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ABSTRACT
This paper provides a recipe for deriving calculable approxima-

tion errors of mean-field models in heavy-traffic with the focus on

the well-known load balancing algorithm — power-of-two-choices

(Po2). The recipe combines Stein’s method for linearized mean-field

models and State Space Concentration (SSC) based on geometric

tail bounds. In particular, our approach divides the state space into

two regions, a neighborhood near the mean-field equilibrium and

the complement of that. We first use a tail bound to show that the

steady-state probability being outside the neighborhood is small.

Then, we use a linearized mean-field model and Stein’s method to

characterize the generator difference, which provides the dominant

term of the approximation error. From the dominant term, we are

able to obtain an asymptotically-tight bound and a nonasymptotic

upper bound, both are calculable bounds, not order-wise scaling

results like most results in the literature. Finally, we compare the

theoretical bounds with numerical evaluations to show the effec-

tiveness of our results. We note that the simulation results show

that both bounds are valid even for small size systems such as a

system with only ten servers.
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1 INTRODUCTION
Large-scale and complex stochastic systems have become ubiqui-

tous, including large-scale data centers, the Internet of Things, and

city-wide ride-hailing systems. Queueing theory has been a funda-

mental mathematical tool to model large-scale stochastic systems,

and to analyze their steady-state performance. For example, steady-

state analysis of load balancing algorithms in many-server systems

is one of the most fundamental and widely-studied problems in

queueing theory [11]. When the stationary (steady-state) distri-

bution is known, the mean queue length and waiting time can be

easily calculated, which reveal the performance of the system and

can be used to guide the design of load balancing algorithms. How-

ever, for large-scale stochastic systems in general, it is extremely

challenging (if not impossible) to characterize a system’s stationary

distribution due to the curse of dimensionality. For example, in a

queueing system with 𝑁 servers, each with a buffer of size 𝑏, the

size of state space is at the order of 𝑁𝑏
. Moreover, in such a system,

the transition rate from a state to another may be state-dependent,

so it becomes almost impossible to characterize its stationary dis-

tribution unless the system has some special properties such as

when the stationary distribution has a product form [20]. To ad-

dress these challenges, approximation methods such as mean-field

models, fluid models, or diffusion models have been developed to

study the stationary distributions of large-scale stochastic systems.

This paper focuses on stochastic systems with many agents,

in particular, a many-server, many-queue system such as a large-

scale data center. For such systems, mean-field models have been

successfully used to approximate the stationary distribution of the

system in the large-system limit (when the system size becomes

infinity), see e.g. the seminal papers on power-of-two-choices [18,

22]. These earlier results, however, are asymptotic in nature by

showing that the stationary distribution of the stochastic system

weakly converges to the equilibrium point of the corresponding

mean-field model as the system size becomes infinity. So these

results do not provide the rate of convergence or the approximation

error for finite-size stochastic systems. Furthermore, because of

the asymptotic nature of the traditional mean-field model, it only

applies to the light-traffic regime where the normalized load (load

per server) is strictly less than the per-server capacity in the limit.

Both issues have been recently addressed using Stein’s method.

[24] studied the approximation error of the mean-field models in

the light-traffic regime using Stein’s method, and showed that for a

large-class of mean-field models, the mean-square error is 𝑂

(
1

𝑁

)
,

where 𝑁 is the number of agents in the system. [25] further ex-

tended Stein’s method to mean-field models for heavy-traffic sys-

tems and developed a framework for quantifying the approximation
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errors by connecting them to the local and global convergence of

the mean-field models. While these results overcome the weakness

of the traditional mean-field analysis, they only provide order-wise

results, i.e. the scaling of the approximation errors in terms of the

system size. Later, a refined mean-field analysis was developed in

[6, 7]. In particular, [7] established the coefficient of the
1

𝑁
approxi-

mation error for light-traffic mean-field models, which provides an

asymptotically exact characterization of the approximation error.

However, the refined result in [7] is based on the light-traffic mean-

field model and the analysis uses a limiting approach. Therefore, the

result and method do not apply to heavy-traffic mean-field models.

This paper obtains calculable error bounds of heavy-traffic mean-

field models. We consider the supermarket model [18], and assume

jobs are allocated to servers according to a load balancing algorithm

called power-of-two-choices [18, 22]. While the approximation

error of this system has been studied in [25], it only characterizes

the order of the error (in terms of the number of servers) and does

not provide a calculable error bound. The difficulty of obtaining a

calculable error bound is that themean-fieldmodel of power-of-two-

choices is a nonlinear system, so quantifying the convergence rate

explicitly is difficult. In this paper, we overcome this difficulty by

focusing on a linearized heavy-traffic mean-field model, linearized

around its equilibrium point, so that we can explicitly solve Stein’s

equation. The linearized model cannot approximate the system

well when the state of the system is not near the equilibrium point,

which is further taken care of by using a geometric tail bound to

show that such deviation only occurs with a small probability. The

main results of this paper are summarized below.

• For the supermarket model with power-of-two-choices, we

obtain two error bounds for the system in heavy-traffic. We

first characterize the dominant term in the approximation

error, which is a function of the Jacobian matrix of the mean-

field model at its equilibrium and is asymptotically accurate.

We then obtain a general upper bound which holds for finite

size systems. We obtain the explicit forms of both bounds so

they are calculable given the load and the system size.

• From the methodology perspective, the combination of state-

space-concentration (SSC) and the linearized mean-field

model provides a recipe for studying other mean-field mod-

els in heavy-traffic. Themost difficult part of applying Stein’s

method for mean-field models is to establish the derivative

bounds.While perturbation theory [12] provides a principled

approach, we can only obtain order-wise results when facing

nonlinear mean-field models (see e.g. [25]). Our approach is

based on a basic hypothesis that if the mean-field solution

would well approximate the steady-state of the stochastic

system, then the steady-state should concentrate around

the equilibrium point. Therefore, the focus should be on the

mean-field system around its equilibrium point, which can

be reduced to a linearized version. This basic hypothesis can

be supported analytically using SSC based on the geometric

tail bound [1]. In other words, the state-space concentra-

tion result leads to a linear system with a “solvable” Stein’s

equation, which is the key to applying Stein’s method for

steady-state approximation.

2 RELATEDWORK
This section summarizes the related results in two categories. From

the methodology perspective, this paper follows the line of research

on using Stein’s method for steady-state approximation of queueing

systems introduced in [2, 3]. This paper uses Stein’s method for

mean-field approximations, which has been introduced in [24] and

extended in [6, 7, 14, 25]. Stein’s method for mean-field models

(or fluid models) can also be interpreted as drift analysis based on

integral Lyapunov functions, which was introduced in an earlier

paper [21]. The combination of SSC and Stein’s method was used

in [2], which introduces Stein’s method for steady-state diffusion

approximation of queueing systems. The framework is later applied

to mean-field (fluid) models where Stein’s equation for a simplified

one-dimensional mean-field models can be solved [15, 16]. In this

paper, the linearized system is still a multi-dimensional system.

SSC has been used in heavy-traffic analysis based on the Lyapunov-

drift method, which was developed in [4] and used for analyzing

computer systems and communication systems (see e.g. [17, 23]).

From the perspective of the power-of-two-choices load-balancing

algorithm, for the light-traffic regime, [22] proved the weak conver-

gence of the stationary distribution of power-of-two-choices to its

mean field limit, the order-wise rate of convergence was established

in [24], and [7] proposed a refined mean-field model with signifi-

cantly smaller approximation errors. The scaling of queue lengths

of power-of-two-choices in heavy-traffic has only been studied

recently, first in [5] for finite-time analysis (transient analysis) and

then in [25] for steady-state analysis. Our result was inspired by

[7], which refines the mean-field model using the Jacobian matrix

of the light-traffic mean-field equilibrium. Different from [7], based

on state-space-concentration and linearized mean-field model, we

established calculable error bounds for heavy-traffic mean-field

models where the mean-field equilibrium and the associated Jaco-

bian matrix are both functions of the system load and system size,

which prevented us from using the asymptotic approach used in

[7].

3 SYSTEM MODEL
In this section, we first introduce the well-known supermarket

model under the power-of-two-choices load balancing algorithm.

Our focus is the stationary distribution of such a system in the

heavy-traffic regime (i.e. the load approaches to one as the number

of servers increases). Then, we present the mean-field model, tai-

lored for the𝑁 -server system [25] and the exact load of the𝑁 -server

system. The solution to the mean-field model is an approximation

of the stationary distribution of the stochastic system. We will then

present the approach to characterize the approximation error based

on Stein’s equation.

Consider a many-server system with 𝑁 homogeneous servers,

where job arrivals follow a Poisson process with rate 𝜆𝑁 and service

times are i.i.d. exponential random variables with rate one. Each

server can hold at most 𝑏 jobs, including the one in service. We

consider 𝜆 = 1 − 𝛾

𝑁𝛼 for some 0 < 𝛾 ≤ 1 and 𝛼 ≥ 0. When 𝛼 = 0,

𝜆 is a constant independent of 𝑁 which we call the light-traffic

regime. When 𝛼 > 0, the arrival rate depends on 𝑁 and approaches

to one as 𝑁 → ∞, which we call the heavy-traffic regime. We
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assume the system is operated by a load balancing algorithm called

power-of-two-choices [18, 22].

Power-of-Two-Choices (Po2):When a job arrives, Po2 samples

two servers uniformly at random among 𝑁 servers and dispatches

the incoming job to the server with the shorter queue size. Ties are

broken uniformly at random.

Figure 1: Power-of-Two-Choices

Let 𝑆𝑖 (𝑡) denote the fraction of servers with queue size at least

𝑖 at time 𝑡 . The term 𝑆0 (𝑡) = 1,∀𝑡 by definition. Under the finite

buffer assumption with buffer size 𝑏, 𝑆𝑖 (𝑡) = 0,∀𝑖 ≥ 𝑏 + 1,∀𝑡 .
Throughout the paper, we assume that the buffer size b can be up

to the order of log𝑁 , i.e. 𝑏 = 𝑂 (log𝑁 ). Define set S to be

S = {𝑠 | 1 ≥ 𝑠1 ≥ · · · ≥ 𝑠𝑏 ≥ 0},

and 𝑏-dimensional vector 𝑆 (𝑡) = [𝑆1 (𝑡), 𝑆2 (𝑡), · · · , 𝑆𝑏 (𝑡)]. It is easy
to verify that the state 𝑆 (𝑡) is a continuous time Markov chain

(CTMC). Define 𝑒𝑘 to be a 𝑏-dimensional vector such that the 𝑘th

entry is one and all other entries are zero. Under Po2, the transition

rate from state 𝑠 and 𝑠 ′ is as follows:

𝑅𝑠,𝑠′ =



𝑁 (𝑠𝑘 − 𝑠𝑘+1), if 𝑠 ′ = 𝑠 − 𝑒𝑘
𝑁

and 1 ≤ 𝑘 ≤ 𝑏 − 1

𝑁𝑠𝑏 , if 𝑠
′ = 𝑠 − 𝑒𝑏

𝑁

𝜆𝑁 (𝑠2
𝑘−1 − 𝑠2

𝑘
), if 𝑠 ′ = 𝑠 + 𝑒𝑘

𝑁∑𝑏
𝑘=1

−𝜆𝑁 (𝑠2
𝑘−1 − 𝑠2

𝑘
) − 𝑁 (𝑠𝑘 − 𝑠𝑘+1), if 𝑠 ′ = 𝑠

0, otherwise

.

The first and second terms correspond to the event that a job departs

from a server with queue size 𝑘 so 𝑠𝑘 decreases by
1

𝑁
, and the third

term corresponds to the event that a job arrives and joins a server

with queue size 𝑘 − 1. We define a normalized transition rate to be

𝑞𝑠,𝑠′ =
𝑅𝑠,𝑠′

𝑁
.

We focus on the steady-state analysis of the system, i.e. the

distribution of 𝑆 (∞). At the steady-state, 𝑆 (∞) is a 𝑏-dimensional

random vector. For simplicity, let 𝑆 denote 𝑆 (∞). In this paper, we

use uppercase letters for random variables and lowercase letters

for deterministic values.

The mean-field model [18, 22, 25] for this system is

¤𝑠 = 𝑓 (𝑠) =
∑

𝑠′:𝑠′≠𝑠

𝑅𝑠,𝑠′ (𝑠 ′ − 𝑠) = 𝑁
∑

𝑠′:𝑠′≠𝑠

𝑞𝑠,𝑠′ (𝑠 ′ − 𝑠) .

According to the definition of 𝑅𝑠,𝑠′ and 𝑞𝑠,𝑠′, we have

¤𝑠𝑘 = 𝑓𝑘 (𝑠) =
{
𝜆(𝑠2

𝑘−1 − 𝑠2
𝑘
) − (𝑠𝑘 − 𝑠𝑘+1), 1 ≤ 𝑘 ≤ 𝑏 − 1

𝜆(𝑠2
𝑏−1 − 𝑠2

𝑏
) − 𝑠𝑏 , 𝑘 = 𝑏.

The equilibrium point of this mean-field model, denoted by 𝑠∗,
satisfies the following conditions:

𝑠∗
0
= 1 (1a)

𝜆

(
(𝑠∗
𝑘−1)

2 − (𝑠∗
𝑘
)2

)
− (𝑠∗

𝑘
− 𝑠∗

𝑘+1) = 0, 1 ≤ 𝑘 ≤ 𝑏 − 1 (1b)

𝜆

(
(𝑠∗
𝑏−1)

2 − (𝑠∗
𝑏
)2

)
− 𝑠∗

𝑏
= 0. (1c)

The existence and uniqueness of the equilibrium point have been

proved in [18]. Define

𝑔(𝑠) = −
∫ ∞

0

𝑑 (𝑠 (𝑡), 𝑠∗)𝑑𝑡, 𝑠 (0) = 𝑠 .

where 𝑑 (𝑠 (𝑡), 𝑠∗) is a distance function. Then, by the definition of

𝑔(𝑠), we have

∇𝑔(𝑠) · 𝑓 (𝑠) = 𝑑 (𝑠, 𝑠∗) . (2)

Equation (2) is called the Poisson equation or Stein’s equation. For

any bounded 𝑔, we have the following steady state equation (Basic

Adjoint Relationship (BAR) [8])

E[𝐺𝑔(𝑆)] = 0, (3)

where the expectation is taken with respect to the steady state

distribution of 𝑆 and 𝐺 is the generator of the CTMC. Combining

(2) and (3), we have

E
[
𝑑 (𝑆, 𝑠∗)

]
=E [∇𝑔(𝑆) · 𝑓 (𝑆) −𝐺𝑔(𝑆)]

= − E
[∑
𝑠′

𝑅𝑆,𝑠′Γ(𝑆, 𝑠 ′)
]
, (4)

where Γ(𝑠, 𝑠 ′) = 𝑔(𝑠 ′) − 𝑔(𝑠) − ∇𝑔(𝑠) · (𝑠 ′ − 𝑠). From (4), Stein’s

method provides us a way to study the approximation error, defined

by E[𝑑 (𝑆, 𝑠∗)], by bounding the generator difference between the

original system and the mean-field model.

4 MAIN RESULTS AND METHODOLOGY
This section summarizes our main results, which include an asymp-

totically tight approximation error bound and an upper bound that

holds for finite 𝑁 . We remark again these bounds can be calculated

numerically and are not order-wise results as in most earlier papers.

Theorem 4.1 (Asymptotically Tight Bound). For 0 < 𝛼 < 1

18
,

we have that

E[| |𝑆 − 𝑠∗ | |2] = − 1

𝑁

𝑏∑
𝑖=1

[𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗) + 𝑜
(

1

𝑁 1+𝛼

)
(5)

3
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where

𝐽 (𝑠∗) =


−2𝜆𝑠∗

1
− 1 1 0

2𝜆𝑠∗
1

. . .
. . .

. . .
. . . 1

0 2𝜆𝑠∗
𝑏−1 −2𝜆𝑠∗

𝑏
− 1


is the Jacobian matrix of the mean-field model 𝑓 (𝑠) at equilibrium
point 𝑠∗,

˜𝑓𝑖 (𝑠∗) =
1

2

(
𝜆

(
(𝑠∗𝑖−1)

2 − (𝑠∗𝑖 )
2

)
+ (𝑠∗𝑖 − 𝑠∗𝑖+1)

)
for 𝑖 = 1, 2, · · · , 𝑏, and [𝐴]−1

𝑖 𝑗
denotes the (𝑖, 𝑗)th entry of the inverse

of matrix 𝐴. □

The theorem states that the mean square error E[| |𝑆 − 𝑠∗ | |2] has
an asymptotic dominant term− 1

𝑁

∑𝑏
𝑖=1 [𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗). Therefore,

we have

lim

𝑁→∞
𝑁E[| |𝑆 − 𝑠∗ | |2] = −

𝑏∑
𝑖=1

[𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗) . (6)

Note that

∑𝑏
𝑖=1 [𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗) is negative, so the dominating term

is positive.

Corollary 4.2 (General Upper Bound). For 0 < 𝛼 < 1

18
and

a sufficiently large 𝑁 , we have that

E[| |𝑆 − 𝑠∗ | |2] ≤ − 4

𝑁

𝑏∑
𝑖=1

[𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗) . (7)

□

This result tells us that we can have a calculable upper bound

for heavy-traffic which holds for finite 𝑁 .

( 1 , 2)

1

2










0 1

1

Figure 2: Illustration of the Inside and Outside Regions for
𝑏 = 2

Our analysis combines Stein’s method with a linear dynamical

system and SSC. We divide the state space into two regions based

on the mean-field solution: one region including those states “close”

to the equilibrium point 𝑠∗, and the other region that includes all

other states. For example, considering the case of 𝑏 = 2, the state

space is a two-dimensional region{
(𝑠1, 𝑠2) =

( 𝑝
𝑁
,
𝑞

𝑁

)���𝑝 ≥ 𝑞 ∈ {0, 1, · · · , 𝑁 }
}
⊂ [0, 1]2 .

As shown in Figure 2, we divide the state space into two regions

separated by the dashed circle. The size of the circle is small and

depends on𝑁, in particular, the radius is𝑂

(
1

𝑁
𝜖
2𝑟

)
where both 𝜖 and

𝑟 are positive values (the choices of these two values will become

clear in the analysis).

For the two different regions, we apply different techniques:

(1) We first establish higher moment bounds that upper bound

the probability that the steady state is outside the dashed

circle. The proof is based on the geometric tail bound in

[1, 10] and by showing that there is a “significant” negative

drift that moves the system closer to the equilibrium point

when the system is outside of the dashed circle.

(2) For the states close to the equilibrium point, i.e, inside the

dashed circle, from the control theory, we know that the

mean-field nonlinear system behavior can be well approx-

imated by the linearized dynamical system. By carefully

choosing the parameters, we can look into the generator

difference and calculate the dominant term of the approxi-

mation error by using the linearized mean-field model. The

linearity enables us to solve Stein’s equation, which is a key

obstacle in applying Stein’s method.

5 SIMULATIONS
Given 𝛼 = 0.05, we performed simulations for two different choices

of 𝛾 and different system sizes. The purpose of these simulations is

to compare the approximation errors calculated from the simula-

tions with the asymptotically tight bound and the general upper

bound. The results are based on the average of 10 runs, where each

run simulates 10
9
time steps. We averaged over the last 9×10

8
time

slots of each run to compute the steady state values.

For each run, we calculated the empirical mean square error

multiplied by the system size 𝑁 . Recall that the asymptotically

tight bound and upper bound are

−
𝑏∑
𝑖=1

[𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗)

and

−4
𝑏∑
𝑖=1

[𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗),

respectively. Note that the two bounds only differ by a factor of

four.

Table 1: 𝛾 = 0.1, 𝛼 = 0.05

𝑁 10 100 1,000 10,000

𝜆 0.9109 0.9206 0.9292 0.9369

Simulation 4.2975 3.6884 3.9553 4.4068

Asymptotic Bound 3.2773 3.6411 4.0455 4.4955

Upper Bound 13.1092 14.5644 16.1820 17.9820

4
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Table 2: 𝛾 = 0.01, 𝛼 = 0.05

𝑁 10 100 1,000 10,000

𝜆 0.9911 0.9921 0.9929 0.9937

Simulation 77.9532 46.4641 38.7702 40.2093

Asymptotic Bound 28.2972 31.6293 35.3629 39.5457

Upper Bound 113.1888 126.5172 141.4516 158.1828

Tables 1 and 2 summarize the results with 𝛾 = 0.1, 𝛼 = 0.05

and 𝛾 = 0.01, 𝛼 = 0.05. We varied the size of the system in both

cases. Note that the arrival rate is a function of the system size

and approaches one as 𝑁 increases. As 𝑁 increases, the simulation

results are in the same order with the dominant terms and are

bounded by the upper bounds.

Our numerical results show that the asymptotic bound matches

the empirical error very well, and approaches the empirical error

as 𝑁 increases. In particular, for 𝛾 = 0.1 and 𝛼 = 0.05, the results

are close even when 𝑁 = 100; and for 𝛾 = 0.01 and 𝛼 = 0.05, the

results are close when 𝑁 = 1, 000.

As we can see, the upper bound is valid even for small size sys-

tems, e.g.𝑁 = 10, which shows the effectiveness of our results. From

a practical point of view, both bounds are calculable, so together,

they provide good estimates of the mean-square error.

6 PROOFS
In this section, we assume arrival rate is in the form of 𝜆 = 1 −
𝛾

𝑁𝛼 , which means the arrival rate is the function of system size

𝑁 . As a result, generally the equilibrium point is also a function

of 𝑁 , a notation like 𝑠∗(𝑁 )
is a more proper way of describing the

dependency on the system size. But for convenience, we still use 𝑠∗

to denote the equilibrium point.

As we mentioned earlier, the results are established by looking

at the system in two different regions, near the equilibrium point

and outside. We next present our proof following this idea.

6.1 State Space Concentration
First, we present some preliminary convergence results in heavy-

traffic for finite buffer size 𝑏 = 𝑂 (log𝑁 ).

Lemma 6.1. For any 0 < 𝛼 < 0.25 and a sufficiently large 𝑁, we
have

E[| |𝑆 − 𝑠∗ | |2] ≤ 1

𝑁 1−4𝛼−7𝜉

where 𝜉 > 0 is an arbitrarily small number. □

Lemma 6.2 (Higher Moment Bounds). For 𝑟 ∈ N and a suffi-
ciently large 𝑁 , we have

E
[
| |𝑆 − 𝑠∗ | |2𝑟

]
≤ 1

𝑁 𝑟 (1−4𝛼−7𝜉) .

□

The proofs for both lemmas can be found in our technical report

[9].

Lemma 6.3 (State Space Concentration). Letting 𝜖 > 0 and
𝑟 ∈ N, for a sufficiently large 𝑁 , we have

P

(
| |𝑆 − 𝑠∗ | |2𝑟 ≥ 1

𝑁 𝜖

)
≤ 1

𝑁 𝑟 (1−4𝛼−7𝜉)−𝜖 .

□

Proof. Applying the Markov inequality to the result in Lemma

6.2, we have

P( | |𝑆 − 𝑠∗ | |2𝑟 ≥ 1

𝑁 𝜖
) ≤ E[| |𝑆 − 𝑠∗ | |2𝑟 ]

1

𝑁 𝜖

≤ 𝑁 𝜖

𝑁 𝑟 (1−4𝛼−7𝜉)−𝜖

=
1

𝑁 𝑟 (1−4𝛼−7𝜉)−𝜖 .

□

6.2 Linear Mean-Field Model
Define a set of states to be B = {𝑠 | | |𝑠 − 𝑠∗ | |2𝑟 ≤ 1

𝑁 𝜖 }, which are

the states close to the equilibrium point. Let 𝑑 (𝑠, 𝑠∗) = | |𝑠 − 𝑠∗ | |2 be
the distance function. We consider a simple linear system

¤𝑠 = 𝑙 (𝑠) = 𝐽 (𝑠∗) (𝑠 − 𝑠∗), (8)

where 𝐽 (𝑠∗) is the Jacobian matrix of 𝑓 (𝑠) at the equilibrium point

𝑠∗ . In heavy-traffic, the entries of 𝐽 (𝑠∗) are functions of 𝑁 as well

when 𝑠∗ is a function of 𝑁 . The Jacobian matrix at 𝑠 is

𝐽 (𝑠) =


−2𝜆𝑠1 − 1 1 0

2𝜆𝑠1
. . .

. . .

. . .
. . . 1

0 2𝜆𝑠𝑏−1 −2𝜆𝑠𝑏 − 1


.

We first introduce a lemma stating that matrix 𝐽 (𝑠∗) is invertible,
i.e. 𝐽 (𝑠∗)−1 exists.

Lemma 6.4 (Invertibility). For any 𝑠 ∈ S, the Jacobian matrix
𝐽 (𝑠) is invertible.

Proof. Since it is a tridiagonal matrix, we can write down the

determinant in a recursive form for 𝑖 = 1, · · · , 𝑏,
𝑃𝑖 = −(2𝜆𝑠𝑖 + 1)𝑃𝑖−1 − 2𝜆𝑠𝑖−1𝑃𝑖−2

with initial values 𝑃0 = 1 and 𝑃−1 = 0, where

𝑃𝑖 =

����������
−2𝜆𝑠1 − 1 1 0

2𝜆𝑠1
. . .

. . .

. . .
. . . 1

0 2𝜆𝑠𝑖−1 −2𝜆𝑠𝑖 − 1

���������� .
Furthermore, we can verify that in fact, 𝑃𝑖 can be written in the

following form

𝑃𝑖 = (−1)𝑖 − 2𝜆𝑠𝑖𝑃𝑖−1 (9)

with 𝑃1 = −(2𝜆𝑠1 + 1). We can draw two conclusions from equation

(9), for any 𝑠 ∈ S:
• The sign of 𝑃𝑖 alternates, i.e. when 𝑖 is odd, 𝑃𝑖 < 0; and when

𝑖 is even, 𝑃𝑖 > 0.

• The absolute value of 𝑃𝑖 is no less than 1, i.e. |𝑃𝑖 | ≥ 1.
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Because the determinant is nonzero, 𝐽 (𝑠) is invertible. □

Next we introduce a lemma on the solution to Stein’s equation

(the Poisson equation) for the linear mean-field system. Consider a

function 𝑔 : S → S such that it satisfies the following equation

𝐿𝑔(𝑠) ¤=𝑑𝑔(𝑠)
𝑑𝑡

= ∇𝑔(𝑠) · 𝑙 (𝑠) = | |𝑠 − 𝑠∗ | |2 . (10)

According to the definition of the linear mean-field model in (8),

we have

∇𝑔(𝑠) · 𝐽 (𝑠∗) (𝑠 − 𝑠∗) = | |𝑠 − 𝑠∗ | |2 . (11)

Lemma 6.5 (Solution to Stein’s Eqation). The solution to the
Poisson equation (11) satisfies

∇𝑔(𝑠) = [𝐽𝑇 (𝑠∗)]−1 (𝑠 − 𝑠∗), (12)

and furthermore

∇2𝑔(𝑠) = [𝐽𝑇 (𝑠∗)]−1 and ∇3𝑔(𝑠) = 0.

Proof. According to Stein’s equation (11), we have

∇𝑔(𝑠)𝑇 𝐽 (𝑠∗) (𝑠 − 𝑠∗) = (𝑠 − 𝑠∗)𝑇 (𝑠 − 𝑠∗),
which implies[

∇𝑔(𝑠)𝑇 𝐽 (𝑠∗) − (𝑠 − 𝑠∗)𝑇
]
(𝑠 − 𝑠∗) = 0.

Since the equation has to hold for any 𝑠 , we have

∇𝑔(𝑠)𝑇 𝐽 (𝑠∗) − (𝑠 − 𝑠∗)𝑇 = 0,

which implies

∇𝑔(𝑠) = [𝐽𝑇 (𝑠∗)]−1 (𝑠 − 𝑠∗) .
The higher-order derivatives follow because ∇𝑔(𝑠) is a linear func-
tion of 𝑠 . □

6.3 Proof of Theorem 4.1
We start from analyzing the generator difference when state 𝑆 is

close to 𝑠∗ . In particular, we focus on

E [𝐿𝑔(𝑆) −𝐺𝑔(𝑆) |𝑆 ∈ B ] . (13)

Lemma 6.6. The generator applying to function 𝑔(𝑠) satisfies

𝐺𝑔(𝑠) = ∇𝑔(𝑠) · 𝑓 (𝑠) + 1

𝑁

𝑏∑
𝑖=1

∇2𝑔(𝑠)𝑖𝑖 ˜𝑓𝑖 (𝑠) (14)

where ∇2𝑔(𝑠)𝑖𝑖 is the 𝑖-th diagonal element of the Hessian matrix
∇2𝑔(𝑠) and

˜𝑓𝑖 (𝑠) =
1

2

[𝜆(𝑠2𝑖−1 − 𝑠2𝑖 ) + (𝑠𝑖 − 𝑠𝑖+1)] .

Proof. According to the definition of generator 𝐺, we have

𝐺𝑔(𝑠) =
𝑏∑
𝑖=1

𝜆𝑁 (𝑠2𝑖−1 − 𝑠2𝑖 ) [𝑔(𝑠 + 𝑒𝑖 ) − 𝑔(𝑠)]

+ 𝑁 (𝑠𝑖 − 𝑠𝑖+1) [𝑔(𝑠 − 𝑒𝑖 ) − 𝑔(𝑠)] .
By the Taylor expansion at the state 𝑠, we have

𝐺𝑔(𝑠) =
𝑏∑
𝑖=1

𝜆𝑁 (𝑠2𝑖−1 − 𝑠2𝑖 ) [∇𝑔(𝑠) · 𝑒𝑖 +
1

2

𝑒𝑇𝑖 ∇
2𝑔(𝑠)𝑒𝑖 ]

+ 𝑁 (𝑠𝑖 − 𝑠𝑖+1) [∇𝑔(𝑠) · (−𝑒𝑖 ) +
1

2

𝑒𝑇𝑖 ∇
2𝑔(𝑠)𝑒𝑖 ]

=

𝑏∑
𝑖=1

∇𝑔(𝑠) · [𝜆(𝑠2𝑖−1 − 𝑠2𝑖 ) − (𝑠𝑖 − 𝑠𝑖+1)]𝑁𝑒𝑖

+ 1

2

𝑁𝑒𝑇𝑖 ∇
2𝑔(𝑠)𝑒𝑖 [𝜆(𝑠2𝑖−1 − 𝑠2𝑖 ) + (𝑠𝑖 − 𝑠𝑖+1)]

=∇𝑔(𝑠) · 𝑓 (𝑠) + 1

𝑁

𝑏∑
𝑖=1

∇2𝑔(𝑠)𝑖𝑖 ˜𝑓𝑖 (𝑠) .

The first equality holds because ∇3𝑔(𝑠) = 0 according to Lemma

6.5. □

Assume the state 𝑠 is close to the equilibrium point 𝑠∗ such that

| |𝑠 − 𝑠∗ | |2𝑟 ≤ 1

𝑁 𝜖 . We define

𝑥𝑖 = 𝑠𝑖 − 𝑠∗𝑖

and obtain the Taylor expansion of
˜𝑓𝑖 (𝑠) at the equilibrium point

𝑠∗ as follows:

˜𝑓𝑖 (𝑠) =
1

2

[𝜆(𝑠2𝑖−1 − 𝑠2𝑖 ) + (𝑠𝑖 − 𝑠𝑖+1)]

=
𝜆

2

[(𝑠∗𝑖−1 + 𝑥𝑖−1)2 − (𝑠∗𝑖 + 𝑥𝑖 )2]

+ 1

2

(𝑠∗𝑖 + 𝑥𝑖 − 𝑠∗𝑖+1 − 𝑥𝑖+1)

=
𝜆

2

[(𝑠∗𝑖−1)
2 + 2𝑥𝑖−1𝑠∗𝑖−1 + 𝑥2𝑖−1 − (𝑠∗𝑖 )

2 − 2𝑥𝑖𝑠
∗
𝑖 − 𝑥2𝑖 ]

+ 1

2

(𝑠∗𝑖 + 𝑥𝑖 − 𝑠∗𝑖+1 − 𝑥𝑖+1)

=
𝜆

2

[(𝑠∗𝑖−1)
2 − (𝑠∗𝑖 )

2] + 1

2

(𝑠∗𝑖 − 𝑠∗𝑖+1) +𝑂 ( 1

𝑁
𝜖
2𝑟

)

= ˜𝑓𝑖 (𝑠∗) +𝑂 ( 1

𝑁
𝜖
2𝑟

), (15)

where the last equality holds because | |𝑠 − 𝑠∗ | |2𝑟 ≤ 1

𝑁 𝜖 implies

|𝑥𝑖 | ≤ 1

𝑁
𝜖
2𝑟
.

Consider a state 𝑠, which is close to the equilibrium point, i.e.

∥𝑠−𝑠∗∥2𝑟 ≤ 1

𝑁 𝜖 .According to Stein’s equation (11) and the previous

lemma, we have

𝐿𝑔(𝑠) −𝐺𝑔(𝑠)
=∇𝑔(𝑠) · 𝐽 (𝑠∗) (𝑠 − 𝑠∗) − ∇𝑔(𝑠) · 𝑓 (𝑠)

− 1

𝑁

𝑏∑
𝑖=1

∇2𝑔(𝑠)𝑖𝑖 ˜𝑓𝑖 (𝑠)

=∇𝑔(𝑠) ·
(
𝐽 (𝑠∗) (𝑠 − 𝑠∗) − 𝑓 (𝑠)

)
− 1

𝑁

𝑏∑
𝑖=1

∇2𝑔(𝑠)𝑖𝑖
(
˜𝑓𝑖 (𝑠∗) +𝑂

(
1

𝑁
𝜖
2𝑟

))
=∇𝑔(𝑠) ·

(
𝐽 (𝑠∗) (𝑠 − 𝑠∗) − 𝑓 (𝑠)

)
− 1

𝑁

𝑏∑
𝑖=1

∇2𝑔(𝑠)𝑖𝑖 ˜𝑓𝑖 (𝑠∗)

− 1

𝑁

𝑏∑
𝑖=1

∇2𝑔(𝑠)𝑖𝑖𝑂
(

1

𝑁
𝜖
2𝑟

)
.

According to Lemma 6.5, we have

∇𝑔(𝑠) = [𝐽𝑇 (𝑠∗)]−1 (𝑠 − 𝑠∗) and ∇2𝑔(𝑠) = [𝐽𝑇 (𝑠∗)]−1,
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which are the functions of 𝐽 (𝑠∗) .
Since the mean-field is a second-order system, we have

𝑓 (𝑠) =𝑓 (𝑠∗) + 𝐽 (𝑠∗) (𝑠 − 𝑠∗)

+ 1

2

< 𝑠 − 𝑠∗,∇2 𝑓 (𝑠∗) (𝑠 − 𝑠∗) >,

where ∇2 𝑓 (𝑠∗) is the Hessian of 𝑓 (𝑠) at equilibrium point. For any

𝑠 ∈ S and 𝑖 = 1, · · · , 𝑏, the Hessian has the following form for 𝑓𝑖 (𝑠)

∇2 𝑓𝑖 (𝑠)𝑘 𝑗 =
𝜕2 𝑓𝑖 (𝑠)
𝜕𝑠 𝑗 𝜕𝑠𝑘

=


−2𝜆, if 𝑗 = 𝑘 = 𝑖,

2𝜆, if 𝑗 = 𝑘 = 𝑖 − 1,

0, otherwise.

Substituting it into the generator difference, we obtain

E
[
𝐿𝑔(𝑆) −𝐺𝑔(𝑆)

�� 𝑆 ∈ B
]

=E
[
[𝐽𝑇 (𝑠∗)]−1 (𝑆 − 𝑠∗) · ( 1

2

< 𝑆 − 𝑠∗,∇2 𝑓 (𝑠∗) (𝑆 − 𝑠∗) >)

− 1

𝑁

𝑏∑
𝑖=1

∇2𝑔(𝑆)𝑖𝑖 ˜𝑓𝑖 (𝑠∗) −
1

𝑁

𝑏∑
𝑖=1

∇2𝑔(𝑆)𝑖𝑖𝑂 ( 1

𝑁
𝜖
2𝑟

)�� 𝑆 ∈ B
]
. (16)

This generator difference includes three terms. Note that ∇2𝑔(𝑠) =
[𝐽𝑇 (𝑠∗)]−1 = [𝐽−1 (𝑠∗)]𝑇 according to Lemma 6.5.

We next introduce two lemmas about matrix 𝐽−1 (𝑠∗) that is
involved in all three terms in Equation (16).

Lemma 6.7 (Upper Bound on the Entries of Matrix 𝐽−1 (𝑠∗)).
For all 𝑖, 𝑗 = 1, · · · , 𝑏 and a sufficiently large 𝑁 , we have

| [𝐽 (𝑠∗)]−1𝑖 𝑗 | ≤
12

𝛾
𝑁 2𝛼+2𝜉 .

Proof. First, we show that for any Φ ∈ 𝑅𝑏 \ {0}, we have

| |𝐽 (𝑠∗)Φ| |
| |Φ| | ≥ 𝛿0

where 𝛿0 ≥ 𝛾

12𝑁 2𝛼+2𝜉 is the absolute value of the negative drift of

the original mean-field model, by Lemma 18 in [9].

Since 𝐽 (𝑠∗) is a tridiagonalmatrix that satisfies 𝐽 (𝑠∗)𝑖,𝑖+1 𝐽 (𝑠∗)𝑖+1,𝑖 >
0 for all 𝑖 , we know that 𝐽 (𝑠∗) can be diagonalized and the eigenval-

ues are all real. Also, we know the eigenvalues are negative from

the fact that 𝐽 (𝑠∗) is a Hurwitz matrix.

Define the following Lyapunov functions

𝐿2 (𝑠) =

√√√
𝑏∑

𝑘=1

(𝑠𝑘 − 𝑠∗
𝑘
)2

𝐿𝑤 (𝑠) =
𝑏∑

𝑘=1

𝑤𝑘 |𝑠𝑘 − 𝑠∗
𝑘
|

where𝑤𝑘 ≥ 1, 𝑘 = 1, · · · , 𝑏 are defined in technical report [9]. First,

it is easy to verify that the following inequality holds:

𝐿2 (𝑠) ≤ 𝐿𝑤 (𝑠) .

For the linear mean-field model ¤𝑠 (𝑡) = 𝐽 (𝑠∗) (𝑠 − 𝑠∗), we have the
following exponential convergence result

𝐿2 (𝑠 (𝑡)) =

√√√
𝑏∑

𝑘=1

(𝑠𝑘 (𝑡) − 𝑠∗
𝑘
)2 ≤ 𝐿𝑤 (𝑠 (𝑡)) ≤ 3 exp(−𝛿0𝑡)

for 𝑡 ≥ 0. The proof for the second inequality is similar to the expo-

nential convergence of the original mean-field system for power-

of-two-choices, which can be found in Lemma 18 of our technical

report [9].

Since 𝐽 (𝑠∗) is diagonalizable, any vector in a𝑏-dimensional space

can be represented by a linear combination of the orthonormal

eigenvectors 𝑟𝑘 , for 𝑘 = 1, · · · , 𝑏, of the matrix 𝐽 (𝑠∗). Suppose the
eigenvalues are 𝜇1 ≤ 𝜇2 ≤ · · · ≤ 𝜇𝑏 < 0. We can write the initial

condition as

𝑥 ¤=𝑠 − 𝑠∗ =
𝑏∑
𝑖=1

𝛼𝑖𝑟𝑖

for some 𝛼𝑖 ∈ 𝑅 and 𝑖 = 1, · · · , 𝑏. Therefore, the general solution
𝑠 (𝑡) of linear dynamical system ¤𝑠 (𝑡) = 𝐽 (𝑠∗) (𝑠 (𝑡) − 𝑠∗) is a linear
combination of the eigenvectors, i.e.

𝑠 (𝑡) − 𝑠∗ =
𝑏∑
𝑖=1

𝛼𝑖𝑟𝑖 exp(𝜇𝑖𝑡).

So

𝐿2 (𝑠 (𝑡)) = | |
𝑏∑
𝑖=1

𝛼𝑖𝑟𝑖 exp(𝜇𝑖𝑡) | | ≤ 3 exp(−𝛿0𝑡) .

Since this is true for all 𝑥 ∈ R𝑏 , we can choose an initial condition

such that 𝛼𝑖 = 0 for 𝑖 = 1, · · · , 𝑏 − 1 such that for all 𝑡 ≥ 0

𝐿2 (𝑠 (𝑡)) = | |𝛼𝑏 exp(𝜇𝑏𝑡) | | ≤ 3 exp(−𝛿0𝑡).

Thus we conclude

𝜇𝑏 ≤ −𝛿0 .

As a result, for any Φ ∈ 𝑅𝑏 \ {0}, for some 𝛽𝑖 ∈ R and 𝑖 = 1, · · · , 𝑏,
we have

Φ = 𝛽1𝑟1 + 𝛽2𝑟2 + · · · + 𝛽𝑏𝑟𝑏

𝐽 (𝑠∗)Φ = 𝛽1 𝐽 (𝑠∗)𝑟1 + 𝛽2 𝐽 (𝑠∗)𝑟2 + · · · + 𝛽𝑏 𝐽 (𝑠∗)𝑟𝑏
= 𝛽1𝜇1𝑟1 + 𝛽2𝜇2𝑟2 + · · · + 𝛽𝑏𝜇𝑏𝑟𝑏

so

| |𝐽 (𝑠∗)Φ| |
| |Φ| | =

√∑𝑏
𝑖=1 𝛽

2

𝑖
𝜇2
𝑖√∑𝑏

𝑖=1 𝛽
2

𝑖

≥

√
𝜇2
𝑏

∑𝑏
𝑖=1 𝛽

2

𝑖√∑𝑏
𝑖=1 𝛽

2

𝑖

= |𝜇𝑏 | ≥ 𝛿0 .

Next, based on the results in [19] (in particular, by letting 𝑥 =

𝑦 = 0 for both diagonal elements Eq.(4.5) [19] and non-diagonal

elements Eq.(4.7) [19]), we obtain an upper bound for any 𝑖, 𝑗 =

1, · · · , 𝑏

| [𝐽 (𝑠∗)]−1𝑖 𝑗 | ≤
1

𝛿0
≤ 12

𝛾
𝑁 2𝛼+2𝜉 .

□

7
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Lemma 6.8 (Lower Bound on a Diagonal Entry of Matrix

𝐽−1 (𝑠∗)). For tridiagonal matrix 𝐽−1 (𝑠∗), we have that

|𝐽−1
11

(𝑠∗) | ≥ 1

3

(17)

and for all 𝑖 = 1, · · · , 𝑏, we have 𝐽−1
𝑖𝑖

(𝑠∗) < 0.

Proof. Suppose we have an 𝑛 × 𝑛 tridiagonal matrix 𝐺𝑛 with

entries denoted as follows

𝐺𝑛 =


𝑥1 𝑦1 0

𝑧1 𝑥2
. . .

. . .
. . . 𝑦𝑛−1

0 𝑧𝑛−1 𝑥𝑛


.

We can define a backward continued fraction𝐶𝑛 [13] by the entries

of 𝐺𝑛 as follows

𝐶𝑛 = [𝑥1 +
−𝑦1𝑧1
𝑥2+

−𝑦2𝑧2
𝑥3+

· · · −𝑦𝑛−1𝑧𝑛−1
𝑥𝑛

]

= 𝑥𝑛 + −𝑦𝑛−1𝑧𝑛−1
𝑥𝑛−1 + −𝑦𝑛−2𝑧𝑛−2

. . .
𝑥
2
+ −𝑦

1
𝑧
1

𝑥
1

.

Define sequence {𝑃𝑛} such that for 1 ≤ 𝑘 ≤ 𝑛 − 1

𝑃𝑘+1 = 𝑥𝑘+1𝑃𝑘 − 𝑦𝑘𝑧𝑘𝑃𝑘−1

and 𝑃0 = 1 and 𝑃1 = 𝑥1. From the proof of Lemma 6.4, we know the

sequence is also the iterative equation for the determinant of 𝐽 (𝑠∗).
We introduce the following theorems in [13] to apply to our case.

Theorem 6.9. Let the 𝑛 × 𝑛 tridiagonal matrix 𝐺𝑛 have the form
above. Let 𝐺−1

𝑛 = [𝑤𝑖 𝑗 ] denote the inverse of 𝐺𝑛 . Then

𝑤𝑖𝑖 =
1

𝐶𝑖
+

𝑛∑
𝑘=𝑖+1

( 1

𝐶𝑘

𝑘−1∏
𝑡=𝑖

𝑦𝑡𝑧𝑡

(𝐶𝑡 )2
) .

□

Theorem 6.10. Let the matrix 𝐺𝑛 be as above. Then for 𝑛 ≥ 1

det𝐺𝑛 = 𝑃𝑛 .

□

Theorem 6.11. Consider a general backward continued function
𝐴 = [𝑎0 + 𝑏1

𝑎1+
𝑏2
𝑎2+ · · · 𝑏𝑛𝑎𝑛 ]. If 0 ≤ 𝑘 ≤ 𝑛 and 𝐶𝑘 is the 𝑘th backward

convergent to 𝐴, i.e. 𝐶𝑘 = [𝑎0 + 𝑏1
𝑎1+

𝑏2
𝑎2+ · · · 𝑏𝑘𝑎𝑘 ], then 𝐶𝑘 =

𝑃𝑘
𝑃𝑘−1

. □

Thus some of the convergents of 𝐶𝑛 are

𝐶1 = [𝑥1] =
𝑃1

𝑃0
= 𝑥1,

𝐶2 = [𝑥1 +
−𝑦1𝑧1
𝑥2

] = 𝑃2

𝑃1
=
𝑥1𝑥2 − 𝑦1𝑧1

𝑥1
.

So in our case, we have that for 𝑖 = 1, · · · , 𝑏 − 1

𝑦𝑖 = 1

𝑧𝑖 = 2𝜆𝑠∗𝑖

and for 𝑖 = 1, · · · , 𝑏
𝑥𝑖 = −2𝜆𝑠∗𝑖 − 1.

Therefore, we have

𝐶1 = 𝑥1 = −2𝜆𝑠∗
1
− 1,

𝐶2 =
𝑥1𝑥2 − 𝑦1𝑧1

𝑥1
= −2𝜆𝑠∗

2
− 1 +

2𝜆𝑠∗
1

2𝜆𝑠∗
1
+ 1

= −2𝜆𝑠∗
2
− 1

2𝜆𝑠∗
1
+ 1

.

Note that sequence {𝑃𝑛} is the determinant of an 𝑛 × 𝑛 Jacobian

matrix and we already know that the sign of 𝑃𝑛 alternates, so

𝐶𝑘 =
𝑃𝑘
𝑃𝑘−1

< 0 for all 𝑘 = 1, · · · , 𝑏 according to Theorem 6.11.

Furthermore, from Theorem 6.9, we conclude that 𝐽−1 (𝑠∗)𝑖𝑖 < 0 for

all 𝑖 = 1, · · · , 𝑏. Furthermore, we have

𝐽−1 (𝑠∗)11 =
1

𝐶1

+
𝑏∑

𝑘=2

( 1

𝐶𝑘

𝑘−1∏
𝑡=1

2𝜆𝑠∗𝑡
(𝐶𝑡 )2

) < 0

and

|𝐽−1 (𝑠∗)11 | ≥
1

|𝐶1 |
≥ 1

3

where the last inequality holds because 0 ≤ 𝑠∗
1
≤ 1. This concludes

the proof of Lemma 6.8. □

Based on Lemmas 6.7 and 6.8, we obtain the following lemmas

to bound the terms in (16).

Lemma 6.12. Given | |𝑠 − 𝑠∗ | |2𝑟 ≤ 1

𝑁 𝜖 , we have

| | [𝐽𝑇 (𝑠∗)]−1 (𝑠 − 𝑠∗)· < 𝑠 − 𝑠∗,∇2 𝑓 (𝑠∗) (𝑠 − 𝑠∗) > | |

= 𝑂

(
1

𝑁
3𝜖
2𝑟
−2𝛼−3𝜉

)
. (18)

Proof. Consider the 2-norm of the first term in (16). We have

| | [𝐽𝑇 (𝑠∗)]−1 (𝑠 − 𝑠∗)· < 𝑠 − 𝑠∗,∇2 𝑓 (𝑠∗) (𝑠 − 𝑠∗) > | |

≤| | [𝐽𝑇 (𝑠∗)]−1 (𝑠 − 𝑠∗) | | | | < 𝑠 − 𝑠∗,∇2 𝑓 (𝑠∗) (𝑠 − 𝑠∗) > | |

≤| | [𝐽𝑇 (𝑠∗)]−1 | | | |𝑠 − 𝑠∗ | | | | < 𝑠 − 𝑠∗,∇2 𝑓 (𝑠∗) (𝑠 − 𝑠∗) > | |

≤2
√
2𝜆 | | [𝐽𝑇 (𝑠∗)]−1 | | | |𝑠 − 𝑠∗ | |3, (19)

where the third inequality holds because

| | < 𝑠 − 𝑠∗,∇2 𝑓 (𝑠∗) (𝑠 − 𝑠∗) > | |

=

√√√
𝑏∑
𝑖=1

[(𝑠 − 𝑠∗)∇2 𝑓𝑖 (𝑠∗) (𝑠 − 𝑠∗)]2

=

√√√
𝑏∑
𝑖=1

(
2𝜆[(𝑠𝑖−1 − 𝑠∗

𝑖−1)2 − (𝑠𝑖 − 𝑠∗
𝑖
)2]

)
2

=2𝜆

√√√
𝑏∑
𝑖=1

[(𝑠𝑖−1 − 𝑠∗
𝑖−1)2 − (𝑠𝑖 − 𝑠∗

𝑖
)2]2

≤2𝜆

√√√
𝑏∑
𝑖=1

(𝑠𝑖−1 − 𝑠∗
𝑖−1)4 + (𝑠𝑖 − 𝑠∗

𝑖
)4

≤2
√
2𝜆

√√√
𝑏∑
𝑖=1

(𝑠𝑖 − 𝑠∗
𝑖
)4

≤2
√
2𝜆

√√√
[
𝑏∑
𝑖=1

(𝑠𝑖 − 𝑠∗
𝑖
)2]2 = 2

√
2𝜆 | |𝑠 − 𝑠∗ | |2 .
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Furthermore, from Lemma 6.7, for sufficiently large 𝑁 , we have

| | [𝐽𝑇 (𝑠∗)]−1 | | = | | [𝐽 (𝑠∗)]−1 | | ≤max

𝑖 𝑗
| [𝐽 (𝑠∗)]−1𝑖 𝑗 | × 𝑏

=𝑂 (𝑁 2𝛼+2𝜉 ) ×𝑂 (log𝑁 )

=𝑂 (𝑁 2𝛼+3𝜉 ). (20)

Since | |𝑠 − 𝑠∗ | |2𝑟 ≤ 1

𝑁 𝜖 , combining inequalities (19) and (20), we

have

| | [𝐽𝑇 (𝑠∗)]−1 (𝑠 − 𝑠∗)· < 𝑠 − 𝑠∗,∇2 𝑓 (𝑠∗) (𝑠 − 𝑠∗) > | |

≤2
√
2𝜆 ×𝑂

(
𝑁 2𝛼+3𝜉

)
× 1

𝑁
3𝜖
2𝑟

= 𝑂

(
1

𝑁
3𝜖
2𝑟
−2𝛼−3𝜉

)
.

□

Lemma 6.13. Given | |𝑠 − 𝑠∗ | |2𝑟 ≤ 1

𝑁 𝜖 , we have

− 1

𝑁

𝑏∑
𝑖=1

∇2𝑔𝑖𝑖 (𝑠) ˜𝑓𝑖 (𝑠∗) ≥
𝜆𝛾

3𝑁 1+𝛼 . (21)

Proof. Recall that ∇2𝑔(𝑠) = [𝐽𝑇 (𝑠∗)]−1 and for 𝑖 = 1, · · · , 𝑏,
𝐽−1 (𝑠∗)𝑖𝑖 < 0 according to Lemma 6.8. It is easy to check that for

𝑖 = 1, · · · , 𝑏, ˜𝑓𝑖 (𝑠∗) ≥ 0. Therefore, for 𝑖 = 1, · · · , 𝑏, we have

−∇2𝑔(𝑠)𝑖𝑖 ˜𝑓𝑖 (𝑠∗) ≥ 0.

Furthermore, we also have

˜𝑓𝑖 (𝑠∗) =
1

2

[𝜆((𝑠∗𝑖−1)
2 − (𝑠∗𝑖 )

2) + (𝑠∗𝑖 − 𝑠∗𝑖+1)]

= 𝜆[(𝑠∗𝑖−1)
2 − (𝑠∗𝑖 )

2],

where the second equality holds because 𝑠∗ is the equilibrium point.

Thus, for 𝑖 = 1 by equation (1b), we have

˜𝑓1 (𝑠∗) = 𝜆[1 − (𝑠∗
1
)2] ≥ 𝜆(1 − 𝜆2) ≥ 𝜆(1 − 𝜆) = 𝜆𝛾

𝑁𝛼

which implies

1

𝑁

𝑏∑
𝑖=1

∇2𝑔𝑖𝑖 (𝑠) ˜𝑓𝑖 (𝑠∗) ≥ − 1

𝑁
𝐽−1
11

(𝑠∗) ˜𝑓1 (𝑠∗) ≥
𝜆𝛾

3𝑁 1+𝛼 .

□

Lemma 6.14. Given | |𝑠 − 𝑠∗ | |2𝑟 ≤ 1

𝑁 𝜖 , we have

− 1

𝑁

𝑏∑
𝑖=1

∇2𝑔𝑖𝑖 (𝑠) ˜𝑓𝑖 (𝑠∗) = 𝑂 ( 1

𝑁 1−2𝛼−3𝜉 ). (22)

Proof. It is easy to check that
˜𝑓𝑖 (𝑠∗) ≤ 1 for 𝑖 = 1, · · · , 𝑏. Recall

that |∇2𝑔(𝑠)𝑖𝑖 | ≤ 𝑂 (𝑁 2𝛼+2𝜉 ). Therefore, we have

− 1

𝑁

𝑏∑
𝑖=1

∇2𝑔𝑖𝑖 (𝑠) ˜𝑓𝑖 (𝑠∗) =
𝑏

𝑁
𝑂 (𝑁 2𝛼+2𝜉 ) = 𝑂 ( 1

𝑁 1−2𝛼−3𝜉 ).

□

Lemma 6.15. Given | |𝑠−𝑠∗ | |2𝑟 ≤ 1

𝑁 𝜖 , we have that for a sufficiently
large 𝑁 ,− 1

𝑁

𝑏∑
𝑖=1

∇2𝑔(𝑠)𝑖𝑖𝑂 ( 1

𝑁
𝜖
2𝑟

)
 = 𝑂

(
1

𝑁 1+ 𝜖
2𝑟
−2𝛼−3𝜉

)
. (23)

Proof. Recall that |∇2𝑔(𝑠)𝑖𝑖 | = 𝑂 (𝑁 2𝛼+2𝜉 ) for 𝑖 = 1, · · · , 𝑏.
Thus, we have

| | − 1

𝑁

𝑏∑
𝑖=1

∇2𝑔(𝑠)𝑖𝑖𝑂 ( 1

𝑁
𝜖
2𝑟

) | |

≤ 𝑏

𝑁
𝑂 (𝑁 2𝛼+2𝜉 ) ·𝑂 ( 1

𝑁
𝜖
2𝑟

) = 𝑂

(
1

𝑁 1+ 𝜖
2𝑟
−2𝛼−3𝜉

)
.

□

Based on these lemmas, we are now able to characterize the

generator difference when state 𝑆 is close to 𝑠∗ .

Lemma 6.16. For 0 < 𝛼 < 1

18
and a sufficiently large 𝑁 , we have

E [𝐿𝑔(𝑆) −𝐺𝑔(𝑆) |𝑆 ∈ B ]

= − 1

𝑁

𝑏∑
𝑖=1

[𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗) + 𝑜
(

1

𝑁 1+𝛼

)
, (24)

with the following choice of parameters

3(1 + 𝛼 + 𝜉)
1 − 18𝛼 − 27𝜉

< 𝑟, (25)

2𝑟 (1 + 3𝛼 + 3𝜉)
3

< 𝜖 < 𝑟 (1 − 4𝛼 − 7𝜉) − 1 − 𝛼 − 𝜉 . (26)

Proof. Under the conditions of the lemma, it is easy to check

that the upper bounds on the first and third terms in equation (16)

are order-wise smaller than the lower bound on the second term,

i.e.

3𝜖

2𝑟
− 2𝛼 − 3𝜉 > 1 + 3𝛼 + 3𝜉 − 2𝛼 − 3𝜉 = 1 + 𝛼

and

1 + 𝜖

2𝑟
− 2𝛼 − 3𝜉 > 1 + 1

3

+ 𝛼 + 𝜉 − 2𝛼 − 3𝜉

> (1 + 𝛼) + ( 2
9

− 2𝜉),

where the last inequality is due to the fact 0 < 𝛼 < 1

18
. Therefore,

the lemma holds. □

We also remark that there exist parameters that satisfy the condi-

tions in the lemma because the right-hand side of 𝜖 in (26) is larger

than the left-hand side given that the 𝑟 satisfies (25), where 𝑟 has

to be large enough. For example, when 𝛼 = 0.05, 𝑟 needs to at least

32 and 𝜖 can be 24.54. It is easy to check that we can find a small

enough 𝜉 .

6.3.1 Proof of Theorem 4.1. We again choose parameters that sat-

isfy the following conditions:

3(1 + 𝛼)
1 − 18𝛼 − 27𝜉

< 𝑟

2𝑟 (1 + 3𝛼 + 3𝜉)
3

< 𝜖 < 𝑟 (1 − 4𝛼 − 7𝜉) − 1 − 𝛼 − 𝜉

and 𝜉 > 0 is arbitrarily small. Then, for sufficiently large 𝑁 , the

mean square distance is

E[| |𝑆 − 𝑠∗ | |2]
=E

[
| |𝑆 − 𝑠∗ | |2

��𝑆 ∉ B
]
P (𝑆 ∉ B) + E

[
| |𝑆 − 𝑠∗ | |2

��𝑆 ∈ B
]
P (𝑆 ∈ B)

9
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=𝑂 (log𝑁 ) ×𝑂 ( 1

𝑁 𝑟 (1−4𝛼−7𝜉)−𝜖 ) +
(
− 1

𝑁

𝑏∑
𝑖=1

∇2𝑔(𝑠)𝑖𝑖 ˜𝑓𝑖 (𝑠∗)

+𝑜 ( 1

𝑁 1+𝛼 )
)
×

(
1 −𝑂 ( 1

𝑁 𝑟 (1−4𝛼−7𝜉)−𝜖 )
)

=𝑂

(
1

𝑁 𝑟 (1−4𝛼−7𝜉)−𝜖−𝜉

)
− 1

𝑁

𝑏∑
𝑖=1

∇2𝑔(𝑠)𝑖𝑖 ˜𝑓𝑖 (𝑠∗)

+𝑂
(

1

𝑁 1−2𝛼−3𝜉

)
×𝑂

(
1

𝑁 𝑟 (1−4𝛼−7𝜉)−𝜖

)
+ 𝑜

(
1

𝑁 1+𝛼

)
= − 1

𝑁

𝑏∑
𝑖=1

[𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗) + 𝑜
(

1

𝑁 1+𝛼

)
,

where the second equality holds because | |𝑠−𝑠∗ | |2 ≤ 𝑏 = 𝑂 (log𝑁 ) .
Note that with the choice of parameters 𝑟, 𝜖 and 0 < 𝛼 < 1

18
, the

lower bound on the term − 1

𝑁

∑𝑏
𝑖=1 [𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗) + 𝑜 ( 1

𝑁 1+𝛼 ) is
𝑂 ( 1

𝑁 1+𝛼 ) while other terms are strictly upper bounded by this order

for sufficiently large 𝑁 .

6.4 Proof of Corollary 4.2
From Lemma 6.16 with the same parameter choices, it is easy to

check that for a sufficiently large 𝑁 , we have

E [𝐿𝑔(𝑆) −𝐺𝑔(𝑆) |𝑆 ∈ B ] ≤ − 3

𝑁

𝑏∑
𝑖=1

[𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗).

Also, the following inequality holds for sufficiently large 𝑁

P

(
| |𝑆 − 𝑠∗ | |2𝑟 ≥ 1

𝑁 𝜖

)
≤ 1

𝑁 𝑟 (1−4𝛼−𝜉′ )−𝜖
≤ 1

𝑁 1+𝛼+𝜉 .

Then from the above two inequalities, for a sufficiently large 𝑁 , the

mean square distance is

E[| |𝑆 − 𝑠∗ | |2]
=E

[
𝐿𝑔(𝑆) −𝐺𝑔(𝑆)

��𝑆 ∉ B
]
P (𝑆 ∉ B)

+ E
[
𝐿𝑔(𝑆) −𝐺𝑔(𝑆)

��𝑆 ∈ B
]
P (𝑆 ∈ B)

≤ 𝑏

𝑁 1+𝛼+𝜉 − 3

𝑁

𝑏∑
𝑖=1

[𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗)

≤ 1

𝑁 1+𝛼 − 3

𝑁

𝑏∑
𝑖=1

[𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗)

≤ − 4

𝑁

𝑏∑
𝑖=1

[𝐽𝑇 (𝑠∗)]−1𝑖𝑖 ˜𝑓𝑖 (𝑠∗),

where the second from the last inequality holds because the first

term is larger than the right-hand side of inequality (21).

7 CONCLUSION
In this paper, we established calculable bounds on the mean-square

errors of the power-of-two-choices mean-field model in heavy-

traffic. Our approach combined SSC and Stein’s method with a

linearized mean-field models, and characterized the dominant term

of the mean square error. Our simulation results confirmed the the-

oretical bounds and showed that the bounds are valid even for small

size systems such as when 𝑁 = 10. This recipe of combining SSC

and Stein’s method for linearized mean-field model can be applied

to other mean-field models beyond the power-of-two-choices load

balancing algorithm.
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