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ABSTRACT

This paper provides a recipe for deriving calculable approxima-
tion errors of mean-field models in heavy-traffic with the focus on
the well-known load balancing algorithm — power-of-two-choices
(Po2). The recipe combines Stein’s method for linearized mean-field
models and State Space Concentration (SSC) based on geometric
tail bounds. In particular, our approach divides the state space into
two regions, a neighborhood near the mean-field equilibrium and
the complement of that. We first use a tail bound to show that the
steady-state probability being outside the neighborhood is small.
Then, we use a linearized mean-field model and Stein’s method to
characterize the generator difference, which provides the dominant
term of the approximation error. From the dominant term, we are
able to obtain an asymptotically-tight bound and a nonasymptotic
upper bound, both are calculable bounds, not order-wise scaling
results like most results in the literature. Finally, we compare the
theoretical bounds with numerical evaluations to show the effec-
tiveness of our results. We note that the simulation results show
that both bounds are valid even for small size systems such as a
system with only ten servers.
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1 INTRODUCTION

Large-scale and complex stochastic systems have become ubiqui-
tous, including large-scale data centers, the Internet of Things, and
city-wide ride-hailing systems. Queueing theory has been a funda-
mental mathematical tool to model large-scale stochastic systems,
and to analyze their steady-state performance. For example, steady-
state analysis of load balancing algorithms in many-server systems
is one of the most fundamental and widely-studied problems in
queueing theory [11]. When the stationary (steady-state) distri-
bution is known, the mean queue length and waiting time can be
easily calculated, which reveal the performance of the system and
can be used to guide the design of load balancing algorithms. How-
ever, for large-scale stochastic systems in general, it is extremely
challenging (if not impossible) to characterize a system’s stationary
distribution due to the curse of dimensionality. For example, in a
queueing system with N servers, each with a buffer of size b, the
size of state space is at the order of N' b Moreover, in such a system,
the transition rate from a state to another may be state-dependent,
so it becomes almost impossible to characterize its stationary dis-
tribution unless the system has some special properties such as
when the stationary distribution has a product form [20]. To ad-
dress these challenges, approximation methods such as mean-field
models, fluid models, or diffusion models have been developed to
study the stationary distributions of large-scale stochastic systems.

This paper focuses on stochastic systems with many agents,
in particular, a many-server, many-queue system such as a large-
scale data center. For such systems, mean-field models have been
successfully used to approximate the stationary distribution of the
system in the large-system limit (when the system size becomes
infinity), see e.g. the seminal papers on power-of-two-choices [18,
22]. These earlier results, however, are asymptotic in nature by
showing that the stationary distribution of the stochastic system
weakly converges to the equilibrium point of the corresponding
mean-field model as the system size becomes infinity. So these
results do not provide the rate of convergence or the approximation
error for finite-size stochastic systems. Furthermore, because of
the asymptotic nature of the traditional mean-field model, it only
applies to the light-traffic regime where the normalized load (load
per server) is strictly less than the per-server capacity in the limit.

Both issues have been recently addressed using Stein’s method.
[24] studied the approximation error of the mean-field models in
the light-traffic regime using Stein’s method, and showed that for a

large-class of mean-field models, the mean-square error is O (%) ,

where N is the number of agents in the system. [25] further ex-
tended Stein’s method to mean-field models for heavy-traffic sys-
tems and developed a framework for quantifying the approximation
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errors by connecting them to the local and global convergence of
the mean-field models. While these results overcome the weakness
of the traditional mean-field analysis, they only provide order-wise
results, i.e. the scaling of the approximation errors in terms of the
system size. Later, a refined mean-field analysis was developed in
[6, 7]. In particular, [7] established the coefficient of the % approxi-
mation error for light-traffic mean-field models, which provides an
asymptotically exact characterization of the approximation error.
However, the refined result in [7] is based on the light-traffic mean-
field model and the analysis uses a limiting approach. Therefore, the
result and method do not apply to heavy-traffic mean-field models.

This paper obtains calculable error bounds of heavy-traffic mean-
field models. We consider the supermarket model [18], and assume
jobs are allocated to servers according to a load balancing algorithm
called power-of-two-choices [18, 22]. While the approximation
error of this system has been studied in [25], it only characterizes
the order of the error (in terms of the number of servers) and does
not provide a calculable error bound. The difficulty of obtaining a
calculable error bound is that the mean-field model of power-of-two-
choices is a nonlinear system, so quantifying the convergence rate
explicitly is difficult. In this paper, we overcome this difficulty by
focusing on a linearized heavy-traffic mean-field model, linearized
around its equilibrium point, so that we can explicitly solve Stein’s
equation. The linearized model cannot approximate the system
well when the state of the system is not near the equilibrium point,
which is further taken care of by using a geometric tail bound to
show that such deviation only occurs with a small probability. The
main results of this paper are summarized below.

o For the supermarket model with power-of-two-choices, we
obtain two error bounds for the system in heavy-traffic. We
first characterize the dominant term in the approximation
error, which is a function of the Jacobian matrix of the mean-
field model at its equilibrium and is asymptotically accurate.
We then obtain a general upper bound which holds for finite
size systems. We obtain the explicit forms of both bounds so
they are calculable given the load and the system size.

e From the methodology perspective, the combination of state-
space-concentration (SSC) and the linearized mean-field
model provides a recipe for studying other mean-field mod-
els in heavy-traffic. The most difficult part of applying Stein’s
method for mean-field models is to establish the derivative
bounds. While perturbation theory [12] provides a principled
approach, we can only obtain order-wise results when facing
nonlinear mean-field models (see e.g. [25]). Our approach is
based on a basic hypothesis that if the mean-field solution
would well approximate the steady-state of the stochastic
system, then the steady-state should concentrate around
the equilibrium point. Therefore, the focus should be on the
mean-field system around its equilibrium point, which can
be reduced to a linearized version. This basic hypothesis can
be supported analytically using SSC based on the geometric
tail bound [1]. In other words, the state-space concentra-
tion result leads to a linear system with a “solvable” Stein’s
equation, which is the key to applying Stein’s method for
steady-state approximation.
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2 RELATED WORK

This section summarizes the related results in two categories. From
the methodology perspective, this paper follows the line of research
on using Stein’s method for steady-state approximation of queueing
systems introduced in [2, 3]. This paper uses Stein’s method for
mean-field approximations, which has been introduced in [24] and
extended in [6, 7, 14, 25]. Stein’s method for mean-field models
(or fluid models) can also be interpreted as drift analysis based on
integral Lyapunov functions, which was introduced in an earlier
paper [21]. The combination of SSC and Stein’s method was used
in [2], which introduces Stein’s method for steady-state diffusion
approximation of queueing systems. The framework is later applied
to mean-field (fluid) models where Stein’s equation for a simplified
one-dimensional mean-field models can be solved [15, 16]. In this
paper, the linearized system is still a multi-dimensional system.
SSC has been used in heavy-traffic analysis based on the Lyapunov-
drift method, which was developed in [4] and used for analyzing
computer systems and communication systems (see e.g. [17, 23]).
From the perspective of the power-of-two-choices load-balancing
algorithm, for the light-traffic regime, [22] proved the weak conver-
gence of the stationary distribution of power-of-two-choices to its
mean field limit, the order-wise rate of convergence was established
in [24], and [7] proposed a refined mean-field model with signifi-
cantly smaller approximation errors. The scaling of queue lengths
of power-of-two-choices in heavy-traffic has only been studied
recently, first in [5] for finite-time analysis (transient analysis) and
then in [25] for steady-state analysis. Our result was inspired by
[7], which refines the mean-field model using the Jacobian matrix
of the light-traffic mean-field equilibrium. Different from [7], based
on state-space-concentration and linearized mean-field model, we
established calculable error bounds for heavy-traffic mean-field
models where the mean-field equilibrium and the associated Jaco-
bian matrix are both functions of the system load and system size,
which prevented us from using the asymptotic approach used in

[7].

3 SYSTEM MODEL

In this section, we first introduce the well-known supermarket
model under the power-of-two-choices load balancing algorithm.
Our focus is the stationary distribution of such a system in the
heavy-traffic regime (i.e. the load approaches to one as the number
of servers increases). Then, we present the mean-field model, tai-
lored for the N-server system [25] and the exact load of the N-server
system. The solution to the mean-field model is an approximation
of the stationary distribution of the stochastic system. We will then
present the approach to characterize the approximation error based
on Stein’s equation.

Consider a many-server system with N homogeneous servers,
where job arrivals follow a Poisson process with rate AN and service
times are i.i.d. exponential random variables with rate one. Each
server can hold at most b jobs, including the one in service. We
consider A =1 — % for some 0 < y < land a > 0. When a = 0,
A is a constant independent of N which we call the light-traffic
regime. When a > 0, the arrival rate depends on N and approaches
to one as N — oo, which we call the heavy-traffic regime. We
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assume the system is operated by a load balancing algorithm called
power-of-two-choices [18, 22].

Power-of-Two-Choices (Po2): When a job arrives, Po2 samples
two servers uniformly at random among N servers and dispatches
the incoming job to the server with the shorter queue size. Ties are
broken uniformly at random.

AN

~
~
~

- L B
QQ...QN

server 1 server 2

Figure 1: Power-of-Two-Choices

Let S;(t) denote the fraction of servers with queue size at least
i at time t. The term Sy (¢) = 1, V¢ by definition. Under the finite
buffer assumption with buffer size b, S;(t) = 0,Vi > b + 1,Vt.

Throughout the paper, we assume that the buffer size b can be up
to the order of log N, i.e. b = O(log N). Define set S to be

S={s|1>2s1 >+ =55 >0},

and b-dimensional vector S(t) = [S1(t), S2(¢),- -+, Sp(¢)]. It is easy
to verify that the state S(t) is a continuous time Markov chain
(CTMC). Define e to be a b-dimensional vector such that the kth
entry is one and all other entries are zero. Under Po2, the transition
rate from state s and s’ is as follows:

N(sg = Sgq1)if s’ =s— FFand1 <k <b-1
Nsp,if s’ =s — eﬁ”

Ry = /1N(s]2<_l - si),ifs’ =5+ eﬁk
TP “AN(s?_| = s2) = N(sg = sgs1),if s = s
0, otherwise

The first and second terms correspond to the event that a job departs

from a server with queue size k so s decreases by ﬁ and the third

term corresponds to the event that a job arrives and joins a server

with queue size k — 1. We define a normalized transition rate to be
Rs,s’

Qs,s’ = )

N

We focus on the steady-state analysis of the system, i.e. the
distribution of S(c0). At the steady-state, S(o0) is a b-dimensional
random vector. For simplicity, let S denote S(0). In this paper, we
use uppercase letters for random variables and lowercase letters
for deterministic values.
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The mean-field model [18, 22, 25] for this system is
$=f(5)= D) Reg(s'=9)=N > gee(s’=5).
s':s'#s s':s’#s
According to the definition of Ry ¢ and g5/, we have

A(SIZ<—1 - slzc) —(Sk —Sks1), 1<k<b-1
A(Si_l - Si) — Sps k=b.

Sk = fie(s) = {

The equilibrium point of this mean-field model, denoted by s*,
satisfies the following conditions:

sg =1 (1a)
A ((s;;_l)2 - (sZ)z) —(si-sf,)=0, 1<k<b-1 (ib)
2 ((s;_l)z - (s;;)z) —s =0, (10)

The existence and uniqueness of the equilibrium point have been
proved in [18]. Define

g(s) = —/0 d(s(t),s*)dt, s(0) =s.

where d(s(t),s") is a distance function. Then, by the definition of
g(s), we have

Vg(s) - f(s) = d(s,s%). ()

Equation (2) is called the Poisson equation or Stein’s equation. For
any bounded g, we have the following steady state equation (Basic
Adjoint Relationship (BAR) [8])

E[Gg(S)] =0, (3

where the expectation is taken with respect to the steady state
distribution of S and G is the generator of the CTMC. Combining
(2) and (3), we have

E [d(S,5")] =E[Vg(S) - f(S) = Gg(S)]

ZRs,sﬂs,s')] : @

where I'(s,s”) = g(s”) — g(s) — Vg(s) - (s’ —s). From (4), Stein’s
method provides us a way to study the approximation error, defined
by E[d(S, s*)], by bounding the generator difference between the
original system and the mean-field model.

=-E

4 MAIN RESULTS AND METHODOLOGY

This section summarizes our main results, which include an asymp-
totically tight approximation error bound and an upper bound that
holds for finite N. We remark again these bounds can be calculated
numerically and are not order-wise results as in most earlier papers.

THEOREM 4.1 (Asymptotically Tight Bound). For0 < a < 1—18,
we have that

1
N

L

E[lIS - s"II”] = -

b
U o (i)
=1
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where
—-22sF -1 1 0
. 2Ms%
J(s) = !
. . 1
5 *
0 2As,_,  —2Asy -

is the Jacobian matrix of the mean-field model f(s) at equilibrium
point s*,

Fis) = 5 (1 (GE0% - 677) + 65 = 5ia0)

fori=1,2,---,b, and [A] ;jl denotes the (i, j)th entry of the inverse
of matrix A. O

The theorem states that the mean square error E[||S — s*||?] has
an asymptotic dominant term — ﬁ Z?:1 T (sM] l._il f} (s*). Therefore,
we have

b
==Y UTEEAED. 6

i=1

hm NE[[IS - s*|1%]

Note that Zb U T(s%) ];il ﬁ (s™) is negative, so the dominating term
is positive.

COROLLARY 4.2 (General Upper Bound). For0 < a < %8 and
a sufficiently large N, we have that
b

BIIS - 1121 < —< > U7 (")

i=1

1 i(s). (7)

Z

]

This result tells us that we can have a calculable upper bound
for heavy-traffic which holds for finite N.

S2
1

0 1 5

Figure 2: Illustration of the Inside and Outside Regions for
b=2

Our analysis combines Stein’s method with a linear dynamical
system and SSC. We divide the state space into two regions based
on the mean-field solution: one region including those states “close”
to the equilibrium point s*, and the other region that includes all
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other states. For example, considering the case of b = 2, the state
space is a two-dimensional region

(0= (& L)l zae 01m0] < porr.

As shown in Figure 2, we divide the state space into two regions
separated by the dashed circle. The size of the circle is small and

) where both € and
r are positive values (the choices of these two Values will become

clear in the analysis).
For the two different regions, we apply different techniques:

depends on N, in particular, the radius is O (

(1) We first establish higher moment bounds that upper bound
the probability that the steady state is outside the dashed
circle. The proof is based on the geometric tail bound in
[1, 10] and by showing that there is a “significant” negative
drift that moves the system closer to the equilibrium point
when the system is outside of the dashed circle.

(2) For the states close to the equilibrium point, i.e, inside the
dashed circle, from the control theory, we know that the
mean-field nonlinear system behavior can be well approx-
imated by the linearized dynamical system. By carefully
choosing the parameters, we can look into the generator
difference and calculate the dominant term of the approxi-
mation error by using the linearized mean-field model. The
linearity enables us to solve Stein’s equation, which is a key
obstacle in applying Stein’s method.

5 SIMULATIONS

Given a = 0.05, we performed simulations for two different choices
of y and different system sizes. The purpose of these simulations is
to compare the approximation errors calculated from the simula-
tions with the asymptotically tight bound and the general upper
bound. The results are based on the average of 10 runs, where each
run simulates 10° time steps. We averaged over the last 9 x 108 time
slots of each run to compute the steady state values.

For each run, we calculated the empirical mean square error
multiplied by the system size N. Recall that the asymptotically
tight bound and upper bound are

b
= > TG
i=1

and

b
—a > T AGY,
i=1
respectively. Note that the two bounds only differ by a factor of
four.

Table 1: y = 0.1, ¢ = 0.05

N 10 100 1,000 10,000
A 0.9109 | 0.9206 | 0.9292 | 0.9369
Simulation 4.2975 3.6884 | 3.9553 | 4.4068

Asymptotic Bound | 3.2773 | 3.6411 | 4.0455 | 4.4955
13.1092 | 14.5644 | 16.1820 | 17.9820

Upper Bound
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Table 2: y = 0.01, & = 0.05

N 10 100 1,000 10,000

A 0.9911 0.9921 0.9929 0.9937
Simulation 77.9532 | 46.4641 38.7702 | 40.2093
Asymptotic Bound | 28.2972 | 31.6293 | 35.3629 | 39.5457
Upper Bound 113.1888 | 126.5172 | 141.4516 | 158.1828

Tables 1 and 2 summarize the results with y = 0.1, = 0.05
and y = 0.01,« = 0.05. We varied the size of the system in both
cases. Note that the arrival rate is a function of the system size
and approaches one as N increases. As N increases, the simulation
results are in the same order with the dominant terms and are
bounded by the upper bounds.

Our numerical results show that the asymptotic bound matches
the empirical error very well, and approaches the empirical error
as N increases. In particular, for y = 0.1 and a = 0.05, the results
are close even when N = 100; and for y = 0.01 and a = 0.05, the
results are close when N = 1, 000.

As we can see, the upper bound is valid even for small size sys-
tems, e.g. N = 10, which shows the effectiveness of our results. From
a practical point of view, both bounds are calculable, so together,
they provide good estimates of the mean-square error.

6 PROOFS

In this section, we assume arrival rate is in the form of A = 1 —
%, which means the arrival rate is the function of system size
N. As a result, generally the equilibrium point is also a function
of N, a notation like s*N) is a more proper way of describing the
dependency on the system size. But for convenience, we still use s*
to denote the equilibrium point.

As we mentioned earlier, the results are established by looking
at the system in two different regions, near the equilibrium point
and outside. We next present our proof following this idea.

6.1 State Space Concentration

First, we present some preliminary convergence results in heavy-

traffic for finite buffer size b = O(log N).

LEMMA 6.1. Forany0 < a < 0.25 and a sufficiently large N, we
have

1

*112

E[IIS = s™|I7] < Niia7E

where & > 0 is an arbitrarily small number. O

LEMMA 6.2 (HIGHER MOMENT BounDps). Forr € N and a suffi-
ciently large N, we have

1

*||12r
BllIs=s"I"] < imaamm
O

The proofs for both lemmas can be found in our technical report

[9].
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LEMMA 6.3 (STATE SPACE CONCENTRATION). Letting € > 0 and
r € N, for a sufficiently large N, we have

1 1
*|12r - -
IP)(”S_S I = Ne) < Nr(1-4a-78)~€"
m}

Proor. Applying the Markov inequality to the result in Lemma
6.2, we have

. 1 E[IIS - s*|*"]
B(IS =517 > 10) < = —
N¢
NE
< -
~ Nr(1-4a-78)-€
_ 1
T Nr(-4a-78)-€”

6.2 Linear Mean-Field Model

Define a set of states to be 8 = {s | ||s — s*||*" < #} which are
the states close to the equilibrium point. Let d(s, s*) = ||s — s*||? be
the distance function. We consider a simple linear system

$=1(s) = J(s*) (s — s*), 8

where J(s*) is the Jacobian matrix of f(s) at the equilibrium point
s*. In heavy-traffic, the entries of J(s*) are functions of N as well
when s* is a function of N. The Jacobian matrix at s is

—2As1—-1 1 0
21s
Js) = !
. . 1
0 2Asp_1  —24Asp -1

We first introduce a lemma stating that matrix J(s*) is invertible,
ie. J(s*)7! exists.

LEMMA 6.4 (INVERTIBILITY). Foranys € S, the Jacobian matrix
J(s) is invertible.

ProOF. Since it is a tridiagonal matrix, we can write down the
determinant in a recursive form fori =1,---, b,

P; = —(Zﬂ.si + 1)Pl‘_1 — 2Asi—_1Pi—2

with initial values Py = 1 and P_; = 0, where

—2).51 -1 1 0
21
p=| 1
. . 1
0 2Asi—1  —2As;—1

Furthermore, we can verify that in fact, P; can be written in the
following form

P =(-1)" - 2As;P;y ©)
with P; = —(2As1 +1). We can draw two conclusions from equation
(9), for any s € S:

o The sign of P; alternates, i.e. when i is odd, P; < 0; and when
iis even, P; > 0.
e The absolute value of P; is no less than 1, i.e. |P;| > 1.
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Because the determinant is nonzero, J(s) is invertible. O

Next we introduce a lemma on the solution to Stein’s equation
(the Poisson equation) for the linear mean-field system. Consider a
function g : § — & such that it satisfies the following equation

Lg(S)id‘Z—(:) = Vg(s) - 1(s) = [ls = s"[I”. (10)

According to the definition of the linear mean-field model in (8),
we have

Vg(s) - J(s") (s = %) = [ls = s"||”. (11)

LEMMA 6.5 (SOLUTION TO STEIN’S EQUATION). The solution to the
Poisson equation (11) satisfies

Vg(s) = [JT ()17 (s =5, (12)
and furthermore

Vig(s) = [JT(sH]™" and Vig(s) =o.

PRrROOF. According to Stein’s equation (11), we have
Vg(s)T1(s") (s =57 = (s = )T (s = "),
which implies
Vg(s)T (") = (s =57 | (s =s") =0.
Since the equation has to hold for any s, we have
Vg(s)TJ(s") = (s =5 =0,
which implies
Vg(s) = U7 ()17 (s = 5.

The higher-order derivatives follow because Vg(s) is a linear func-
tion of s. ]

6.3 Proof of Theorem 4.1

We start from analyzing the generator difference when state S is
close to s*. In particular, we focus on

E[Lg(S) - Gg(S) IS € B]. (13)

LEMMA 6.6. The generator applying to function g(s) satisfies

b
Gg(s) = Vg(s) - () + - 2 VW) 9

where V2¢(s);; is the i-th diagonal element of the Hessian matrix
V24(s) and

fi9) = 5 AGEy = 5+ Gsi = s

Proor. According to the definition of generator G, we have

b
Gy(s) = Z AN(s2, = s2)[g(s +er) — g(s)]

i=1
+N(si —si+1) [9(s — ei) — g(s)].

By the Taylor expansion at the state s, we have

b
Gy(s) = Z AN(s2_; = sH)[Vg(s) - e; + %eiTVzg(s)ei]
i=1
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+ NG5t = 51)[g(5) - (&) + 7l Vog(s)er]
b
B =1

Vg(s) - [A(s?; = s2) = (si — siv1) I Ne;

i

1
+ 5Nl V2g(s)er[ Ay = s) + (si = sivn)]

b
1 ~
=Vg(s) - f(5) + 5 21 V29(s)iifi(s).
The first equality holds because V3g(s) = 0 according to Lemma
6.5. m]

Assume the state s is close to the equilibrium point s* such that
[Is — s¥]|?" < % We define

Xi=Sj—S;
i =Si—S;

and obtain the Taylor expansion of fi(s) at the equilibrium point
s* as follows:

fi9) =512, = D)+ (51 = sian)]

A’ * *
25 [(51'_1 + xi—l)2 - (si + xi)z]

1 .
+ 5(3}k +Xi = Sjyq — Xis1)

A % \2 * 2 #\2 * 2
=5 [(s;_1)° +2xi—187_ 1 +x;_1 — (s7)° — 2xi8; — x7]

1 * %
5 (8 + X0 =iy - Xi+1)

A | 1
=5[(Sf_1) - ()] + E(Sf —si) + O(E)
~ 1
=fi(s") + O(N—i), (15)
2r
where the last equality holds because ||s — s*||*" < % implies
) 1
|xi] < ~NE

Consider a state s, which is close to the equilibrium point, i.e.
ls—s*||?" < # According to Stein’s equation (11) and the previous
lemma, we have

Lg(s) = Gyg(s)
=Vg(s) - J(s")(s = s") = Vg(s) - f(s)

b
1 .
- — ) V%g(s)iifi(s)
N
=Vg(s) - (J(s)(s = s") = f(s))

2 3wt i o[ )
Nizl g\s)ii \Ji Ni

2r

b
=Vg(s) - ()5 =5) = £65)) = 1= O, V(S (5"
i=1

1 b 1
- — V24(s)i;0 — .
N; g(8)ii (Nﬂ)

According to Lemma 6.5, we have

Vg(s) = JT(s")]17 (s = %) and V2g(s) = [JT (s")] 7",
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which are the functions of J(s*).
Since the mean-field is a second-order system, we have

() =f(s") +J(s")(s = 57)

1 .
+5<s — s V2F(s*) (s — s¥) >,

where V2 (s*) is the Hessian of f(s) at equilibrium point. For any
seSandi=1,---,b, the Hessian has the following form for f;(s)

azf() =2\, ifj=k=i
i(s
Vifi(s)j = —o—> =424, ifj=k=i-1,
JsjOsy )
0, otherwise.

Substituting it into the generator difference, we obtain
E [Lg(S) - Gg(S) | S € B]
[T NS =5 (5 <=5 AT (S -57) )
1
N3
|'se s (16)

1 b ~ 1 b
- = > V29(8)iifi(s") = = ) V29(8)iiO(—=)

This generator difference includes three terms. Note that V2g(s) =
UT(s9H17 = [J71(s")]T according to Lemma 6.5.

We next introduce two lemmas about matrix J~!(s*) that is
involved in all three terms in Equation (16).

LEMMA 6.7 (UPPER BOUND ON THE ENTRIES OF MATRIX J~1(s%)).
Foralli,j=1,---,b and a sufficiently large N, we have

_ 12 o
IGMIG < 7N2 V2,

Proor. First, we show that for any @ € RP\ {0}, we have

el

> 8o
1]

where §y > 12Né++2£ is the absolute value of the negative drift of
the original mean-field model, by Lemma 18 in [9].

Since J(s*) is a tridiagonal matrix that satisfies J (s*); i+1.J (s*)i+1,i >

0 for all i, we know that J(s*) can be diagonalized and the eigenval-
ues are all real. Also, we know the eigenvalues are negative from
the fact that J(s*) is a Hurwitz matrix.

Define the following Lyapunov functions

b
Lou(s) = ) wels = sl
k=1

where wi > 1,k =1,-- -, b are defined in technical report [9]. First,
it is easy to verify that the following inequality holds:

Ly(s) < Lw(s).
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For the linear mean-field model $(t) = J(s*)(s — s*), we have the
following exponential convergence result

b

La(s(2)) = (s (£) = 5% < Lw(s(1)) < 3exp(=dot)

k=1

for t > 0. The proof for the second inequality is similar to the expo-
nential convergence of the original mean-field system for power-
of-two-choices, which can be found in Lemma 18 of our technical
report [9].

Since J(s*) is diagonalizable, any vector in a b-dimensional space
can be represented by a linear combination of the orthonormal
eigenvectors ry, for k = 1,-- -, b, of the matrix J(s*). Suppose the
eigenvalues are y; < pig < -+ < pp, < 0. We can write the initial
condition as

b
. *
x=s—s = Z air;
i=1

for some @; € Rand i = 1,---,b. Therefore, the general solution
s(t) of linear dynamical system $(t) = J(s*)(s(t) — s*) is a linear
combination of the eigenvectors, i.e.

b
s(t) —s" = Z airi exp(uit).
i=1

So

b

Lo(s(0) = || ), airi exp(put)]| < 3exp(=Sot).
i=1

Since this is true for all x € R? , we can choose an initial condition
such thata; =0fori=1,--- ,b—1suchthatforallt >0

La(s(2)) = [lap exp(ppt)|| < 3 exp(—dot).
Thus we conclude
Uy < —do.
As aresult, for any @ € RP \ {0}, for some f; e Randi=1,---,b,
we have
D =pfir1+ fora+- -+ Pprp
TP = i (s")r1 + o) (s )ra + -+ Bp] (s¥)rp
= Prpars + Papiara + -+ Bpiipty

SO

el _ NI B gL A

B g e

Next, based on the results in [19] (in particular, by letting x =
y = 0 for both diagonal elements Eq.(4.5) [19] and non-diagonal
elements Eq.(4.7) [19]), we obtain an upper bound for any i, j =
1,---,b

= |upl = So.
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LeEmMA 6.8 (LOWER BOoUND ON A D1AGONAL ENTRY OF MATRIX
J7(s*)). For tridiagonal matrix J~'(s*), we have that

1, % 1
U6l = 5 17)
and foralli=1,---,b, we have]i;l(s*) < 0.

PRroOF. Suppose we have an n X n tridiagonal matrix G, with
entries denoted as follows

X1 Y1 0
z X
Gn — 1 2
Yn-1
0 Zn-1 Xn

We can define a backward continued fraction Cy, [13] by the entries
of G, as follows

—Y121 Y222 —Yn-12n-1
Co=lxi + - ]
X9+ X3+ Xn
—Yn—-12n-1
=xn+ — .
Xn1+ Yn-22n-2
.x2+7€(1121

Define sequence {P,} such thatfor1 <k <n-1

Pri1 = xp41Pr — Yz Pr—1

and Py = 1 and P; = x;. From the proof of Lemma 6.4, we know the

sequence is also the iterative equation for the determinant of J(s*).
We introduce the following theorems in [13] to apply to our case.

THEOREM 6.9. Let the n X n tridiagonal matrix G, have the form
above. Let G,! = [wij] denote the inverse of Gn. Then
k-1
1 Sl Yzt
wij = — + Z (— 5)-
Ci ki1 Cr t=i (Ct)

THEOREM 6.10. Let the matrix Gy, be as above. Then forn > 1
detG,, = Py,.
]

THEOREM 6.11. Consider a general backward continued function
A=lao+ by by Z—:].IfO <k<n ande is the kth backward

art a+
convergent to A, i.e. Cy. = [ap + %% e ] then Cy. = P—kl. O

Thus some of the convergents of C,, are

P
Ci=[x1]= = =x1,
1= [x1] B -
-1z1, _ P2 xixa—yiz
Co=[x1+—]=—=———.
X2 P1 X1
So in our case, we have thatfori=1,--- ,b—1
yi=1
zi = 2As}

andfori=1,---,b
xj = —2As] — 1.
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Therefore, we have

Ci=x1 = —ZAST -1,

X1X2 — Y12 2s%

Lyll :_2155_14_*—1:_2/15;_
X1 2/181+l

1
Cy = —_—
2 2As] +1
Note that sequence {P,} is the determinant of an n X n Jacobian
matrix and we already know that the sign of P, alternates, so
Cr = p= < Oforallk = 1,---

Furthermore, from Theorem 6.9, we conclude that J~1 (s)ii < 0 for

,b according to Theorem 6.11.

alli=1,---,b. Furthermore, we have
k—1
ZAst
TN = —+Z(—n @ )2
and
Ul = >
Sl =
IC |

where the last inequality holds because 0 < s] < 1. This concludes
the proof of Lemma 6.8. O

Based on Lemmas 6.7 and 6.8, we obtain the following lemmas
to bound the terms in (16).

LEMMA 6.12. Given ||s —s*||?" < %, we have

T s =5%) < s =" V2f(s") (s = ") > |]

=0 (—NT_IM 3§) (18)
Proor. Consider the 2-norm of the first term in (16). We have
NI (s = 57) < s =5 V2f(s") (s = s%) > |
<N GHI s = s < s =5 V2F(s) (s =) > |
< GHI s = s* Il < s = 5% V2 f(s") (s = s7) > ||
<2V2I[77 ()17 Mlls = 5711, (19)
where the third inequality holds because
Il <s=s"V2f(s")(s =) > |

b
=\ 2106 =SRG2

i=1

(2165507 - 5= 571

-
B
|

1l
—_

[(si-1 = s7_1)? = (si — 57)?]?

(si-1 =87+ (si —s7)*

A
N

—
M@

Il
—-

b
<2V2Ay| Y (si = 57)*
\&

12 = 2v27||s — s*||2.

b
gzm\ [Z(si _ sty
i=1
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Furthermore, from Lemma 6.7, for sufficiently large N, we have
NI O = 1M < H?XI[J(S*)]Z;I xb
=O0(N%**28) x O(log N)
=O(N?*3%), (20)

Since ||s — s*||?" < # combining inequalities (19) and (20), we
have

T (DI s =57 <s —s*,sz(s*)(s =s") >

1
<2\/_/1><O(N2“+35) — :o(—)
Nar NT*ZQ’ 3§
O
LEMMA 6.13. Given ||s — s*[|?" < Nf’ we have
-= Z V2ii(s)fi(s") 2 3N1+a (21)

PRroOF. Recall that V2g(s) = [JT(s*)] ' and fori = 1,---,b,
J(s%)i < 0 according to Lemma 6.8. It is easy to check that for
i=1,---,b, fi(s*) = 0. Therefore, fori=1,---

-V29(s)iifi(s*) > 0.
Furthermore, we also have
fils® )— A% = (59)%) + (5] = s5,p)]
= A[(s,’_l)z - (51*) 1,

where the second equality holds because s* is the equilibrium point.
Thus, for i = 1 by equation (1b), we have

,b, we have

) = AL 6D 2 20 -2 2 201 -2) = 2L
which implies
= ZV gii(9)fi(s") 2 ——Ju (A6 2 S
|
LEMMA 6.14. Given ||s — s*[|?" < %, we have
1 b ~ 1
-5 Z; Vi (5)fi(s") = Oz (22)
iz
PrOOF. It is easy to check thatfi(s*) <1fori=1,---,b. Recall
that [V2g(s);i| < O(N?@*28) Therefore, we have
- ZV gi()fils") = 0<N2“+2§) = O(N1 a5
m|

LEMMA 6.15. Given ||s—s*[|?" < # we have that for a sufficiently
large N,

1 b 1
—= > V%4()ii0(—)
H N ; ! NZ

1
‘=O(m) 9

MobiHoc °21, July 26-29, 2021, Shanghai, China

Proor. Recall that [V2g(s);;| = O(N22*%) for i = 1,---,b.

Thus, we have

1 b 1
- V24(s)::0 —
- § 2 Vo0l

Lo 1
Ni) - N1+2%—2a—3§ '

k 20+2&
SNO(N ) - O(
[m]

Based on these lemmas, we are now able to characterize the
generator difference when state S is close to s*.

LEMMA 6.16. For0 < a < 13 and a sufficiently large N, we have

E [Lg(S) -Gg(9) 1S € B]

1
=——ZU G >+o(N1+a) (24)
with the following choice of parameters
31+a+¢)
1—18a — 27¢ =r (5)
2r(l_‘—z—a{—g@<e<r(1—40(—7§)—1—0{—§". (26)

Proor. Under the conditions of the lemma, it is easy to check
that the upper bounds on the first and third terms in equation (16)
are order-wise smaller than the lower bound on the second term,
ie.

3e
5—20{—3§> 143a+36-2a-3¢=1+a

and

€ 1
1+ —-2a-3¢>1+-+a+&-2a -3¢
2r 3
2
>(1+a)+(——2§),

where the last inequality is due to the fact 0 < a < 7. Therefore,
the lemma holds. O

We also remark that there exist parameters that satisfy the condi-
tions in the lemma because the right-hand side of € in (26) is larger
than the left-hand side given that the r satisfies (25), where r has
to be large enough. For example, when a = 0.05, r needs to at least
32 and € can be 24.54. It is easy to check that we can find a small
enough &.

6.3.1  Proof of Theorem 4.1. We again choose parameters that sat-
isty the following conditions:

3(1+a)
T_18a—27¢
w<e<r(l—4a—7§)-l‘a_§

and ¢ > 0 is arbitrarily small. Then, for sufficiently large N, the
mean square distance is

E[||S - s*[1°]
=E[|IS - s*|I*|S ¢ B| P(S ¢ B) +E[|IS - s*||*|S € B] P (S € B)
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=0(log N) x O(

b
1 1 ) i
Nraaam )t _ﬁ;V 9(s)iifi(s%)

1 1
+O(W)) X (1 - O(m))

b
_ 1 1 2 -y
0 (Nr(l—4a—7§)—€—§) N Z‘ Vig(S)ufi(s")
i=

1 1 1
+0 (Nl—Za—3§) X0 (Nr(1—4a—7§)—e) to (N1+OC)

=__Z] (s")] zzlf(s )+O(N11+zx)

where the second equality holds because ||s—s*||> < b = O(log N).
Note that with the choice of parameters r,e and 0 < a < 11—8, the

T (DIfi(s7) + o) s

1 yb
lower bound on the term —; >;

O( ﬁ) while other terms are strictly upper bounded by this order
for sufficiently large N.

6.4 Proof of Corollary 4.2

From Lemma 6.16 with the same parameter choices, it is easy to
check that for a sufficiently large N, we have

b

E[Lg(S) - Gg(S)|S€ B] < - J (s i)

i=

Also, the following inequality holds for sufﬁciently large N

2r 1 1
PLIS=sTI" =2 — | < — < :
NE€ Nr(1—4a=&)-e Nlta+é
Then from the above two inequalities, for a sufficiently large N, the
mean square distance is

E(lls - s"II*]
=E [Lg(S) - Gg(S)|S ¢ B| P (S ¢ B)
+E [Lg(S) - Gg(S)|S € B| P(S € B)

b

b
< vz~ M)

b
- = PTG
l:1

b ~
DTG,

i=1

N1+a

ZI*

where the second from the last inequality holds because the first
term is larger than the right-hand side of inequality (21).

7 CONCLUSION

In this paper, we established calculable bounds on the mean-square
errors of the power-of-two-choices mean-field model in heavy-
traffic. Our approach combined SSC and Stein’s method with a
linearized mean-field models, and characterized the dominant term
of the mean square error. Our simulation results confirmed the the-
oretical bounds and showed that the bounds are valid even for small
size systems such as when N = 10. This recipe of combining SSC
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and Stein’s method for linearized mean-field model can be applied
to other mean-field models beyond the power-of-two-choices load
balancing algorithm.
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