the standard sigmoid,
be the class of sigmoid units on R™ with unit weight vectors. Suppose that Assumption 3.1
holds for Hy. Then for any e, there exists T = n~©(og 19 such that q(n,e,7) > 2"¢ for
some 0 < ¢ < 1/2.

Proof. Very similar to the above. We instantiate G with ¢ = tanh, ¢ = o, and observe that
G C tanh o conv(H,) and that diam(H,) < 2. In this case, Corollary 2.4(b) tells us that we
require v/2e < e~©(V®) for the lower bound to hold, so we pick k = (log1/€)?. The result
now follows exactly as before. O

"We use + ReLU for simplicity. Any learner can handle this by doing a bit flip on its own.
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We also obtain a lower bound on the class of halfspaces. The traditional way of phrasing
agnostic learning for Boolean functions is in terms of the 0-1 loss, and it is not immediately
obvious that the correlation loss guarantee of Assumption 3.1 is equivalent. But in Ap-
pendix E, we show that with a little care, they are indeed effectively equivalent. Note that
for Boolean functions, functional GD is not essential; existing distribution-specific boosting
methods [KKO09, Fell0] can also give us similar results here.

Theorem 5.3. Let Hps = {z — sign(w - z) | ||w||2 < 1} be the class of halfspaces on R™
with unit weight vectors. Suppose that Assumption 3.1 holds for Hps. Then for any e, there
exists T = n~90/9) such that q(n,e, ) > 2"€* for some 0 < ¢ < 1/2.

Proof. To approximate the sign function using a Lipschitz function, we define sié;ﬁ(x) to be
—1for x < —1/k, 1 for x > 1/k, and linearly interpolate in between. This function is (k/2)-
Lipschitz. We claim that G instantiated with ¢ = ¢ = sign satisfies G C @OCOHV(HhS),
with diam(G) = 2. This is because as noted in Theorem 2.3, G has weights a; € {£1/k},
so the sum of halfspaces inside v is always a multiple of 1/k, and s’@l behaves the same as
sign.

Theorem 4.1 now lets us learn G up to agnostic error € (and hence L? error v/2ke, by
Eq. (6)) using O(%q(n7 €/4,7)) queries of tolerance 7. By Corollary 2.4(c), we only need
V2ke < ©(1) for the lower bound to hold, so we may take k = ©(1/¢) to get a lower bound
of 2"°. Thus k—fq(n, €/4,7) > 2", and rearrangement gives the result. O

6 Lower bounds on learning general non-polynomial activa-
tions

Here we extend our lower bounds to general non-polynomial activations ¢ : R — R, by
which we mean functions which have an infinite Hermite series ¢ = 3, aaHa, where the H,
are the normalized probabilists’ Hermite polynomials. We will again work with the class G
from Theorem 2.3, instantiated with this ¢ and ¢ = tanh. In Appendix B, we define this
construction formally, letting g be the inner function and f be v o g.

To apply our framework, we need a norm lower bound on f. In Lemma B.1 we show
that [|g|| is determined only by k, the number of hidden units (there k& = 2m), and the
Hermite expansion of ¢. The reason we require an infinite Hermite series for ¢ is so that
this lower bound, viewed as a function of k, is nonzero for infinitely many k. This then
implies that f = tanh og must be nonzero for infinitely many k. Its norm can only possibly
be a function of ¢ and k. In particular, we may assume that it satisfies a norm lower bound
lfIl = B(k), where § is a function only of k that is nonzero for infinitely many k. Here we
view the dependence on ¢ as constant.

A few remarks are in order as to how such a bound (k) may be quantitatively estab-
lished. If ¢ is either bounded or exhibits only polynomial growth, then the bound on | g||
(Lemma B.1) gives a corresponding lower bound on ||f|| that is also purely a function of
k. If ¢ is bounded, the calculation is straightforward and very similar to the ¢ = o case
(Lemma B.6). If ¢ grows only like a polynomial, then one can use a truncation argument
similar to the ¢ = ReLU case (Lemma B.4).

By Theorem 2.2 and Corollary 2.4, our lower bound of 2"° on learning G holds for
e < B(k)/3. Since we can pick k as we like, let us say that for all sufficiently small €, we
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can achieve € < 8(k)/3 by taking k = k(e) = 387 !(¢). The corresponding tolerance is then
7 =n"9%€)) which is still inverse superpolynomial in n.

We now get the following lower bound on learning H = {z — ¢(w - z) | [w|2 < 1},
again by the same arguments as in Section 5. We assume that ||¢|| < R for some R, so that

diam(H) < 2R.

Theorem 6.1. Suppose that Assumption 3.1 holds for H. Then for all sufficiently small €
and 7 = n~OFkE) q(n,e 1) > 2”6% for some 0 < ¢ < 1/2.

Proof. We have G C tanhoconv(#). By functional GD wrt surrogate loss (Theorem 4.1),
we see that we can learn G up to L? error v/2¢ using O(RTZq(n, €, 7)) queries of tolerance T,

but we must have O(R;q(n, €,7)) <2, O

7 Lower bounds on learning monomials

In this section we show lower bounds against agnostically learning monomials with respect to
the Gaussian, establishing Theorem 1.4. Let Hmon be the class of all multilinear monomials
of total degree d on R"™. Clearly [Hmon| = (3) = n®@_ For any two distinct multilinear
monomials f, g, clearly (f,g) = 0 and moreover (tanhof, tanhog) = 0 as well. Thus the
class G = tanh oH o consists entirely of orthogonal functions. By [GGJT20, Lemma 2.6],
SDA(G,7) > |Gy = n~9.

We still need a norm lower bound on G.

Lemma 7.1. Let x5 = [[;cq ;i be an arbitrary degree-d multilinear monomial on R™, where
S C [n] is a subset of size d. Then ||tanhoxg| > exp(—0O(d)).

Proof. Observe first that ||zg|| = 1. By Paley—Zygmund, we have

IIJ‘2 2
Pa > O[3 > (1 - e>2%.

By picking € = 1/2, say, and using the fact that by Gaussian hypercontractivity,

Elz§]> _ vy E[?
E[;‘q] -1l B[]

we get that P[lxg| > 1/2] > exp(—0O(d)).
Now since tanh is monotonic and odd, we have

> exp(—6(d)),

E[tanh(zg)?] > tanh(1/2)* P[|lzs| > 1/2] > exp(—O(d)).
O

By Theorem 2.2 with § = exp(—©(d)), we get that for any € < exp(—O(d)) and using
queries of tolerance 7 < €2, learning G up to L? error € takes at least SDA(G, 72) > n®(d) 2
queries.

Now we can use the same arguments as in Section 5 to prove the following.
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Theorem 7.2. Suppose that Assumption 3.1 holds for Hmon- Then for any e < exp(—0(d))
and 7 < €2, q(n,e,7) > n®d75/2,

Proof. Observe that G C tanh o conv(Hmon), and diam(Hmon) < 2. Using the surrogate loss
with ¢ = tanh, Assumption 3.1 and Theorem 4.1 tell us that we can learn tanh o conv(Hmon)
up to L? error v/2¢ (again by Eq. (2)) in O(%q(n, €, 7)) queries of tolerance 7. By our lower
bound for G, we must have %q(n, e,7) > n® D72 org(n,e,7) > n®Dr5/2 (sincee > /7). O

8 Upper bounds on learning ReLLUs and sigmoids

We use a variant of the classic low-degree algorithm ([LMN93]; see also [KKMS08]) to
provide simple upper bounds for agnostically learning RelL.Us and sigmoids. With respect
to D = N(0,1I,), the d-approximate degree of a function f : R"™ — R is the smallest d such
that there exists a degree-d polynomial p satisfying || f —p|| < . We show that for any class
of d-approximate degree d, picking 6 = O(e) and simply estimating the Hermite coefficients
of x — E[y|x] up to degree d yields an agnostic learner up to error €, one that satisfies
Assumption 3.1. We assume bounded labels, say y € [—C, C] for some constant C'.

Let D be a distribution on R™ X R such that the marginal on R™ is N'(0, I,). Let femf(x) =
E[y|x] denote the conditional mean function of D, and note that || fems|| < C. Observe that
for any f, the correlation E, ,y.p[f(7)y] equals (f, femf). Let H be a hypothesis class with
d-approximate degree d (§ to be determined), and let R = diam(#)/2. Let hopt € H achieve
maxpep (M, femf)-

Our algorithm will be based on approximating the low-degree Hermite coefficients of
femf, which is equivalent to performing polynomial L? regression. It is well-known that in
this context, where d is the §-approximate degree, polynomial L' regression up to degree d
gives a squared loss guarantee of § [KKMS08]. But we will not be able to use this result
directly since what we seek is a correlation guarantee. Instead, our approach will involve a
sequence of inequalities relating the correlation achieved by femf, hopt, and their degree-d
approximations. A slight subtlety to keep in mind is that correlation can always be increased
by scaling the function. This means that wherever scaling is possible, we have to take some
care to rescale functions to have the maximum allowed norm, R.

Let hgp‘i and fcgnfi be the Hermite components of degree at most d of hopt and fems

R <d
BEH Jems:

see that ffmdf maximizes (f, femf), S0 that

respectively. Let fédf = Among polynomials of degree d in B(R), it is easy to

<f§116i77 fcmf> 2 <h§pciy fcmf>-

Our agnostic learner will look to approximate fcgmdf by outputting p defined as follows.
Suppose femf = Y jenn @rHr, where Hr is the multivariate Hermite polynomial of index 1.
For each I of total degree at most d, which we denote as |I| < d, let §; be our estimate

of oy = (feme, Hy) to within tolerance 7 (to be determined). This can be done using n?(@

15



queries of tolerance 7. Let f = Z\I\gd BrHy, and finally let p = ”f”f We have
1755 - ol - 52 S22 ——H
I£550 I
- 2
— 2 fcmf f f( 1 >
I£5 H TR
2
£k = FIP 5 1 1
<2 | e T AP (s
[ fem [ femell (L7l
9 SN\ 2
o [ Ma .Zu . <H mill HfH)
H me [FE
QH cmf f”2 . .
4R W (triangle ineq.)
4R2
< e v
since || f — H < n?r.
ecalmt at we can assume that >e€ ndeed, we KNow maxpci (1, femf) =
We cl h WLOG th 2R). Indeed k h, f
hopt; fems) and also [[hopt — < is 1mp1est at
pts> J d also ||hop opt 6. Thi l h
R” ” = < cmfafcmf> < gpci7fcmf> 2 <hopt7fcmf> - C57

where the last inequality is Cauchy-Schwarz. If (hept, femf) < € then 0 is a valid agnostic
learner. Therefore, we can assume that (hopt, femf) > €. Choosing 6 = 55, this means
F<d
[femell = €/(2R).
By Eq. (7), we then have

= 4RnY %7
1o —pll < ——. (8)
Now observe that
<p7 fcmf> = <f~§ndf7 fcmf> + <p - fcgmcifa fcmf>
/2
> opt,fcmf> M# (Eq. (8) and Cauchy—Schwarz)
4RCn? 7
= <hopta fcmf> + <h§p(i - hopty fcmf> - f
4 d/2
> (hopt, femf) — % - % (Cauchy—Schwarz, and using 6C = €/2)

Setting 7 = m gives us the desired result, namely that (p, fems) > (Popt, femf) —
Thus we have the following theorem.

Theorem 8.1. The class Hreru can be agnostically learned up to correlation € (in the sense
of Assumption 3.1) using nOe %) queries of tolerance n=O ), Similarly, Hs can be
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O(log? 1/e) —6(log? 1/6)62.

learned using n queries of tolerance n

O(d) queries of

tolerance n~"%e. As we show in Appendix C, the d-approximate degree of unit-weight
ReLUs is O((1/6)*3) and for unit-weight sigmoids it is O(log®1/§). The guarantees follow
by the argument in the preceding discussion. O

Proof. Approximating the Hermite coefficients of degree at most d takes n
©(d)

We note that our lower bounds for ReLLUs and sigmoids were for queries of tolerance
n=O€ 1) and p—Oog®1/¢) respectively, which nearly matches these upper bounds.
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A SQ lower bound subtleties

A.1 Relationships between parameters

When formally stating SQ lower bounds on learning p-concepts in terms of the statistical
dimension, there are some subtleties to keep in mind. These have to do with the relationships
between the query tolerance, the desired final error, and the norms of the functions in the
class. Let us say our queries are of tolerance 7, the final desired L? error ||f — f*|| is €
(which corresponds to L(f) — L(f*) < €2; see Eq. (2)), and that the functions in C satisfy
|f*|| > 8 for all f* € C. Then

1. We must have 7 < e. To see why, first note that for any query ¢ and two functions
fy9 € C, a calculation shows that [Ep,[¢] — Ep,[¢]| = [(f — g, )| < |If — gll, where
d(x) = (p(2,1)—¢(x,—1))/2. Thus if one has a function f such that e < || f—f*|| < 7,
then no query of tolerance 7 can tell them apart, but f is not e-close to the target f*.

2. If € > (3, a lower bound might not be possible. This is because the 0 function trivially
achieves L? error ||0 — f*|| = || *||. Imposing e < 3 is sufficient to rule this out.

3. We cannot arbitrarily rescale the p-concepts to increase [ since the functions must
remain Boolean p-concepts. Rescaling would also increase the description length of
the functions.

The lower bound in Theorem 2.2 (from [GGJT20]) is proved by reducing a distinguishing
problem to a learning problem. For technical reasons, we end up requiring 7 < €2, € <
(/3 for this reduction to go through. The points above show that these requirements are
essentially necessary.

A.2 The dependence of the query lower bound on the error ¢ and the
tolerance 7

The relationship between our query lower bounds, the desired error €, and the tolerance 7
may seem a little unusual at first sight, especially the fact that the lower bounds seem to
grow weaker as € grows smaller. We make some clarifying remarks here.

Fundamentally, all SQ lower bounds are bounds on how many queries it takes to distin-
guish certain distributions from others. When discussing a concept class C, the distributions
in question are the labeled distributions corresponding to concepts in the class. Learning
C is hard exactly insofar as it allows us to distinguish different labeled distributions arising
from C. Many works in the SQ literature have this structure, but we will refer to [GGJT20]
for formal statements.

Formally, the distinguishing problem we consider ([GGJ"20, Definition 4.2]) is that of
distinguishing the labeled distribution D, arising from an unknown ¢ € C from the reference
distribution Dy = D x Unif{+1}, using queries of tolerance at least 7.

There are two crucial points to keep in mind here:

1. The distinguishing problem is a fundamentally information theoretic problem, and its
difficulty scales only with 7. In particular, using queries of tolerance 7, we need at
least SDA(C, 72) queries. This bound increases with 7; in fact it often scales as |C|7?
(see ([GGJT20, Theorem 4.5 and Lemma 2.6]).
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2. The problem of learning up C to error € is hard exactly insofar as it allows us to solve
the distinguishing problem (see [GGJT20, Lemma 4.4]).

An important consequence is that for fixed 7, the query lower bound does not technically
grow as a function of the error e: it applies uniformly for all e small enough that it allows the
learner to solve the distinguishing problem. In other words, there is a certain “threshold”
eo such that for all e < ¢, the same query lower bound holds. As noted in point (3) of the
previous subsection, this threshold can be taken to be /3, where § is such that ||c|| >
for all ¢ € C.

But at the same time, as noted in point (1) in the previous subsection, it is necessary
that 7 < e (and for the reduction it suffices to have 7 < €2). If 7 > ¢, learning up to error ¢
is simply impossible.

With all this in mind, we can now answer the question of why our lower bounds seem to
grow weaker as € grows smaller: it is essentially because 7 grows smaller as well, so that we
get a series of incomparable (though still exponential) bounds due to the tradeoffs between
query complexity, 7, and e.

B Bounding the function norms of the [DKKZ20] construc-
tion

We shall consider the following slight rescaling of the functions of [DKKZ20]. For activation
functions 1, ¢ : R — R, we have g, f : R> — R defined as follows.

2m . . 2m
g(x) = L > (—1)¢ (wl cos % + 3 sin %) S > (=1 (- w;)

 2m im1  2m i=1
f(@) = (g(x)),

where w; = (cos %’T, sin %T) The number of hidden units is £ = 2m. We will assume that m
is even.

The hard functions from R™ — R are then given by fa(z) = f(Axz) for certain matrices
A € R?*? with AAT = I,. For x ~ N(0,1;), Az has the distribution N(0, ;). So for the
purposes of the norm calculation, and hence throughout this section, we will work directly
with AV/(0, I5). We will start by considering the norm of g. This can then be used to control
the norm of f via arguments similar to those in [GGJT20].

Lemma B.1. Let g : R?> — R be as defined above, and assume m is even. Assume the
standard Hermite expansion of ¢ is given by ¢ = ¢qH,, where the H, are the normalized
probabilists” Hermite polynomials. Under N (0, 1),

o
lgl* = © —
& i

a even

(For practical purposes, the asymptotic behavior of this expression is captured faithfully
when we begin indexing from say a = 100m.)
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Proof. We have
ol = Elg()?) = 1 :Zn;(_l)i(_l)j Elor - w)o(z - w))
. Qf(_ly(_ <Z$2 Ha(a - w2>Ha(x-wj)])-

i,j=1
1,7=1 a
Now because w;, w; are both unit vectors with w; - w; = cos @ ] )7

, we have that = - w; and
x - w; are both N(0, 1) with covariance cos (izj)m ) . Thus

2m

1 N -
Il = g 32 (-1 (Z%Z %)
i—j 2 a (Z _j)ﬂ-
1 J <Za:¢acos o ),

7]

2m

1
T Am2 Z (=

Z7-7:
since (—1)"*7 = (—=1)*7. Now, as we range over i, j € [2m], we see that i —j = 0 occurs 2m
times, i — j = 1 occurs 2m — 1 times, and more generally i — j = ¢t occurs 2m — |t| times.
Since a term with i — j = ¢ is exactly the same as one with i — j = —t (by the evenness
of cos), we can say that for t # 0, |i — j| =t occurs 2(2m — t) times. Thus the expression
above can be written as

2m—1
lgll* = <2m <Zq§acos O) + Z (2m — t)( (Zqﬁacos —>>
1 ~ 2m—1 atﬂ'
:4—m22a:¢a 2m+z (2m —t)(—1)* cos” —

= oy > S (am), Q

where

Now some algebraic manipulations are in order. By rewriting the index ¢ as 2m — t, we get
that

2m—1
S(a,m) =2m + Z 2t(—1)%m~ cos®
t=1

(2m —t)m

t
=2m + Z 2t(—1)" cos® iy
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Adding the two expressions for S(a,m) and dividing by 2, we get

2m—1 tﬂ'
S(a,m) =2m + Z 2m(—1)" cos” —
m

t=1

2m—1

=2m Z teos® —

This sum vanishes when a and m have different parities, i.e. if a is odd (recall that we
assume m is even). For even a, we have

m—
E COS —

t=0

This is a trigonometric power sum with known closed form expressions. In particular,
Equation 3.4 from [DFGK17, §3] (after correcting a typo) tells us that

la/m] u la/2m] a
21—(1 _ > 2
P <a/2—pm/2> p; <a/2—pm> =

m— 1 p=1
teos® = = la/m]
— <a<?2
2 mz<a/2 pm/2> m<a<om
0 a<m
La/m]
21—(1 >
= i ;:1 <a/2 pm/2> a=m
p odd
0 a<m

To get a sense for the asymptotics as a — 0o, we consider a > m (say a > 100m). In
this regime the sum of binomial coefficients in the sum above is seen to be 2(2%/y/a) (the
p =1 term alone contributes roughly (, /2)), and we get that T'(a,m) = Q(m/\/a).

This means S(a,m) = 0 for odd a and S(a,m) = 4mT(a,m) = Q(m?/\/a) for large,
even a. Substituting this back into Eq. (9), we get that

lgll* = Z

a>>m

a even

O

We can now consider the special cases of ¢ = ReLLU and ¢ = o (the standard sigmoid)
that are of interest.

Corollary B.2. Consider g instantiated with ¢ = ReLU. Then ||g|| = Q(1/m).
Proof. The Hermite coefficients of ReLU satisfy ¢, = O(a~°/*) (Lemma C.1). Thus by
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Lemma B.1,

lgl* =0 Y o ®) =1/m?).
a>100m

O

Corollary B.3. Consider g instantiated with ¢ = o, the standard sigmoid. Then ||g|| =
e—O(Vm)

Proof. The Hermite coefficients of o asymptotically satisfy éb\a ~ e Cva [GGJT20, §A.2] for
some C. Thus by Lemma B.1,

-Va
(&

lgll> =2( > )-
a>100m \/a

a even

The result then follows by the following standard integral approximation:

© -Vt 0o —/1
Z € = / € dt = Ze_ﬁ.
= Vit N Vi

O

We can now translate these into norm lower bounds on f = 1 o g. For us it suffices
to consider ¢ = tanh : R — [—1,1], which is essentially the sigmoid centered at 0. The
centering at 0 and the output range being [—1, 1] is what is important to us, because we
use f to capture the conditional mean function of a p-concept.

Lemma B.4. Consider f instantiated with 1» = tanh and ¢ = ReLU. Then |f|| =
Q(1/mb).

Proof. 1deally we would like to use the norm bound on g to obtain an anti-concentration
inequality of the form P[|g(x)| > t], and then translate that into a norm lower bound for f,
but this is not immediate because ¢ is unbounded. So we introduce the function g, which
is the same as g except with the truncated ReLU, ReLU” (2) = min(T, ReLU(z)) (T to be
determined), in place of all standard ReL.Us. Clearly |¢7 (z)| < T for all . It is also easy
to see by a union bound that

Ply(x) # g7 (x)] <2m P [ReLU(t) # ReLUT (1)] < 2me™""/2,
t~N(0,1)

since each w; is a unit vector.

24



Let ReL U, (z) be shorthand for ReLU(z - w), and similarly ReLUL. Observe first that

2m

> (~1)'(ReLU,, — ReLUY)
i=1

T
| =

H !
g—g om

2m
1 T
< — -
<o ;ZIHReLUW ReLUZ )|

= |ReLU — ReLU”||xr(o.1)

T2 T
<le 7z T2+1——>
_\/ < V2T

where the third equality again uses the fact the w; are unit vectors, and the last inequality
is Lemma B.5. By picking 7' = ©(m), this coupled with the fact that ||g| = Q(1/m)
(Corollary B.2) tells us that ||g7|| = Q(1/m) as well.

This bound on ||g”|| yields an anti-concentration inequality for g” as follows:

lg" 1> = Elg" (2)%) < *Pllg" (x)| < 1] + T*Pllg" (2)| > t] = * + (T* = 1) P[|g" (2)| > 1],

so that

T2 _ 42
g —1
Blg" ()| > 1) 2 12
Recall that Plg(z) # g7 (x)] < 2me_T2/2, SO
T2 _ 42
g l©—t 72
Pllg(z)| > t] > lg” I" =+ TQH— e 2me T/2,

Thus by taking T'= ©(m) and t = O(1/m), we get that
Pllg(z)| > ©(1/m)] > Q(1/m?).
Thus finally we have
I£1l = Eftanh(g(2))?] > tanh*(©(1/m))Q(1/m") > Q(1/m®),
since tanh(z) ~ x — 23 for small = (by its Taylor series). O

Lemma B.5 ([GGJ120], Appendix A.1). For ReLU? (z) = min(7, ReLU(z)),

T
|IReLU — ReLUT||N(0 < e_Tz_2 <T2 +1-— —>
’ V2T
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Proof. Let p(t) = \/%?e—ﬂp be the pdf of A/(0,1). Then

LU —ReLUT|2,...= E LU(t) — ReLUT (1))
[ReLU — ReLU" ||5/(g. 1y Ao, [(Re U(t) — ReLU" (1)) ]

— [ -1 de

T
_ / £2p(t) dt — 2T / ip(t) dt + T2 / p(t) dt
T T T

Noting that p/(t) = —tp(t), we have

/T 2p(t) dt:/T —td(p(t))

= —tp(x) +/ p(t) dt (integration by parts)
T Jr
=Tp(T P (t>T
pT)+, B (D)
|ty de=-p6)] =)
T T

The claim follows by algebra. ]
Lemma B.6. Consider f instantiated with 1 = tanh and ¢ = 0. Then ||f|| = e~ O™,

Proof. Here the same approach as above becomes considerably simpler since |g(z)| < 1
always. The norm bound on g yields the following anti-concentration inequality:

lgl* — ¢

Pllg(a)| > 1) > 14—

In our case, taking t = e~CV™ for sufficiently large C' and using ||g|| = e~/ (Corol-

lary B.3) yields
Pllg(z)| > eV = 7O,

Thus
I£]| = Eftanh(g(x))*] > tanh?(e=“V™)eOWM) > ¢=O/m),

since again tanh(z) ~ x — 22 for small z. O

C Approximate degree of ReLUs and sigmoids

Here we give estimates for the J-approximate degree of RelLUs and sigmoids under the
standard Gaussian using bounds on their Hermite coefficients. Recall that we consider
units ¢(w - ) with ||w|ls < 1. Tt is clear that for ¢ = ReLU and ¢ = o, the norm only
increases monotonically with |Jw||2, so for the purposes of analysis it suffices to consider
exactly |lwl|l2 = 1.
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It is not hard to show that whenever w is a unit vector, the total-degree-d Hermite
weight of ¢(w - x) as x ~ N(0, I,,) is the same as that of the univariate ¢(t) as t ~ N (0, 1).
(A quick way of seeing this is to note that by rotational symmetry, we may assume WLOG
that w = e, in which case the calculation is very straightforward.)

In what follows, we say quba are the Hermite coefficients of ¢ : R - Rif ¢ =), QASaHa,
where the H, are the normalized probabilists’ Hermite polynomials. We use H, to de-
note the un-normalized (i.e. monic) Hermite polynomials. (Note that this is somewhat
nonstandard notation.)

First we consider ReLLUs.

Lemma C.1. ReLU) = 1/ 2w, ReLU; = 1/2 and for a > 2, ReLU, = ﬁ(ﬁa(O) +

aH, 5(0)). In particular, ReLU, = 0 for odd a > 3 and \ma\ = O(a~%*) for even a.

Proof. We use the following standard recurrence relation: Hoyi(z) = H,(x) — aHqy_1(z).
For a > 2,

Since H,(0) = 0 for odd a, ReLU, = 0 as well. For even a = 2b with b > 2, by standard
expressions for H,(0), we have

— e (0 - R
(—1)b/(2b)! (1_ 2b >

_ (=n/ )
V27 (20 — 1)b12b

!

~ V27 (2b — 1)(2b)1/4
(_1)b+1

~ b5/4

Here the second inequality follows from the fact (nT/Lz) ~ % O

Corollary C.2. The §-approzimate degree of ReLU under N'(0,1) is O(6~4/3).
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Proof. Let p denote the the Hermite expansion of ReLLU truncated at degree d. By the fact
that [ReLU,| = ©(a=%/%) for even a (and 0 for odd a), we see that

—2
lp — ReLU||* = > " ReLU,
a>d

= > 6@@™?)

a>d
a even

=0(d ).
For this to be at most 62, we only need d = O(6~4/3). O

Now we turn to sigmoids. Let o denote the standard sigmoid, i.e. the logistic function
o(t)=1/(1+e7").

Lemma C.3. For all sufficiently large a, 6, = e~ (V)

Proof. Upper bounds on the Hermite coefficients of sigmoidal funtions are known to follow
from classic results in the complex analysis of Hermite series [Hil40, Boy84]. We refer to
[PSG19, Corollary F.7.1], where this computation is done for tanh’(z) = 1 — tanh?(z). The
calculation is very similar for o (in fact, o is just an affine shift of tanh). O

Corollary C.4. The §-approzimate degree of o under N'(0,1) is O(log?1/9).

Proof. Let p denote the Hermite expansion of ¢ truncated at degree d. Observe that

2 ~2
lo—pl*=3"52

a>d

=Y

a>d

= 0(Vde VD),

which is at most 62 for d = O(log® 1/6). O

D Frank—Wolfe convergence guarantee

Here we provide a self-contained proof of Theorem 2.5, restated here. In fact, we generalize
the analysis to handle any constant factor approximation to the optimum, meaning that in
the Frank—Wolfe subproblem of Algorithm 1, we only require

1
(s, =Vp(z)) = a max(s', =Vp(z)) = 501G, (10)

for some constant o < 1. We closely follow [Jagl3, Appendix A], noting the differences in
our slightly more general setup (the standard setup has 2’ = Z, and a = 1).

Theorem D.1. Let Z' C Z be convex sets, and let p : Z — R be a [-smoothly convex
function. Let C, = B diam(Z)?. Suppose that z* € Z' achieves min,icz p(z'). For everyt,
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the iterates of Algorithm 1 (modified to work with Eq. (10)) satisfy

plz) - ple") < 2

= m(l +9).

Proof. Define the duality gap function ¢ : Z — R as

q(z) = max(z — s, Vp(z)).
sezZ!

Notice that ¢ takes in any z € Z but maximizes only over s € Z’. By convexity of p
over Z, we know that for all z € Z,s € Z’, p(z) + (s — z,Vp(z)) < p(s), meaning that
p(z) —p(s) < q(z). In particular, p(z) —p(2*) < q(z), so that ¢(z) always provides an upper
bound on the gap between p(z) and p(z*) — this is weak duality.

Next we establish the following guarantee on the progress made in each step, which
corresponds to Lemma 5 in Jaggi’s proof.

Claim. Let the t"* step be 211 = 2 +7(s — z), where 2, 211,58 € Z, v € [0,1] is arbitrary,
and s satisfies

1
(s, =Vp(z)) = a max(s', =Vp(z)) — 567G,

Then we have )

Pla+1) < p() — ava(ze) + -Cp(1+9).
To see this, first note that because p is S-smoothly convex,
p(zt41) = p(ze + (s — 21))

2
< p(at) + (s — 21, Vp(0)) + 2-Cp.

And from the way s € Z was picked, we have
(s — 21, —Vp(z)) > aﬁz?(s/ — 21, —Vp(z)) — %5701,
= aq(=) — 561G,
The claim now follows.

As a consequence of the claim, we can say

2
plas) = p(=") < plz1) = p(=*) = va(z) + F-Cpl1 +9)
2
< (1= an)(p(=) = p(=")) + 5-Cp(1+ ),

since q(z¢) > p(z¢) — p(z*) (weak duality). Taking v = = ﬁ, the following bound can

now by proven by induction on t:

p(z) —p(z7) < Cp(1+9).

~ a?(t+2)
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This proves the theorem. O

E Relationship between Boolean 0-1 loss and real-valued cor-
relation loss

Let D be a distribution on R™ x R. Our lower bound applies against agnostic learners that
satisfy Assumption 3.1, with a real-valued correlation guarantee, i.e. learners that learn a
class ‘H by outputting f : R” — R such that

JE ] 2 max Elgfa)y] —e ()

In the Boolean setting, where the labels are {+1}-valued, we have a distribution P on
R™ x {£1}. A learner is said to agnostically learn A in terms of 0-1 loss if it is able to
output f : R™ — {#1} such that

WP @A <min P lo(a) # b+

or equivalently

B L@z max P lgfa)] - o2,
since Eq p)~p[f(a)b] =1 — 2P p[f(a) # b]. (The latter formulation has the benefit of
making sense even for real-valued f: R" — R.)

It is not obvious that a learner L of the above kind (with a Boolean 0-1 loss guarantee)
gives us a real-valued correlation loss guarantee, because it only knows how to operate on
distributions P on R™ x {£1} (with Boolean labels), not distributions D on R™ x R (with
arbitrary real labels). Moreover, in the SQ setting, we must be able to translate L’s queries
to P, which are of the form ¢ : R" x {£1} — R, into queries to D. We claim that both of
these difficulties can be gotten around. We will show that if D has bounded labels, say in
[—C, C], we can construct a distribution P on R"™ x {£+1} and simulate L on P to obtain a
correlation loss guarantee wrt D.

Indeed, let D denote the marginal of D on R™; for us, D is always N(0,1,). Then P
can be constructed simply as follows: draw a ~ D, and then randomly pick b € {£1} such
that E[bla] = (E¢, ) ~plylr = a])/C. (One could think of this as the “p-concept trick”.)
Equivalently, pick

1+(E(ac,y)~D[y|x:a])/C
2

- 1 with probability
—1 otherwise

One can easily see that for any f:R" — R,

E -
(a,b)~P C (z,y)~D

so that using L to learn up to 0-1 error € gives a correlation loss guarantee up to Ce/2. It
remains to show that we can indeed simulate L’s queries to P using only SQ access to D.
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For any query ¢ : R™ x {£1} — R, observe that (since the marginal of P on R" is also D)

@0 = E 600, 1) ; +6(a,-1) .
1 1
=5 B @D +o -1+ 55 E (6@ 1) - oz -1yl

This expression can be computed using two statistical queries to D (or even just one, since
we know the marginal D).

In our reduction (Theorem 4.1), we end up using the base learner on labeled distributions
D where the labels correspond to the loss functional’s gradient; when using surrogate loss,
the label for x is ¢ (f*(x)) — ¥(f(x)). We see that this is indeed bounded in [—2,2], since
¥ : R — [—1,1]. Recall that in solving the Frank—Wolfe subproblem we needed to worry
about simulating SQ access to this D using only SQ access to the true Dyor- (see Eq. (4)
and surrounding discussion). Here we actually have a further layer: we need to simulate
SQ access to P using SQ access to D, itself simulated using actual SQ access to Dy p=.
But it is easily verified that by the argument just outlined, no trouble arises here, and that
one can in fact also “directly” simulate P using Dy, s+ by the same argument as used for
Eq. (4).

F Relationship between square loss and correlation loss for
ReLUs

Let D be a distribution on R" x R, and assume the labels are bounded in [-C,C]. Our
lower bounds apply to agnostic learners that satisfy Assumption 3.1, with a guarantee in
terms of correlation, where the output hypothesis f must satisfy

E €T >max E z)y| — e.
(x’y)w[f( )y] > ma (w’y)w[g( )yl

But agnostic learning of real-valued functions is usually phrased in terms of square loss:

2 . 2 /
B @ -yl <min B lg@) —y)S+e.
Here we show that for the class of ReLUs, H = Hreru, an agnostic learner L with a
square loss guarantee can be used to satisfy Assumption 3.1. Fundamentally, this amounts
to working out a geometric relationship between distances and projections in our function
space, and much of the following argument can be viewed as a somewhat careful elaboration
of what, in the familiar Euclidean setup, is more easily visualized.
For simplicity, throughout this section we will scale the class Hger,u so that the maximum
norm of any function is 1:

H = Hrerv = {£V2ReLU(u - ) | |lulls < 1}.

An important property of this class is that we can always scale a function h € H to have
any desired norm in [0, 1] without leaving the class. That is, for any nonzero h € H and
any A € [0, 1], ”—;\l”h € H. This follows simply from the fact that |[ReLU(u - z)| = ||ull2/v/2.
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We can think of this as saying that H is a norm-bounded section of a convex cone.

Let femf(z) = Elylz]. Let hsq be a minimizer over all h € H of the squared loss,
E(zy)~p[(h(z) — y)?]. An equivalent and more convenient view is that this is a minimizer
of the squared distance ||h — feme||?, since

Hh - fcmf”2 - Hh”2 - 2<h7 mef> + chme2 = I%[(h(x) - y)2] + chme2 - I%[y2]7

and the latter terms are independent of h. This view is particularly important since it,
combined with the fact that H is essentially a bounded convex cone, gives us an orthogonal
projection theorem. Specifically, it is the case that the norm of hsq must be the length of
the projection of fcms onto the line Ahgq for A € [0,1] (assuming this length is at most 1;
otherwise, the norm is 1). In other words,

[hsqll = min{( ===, feme), 1}. (12)

Hhqu

This can be seen by asking: for what A € [0,1] is |72 Tha Pisa — feme|| minimized? (The point
being that hsq could be rescaled to have norm \.) By writing this as

heq

7f f)
Tl o’

A hsq >2 )
HHhqu fcme < <HhSqH7fcmf> + chmf” <

the observation follows immediately.? This projection theorem also tells us that hsq = 0 iff
femf has no projection onto any h € H, i.e. (h, femf) = 0 for all h € H.3

Let heor be a maximizer of the correlation, E(, ,yp[h(7)y] = (h, fems). We may clearly
assume that hcor has the maximum possible norm, which is 1. We claim that in fact, hcor
can be taken to be hsq/| hsq|| (assuming heq # 0; otherwise, heor = 0 as well since, as noted,
this means (h, femf) = 0 for all h € H). To see why, first assume hsq # 0 and use the fact
that for any nonzero h € H, the square loss achieved by ”ﬁ‘h”h (i.e. h scaled to have hsy’s

norm) cannot be better than that of heq itself. Thus by an algebraic manipulation we have

2
[1Fsq

[
h
fcmf> <”hH fcmf> 2 <h fcmf>

||hsq il < \ B o

e <
Hhqu
Since this holds for any h € H, we may take hcor = hsq/||sql|-

Now suppose we have an agnostic learner in terms of square loss that returns A such
that

|h — fcmf”2 < Hhsq - fcme2 + €.

For a suitable choice of € (depending on the final desired €), we would like to say that h/||hl|
achieves correlation that is e-competitive with hcor. Indeed, if hgq = O this is trivial, since

as noted this means (h, femf) = 0 for all h € H. Otherwise, by comparing ”|}|L ”” hsq (i.e. hsq

*Note that here we are assuming (hsq, femr) > 0 WLOG, since otherwise we would consider —hsq.
3For another way to see this, for any nonzero h € H, expand |[Ah — feme||? > [|0 = feme||* and let A — 0.
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scaled to have h’s norm) with hgq itself, we may say that

h 2
Hh - fcmf||2 < Hhsq - fcme2 + € < H H ” hsq — femf|| + €.
[[2sq
Some rearrangement gives
h hs ¢
<—7fcmf> > <—q7fcmf> PSRN
17| [[sq | 2||R|]
6/
= <hcoryfcmf> - My (13)

showing that h/||h| is ﬁ—competitive with hcor.

But an issue here is that ||h| could be very small, or even zero. We claim that we can
actually address this separately as an easy case: it implies that we are in a trivial situation
in which even the 0 function performs fairly well, and so even the best possible correlation
must be quite small.

Lemma F.1. Let h be such that [|h — femfl|? < ||hsq — feme||® + €. Suppose ||h]| <n. Then
(heors femf) < V€ +2Cn. In particular, the 0 function is \/€’ + 2Cn-competitive with heor.

Proof. By Cauchy—Schwarz,
10 = Feme I = 1h = femelI® = 2(R, feme) — [ femelI® < 2[R [ feme |l < 2C7,
where we use || femf|| < C since the labels are assumed to be bounded in [-C, C]. Thus
10 = femfl* < [Ih = feme|® + 200 < |hsq = feme|* + ¢ + 2Cn.
On the other hand, by definition of hsq,
lhsq = femll> < 110 = femell?,
Put together, this means that the 0 function achieves nearly the same square loss as hsq:
lhsq = femel* <110 = femf[I* < llhsq = feme[|* + € +2Cn. (14)
This lets us conclude that ||hsq|| must be small:
IhsqlI® = [l femf I = hsq — femel|® + 2(hsq — fem, hsq) < € +2Cn,

where we use Eq. (14) and the fact that by can rewrite Eq. (12) as ||hsql| < <”Z—:”,fcmf>,

or (hsq — femfs hsq) < 0. But now since ||hsq|| < /€ +2Cn < 1 (¢ and n will be picked
sufficiently small), Eq. (12) boils down to saying that

hs
<hcorafcmf> = (Hh—q”yfcmf> = Hhqu < v € +2Cn.
sq

33



We can now put everything together.

Theorem F.2. Suppose we have an agnostic learner L for Hreru under D with a square
loss guarantee. Then L can be used to yield a correlation guarantee, i.e. to satisfy Assump-
tion 3.1.

Proof. Run L with € = ©(e®) to get h such that |[|h — fomfl|?> < ||hsq — feme||> + €. By
Lemma F.1, if ||h]| < n = O(e?), then 0 is e-competitive with heor. So we may assume that
|h|| > ©(e?). But then by Eq. (13), since now ﬁ;” < ¢, we get that h/||h|| is e-competitive
with heor. O
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