
A Constrained Bandit Approach for Online Dispatching

Xin Liu
University of Michigan, Ann Arbor

xinliuee@umich.edu

Bin Li
University of Rhode Island

binli@uri.edu
Pengyi Shi

Purdue University

shi178@purdue.edu

Lei Ying
University of Michigan, Ann Arbor

leiying@umich.edu

ABSTRACT
This paper considers constrained online dispatching with
unknown arrival, reward and constraint distributions [4].
The problem is formulated as a constrained bandits prob-
lem. We propose a novel online learning-based algorithm,
named POND, standing for Pessimistic-Optimistic oNline
Dispatching, which achieves O(

√
T ) regret and O(1) con-

straint violation. Both bounds are sharp. Our experiments
on synthetic and real datasets show that POND achieves
low regret with minimal constraint violations.

1. PROBLEM FORMULATION
Online dispatching refers to the process (or an algorithm)

that dispatches incoming jobs to available servers in real-
time. The problem arises in many different fields. Exam-
ples include routing customer calls to representatives in a
call center, assigning patients towards in a hospital, dis-
patching goods to different shipping companies, scheduling
packets over multiple frequency channels in wireless commu-
nications, routing search queries to servers in a data center,
selecting an advertisement to display to an Internet user,
and allocating jobs to workers in crowdsourcing.

In this paper, we consider the following discrete-time model
over a finite horizon T for the online dispatching problem.
We assume there are N types of jobs, the set of jobs is de-
noted by N = {1, 2 · · · , N}, and M types of servers, the
set of servers is denoted by M = {1, 2 · · · ,M}. Here a job
may represent a patient who comes to an emergency room
and needs to be hospitalized, an Internet user who browses
a webpage, or a job submitted to a crowdsourcing platform;
and a server may represent a hospital ward or a doctor in
the emergency room, an advertisement of a product, or a
worker registered at the crowdsourcing platform. We assume
that jobs of type i arrive at each time slot t according to a
stochastic process Λi(t) with unknown mean E[Λi(t)] = λi.
The online dispatcher sends xi,j(t) of the Λi(t) jobs to server
j, and receives reward Ri,j,s(t) for the sth job. We model
Ri,j,s(t) to be a random variable in with an unknown dis-
tribution with E[Ri,j,s(t)] = ri,j , ∀s which is the case in
many applications such as order dispatching in logistics, on-
line advertising, crowdsourcing, and patient assignment in
healthcare (e.g. click-through-rates are unknown to adver-
tising platforms, average job completion quality is unknown
to crowdsourcing platforms and quality of treatment is un-
known to hospital operators). Furthermore, we assume the
arrival processes {Λi(t)} and the reward processes {Ri,j,s(t)}
are i.i.d across job types, servers and time slots.

The goal of this paper is to develop learning-based online
dispatching algorithms to maximize the cumulative reward
over T time slots:

T−1∑
t=0

E

⎡
⎣∑

i,j

xi,j(t)∑
s=1

Ri,j,s(t)

⎤
⎦ (1)

The objective function in (1) is equivalent to

T−1∑
t=0

E

[∑
i,j

ri,jxi,j(t)

]
(2)

because xi,j(t) is independent of Ri,j,s(t), ∀s.
For a resource-constrained server system, we aim to max-

imize the objective (2) subject to a set of constraints K,
including the capacity, fairness and resource budget con-
straints (all these constraints are unified into general forms),
formulated as follows:

max
x(t)

T−1∑
t=0

E

[∑
i,j

ri,jxi,j(t)

]
(3)

s.t.
∑
j

xi,j(t) = Λi(t), ∀i, xi,j(t) ≥ 0, ∀i, j. (4)

T−1∑
t=0

E

[∑
i

w
(k)
i,j (t)xi,j(t)− ρ

(k)
j (t)

]
≤ 0, ∀j, k, (5)

where xi,j(t) is the number of type-i jobs assigned to server
j at time slot t and x(t) is its matrix version in which the
(i, j)th entry is xi,j(t); (4) represents the allocating conser-
vation for job arrivals; and (5) can represent the capacity,

fairness and resource budget constraints, where w
(k)
i,j (t) is

the “weight” of a type-i job to server j and ρ
(k)
j (t) is the

corresponding “requirement”. w
(k)
i,j (t) and ρ

(k)
j (t) are i.i.d

across i, j, and t.
We note this problem (3)-(5) is a constrained contextual

bandit problem where N is the set of contexts and M is
the set of actions (called “One Bandit per Context” in [3]).
When action j is applied to a context of type-i, the learner
receives reward Ri,j and incurs cost wi,j . We next propose a
novel online learning algorithm to maximize the cumulative
reward while keeping constraints satisfied.



2. POND ALGORITHM
There are two major challenges in solving (3)-(5) in real

time: unknown reward distributions, and unknown statistics
of arrival processes and constraint parameters. To tackle
unknown reward distributions, we utilize UCB learning [1]
to estimate ri,j . To deal with unknown arrival processes and
stochastic constraints, we maintain virtual queues on the
server side. The virtual queues are related to dual variables
[5, 6], which are used to track constraint violations.

Virtual Queues:

Q
(k)
j (t+ 1)

=

[
Q

(k)
j (t) +

∑
i

w
(k)
i,j (t)xi,j(t)− ρ

(k)
j (t) + ε

]+

(6)

for any j ∈ M and k ∈ K. The operator (x)+ = max(x, 0).

Q
(k)
j (t) is the virtual queue associated to the kth constraint

imposed on server j.
∑

i w
(k)
i,j (t)xi,j(t) is the “total weight”

(e.g. capacity or budget consumption) on server j and ρ
(k)
j (t)

is the “requirement” (e.g. capacity or budget limit) on the
server j. ε is a tightness constant that decides the trade-off
between the regret and constraint violations, which we will
specify in the proof later. This idea of adding tightness was
inspired by the adaptive virtual queue (AVQ) used for the

Internet congestion control [2]. By choosing ε = O(1/
√
T ),

the algorithm presented next can achieve O(
√
T ) regret and

O(1) constraint violations.
To maximize the cumulative reward in (3) while keeping

constraint violations reasonably small, we incorporate the
learned reward and virtual queues in (6) to design POND
- Pessimistic-Optimistic oNline Dispatching (Algorithm 1).
In Algorithm 1, we first utilize the classic UCB algorithm
to learn the reward r̂i,j(t), then allocate the incoming jobs
according to a “max-weight” algorithm, and finally update
virtual queues and reward estimation according to the max-
weight dispatching decisions. Note that r̂i,j(t) = ∞ when
Ni,j(t− 1) = 0, which implies that ηi,j(t) = ∞. When mul-
tiple ηi,j(t) = ∞, we break the tie uniformly at random. In

weight ηi,j(t) = V r̂i,j(t)−∑
k w

(k)
i,j (t)Q

(k)
j (t), parameter V is

chose to be O(
√
T ) to balance the reward and virtual queues

(constraint violations). When the virtual queue Q
(k)
j (t) as-

sociated to capacity constraint is large (capacity constraint
of server j is violated too often), which implies the algorithm
allocates too many jobs to server j, weight ηi,j(t) tends to
be small so POND is less likely to allocate new incoming

jobs to server j. Similarly, when virtual queue Q
(k)
j (t) asso-

ciated to fairness constraint is large (fairness constraint of
server j has been violated), which implies server j has not
received sufficient number of jobs, weight ηi,j(t) tends to be

large (recall w
(k)
i,j (t) = −1 in fairness constraints) so POND

is more likely to allocate new incoming jobs to server j.
We remark that by replacing UCB learning with MOSS

learning r̂i,j(t) = r̄i,j(t − 1) +
√

2
Ni,j(t−1)

log T
M·Ni,j(t−1)

,

POND can achieve the tight regret bound O(
√
T ), and UCB

achieves regret bound O(
√
T log T ). However, in practice,

MOSS learning might explore too much and suffer from sub-
optimality and instability.

Algorithm 1: POND Algorithm.

Input: V, ε, Q
(k)
j (0) = 0 and r̄i,j(−1) = Ni,j(−1) = 0.

for t = 1, · · · , T − 1 do

UCB learning: r̂i,j(t) = r̄i,j(t− 1) +
√

log T
Ni,j(t−1)

;

Compute the weight of a type-i job to server j :

ηi,j(t) = V r̂i,j(t)−
∑
k

w
(k)
i,j (t)Q

(k)
j (t).

Observe jobs arrival Λi(t) and do max-weight
allocation:

xi,j(t) ∈ argmax
Λi(t)=

∑
j xi,j

∑
i,j

ηi,j(t)xi,j .

Update virtual queues according to (6).
Update the estimation of r̄i,j(t) according to the
rewards received:

Ni,j(t) = Ni,j(t− 1) + xi,j(t),

r̄i,j(t) =
r̄i,j(t− 1)Ni,j(t− 1) +

∑xi,j(t)

s=1 Ri,j,s(t)

Ni,j(t)
.

end

3. MAIN RESULTS
To analyze the performance of POND, we compare it

with an offline optimization problem given the reward, ar-
rival, and constraint parameters. By abuse of notation, de-

fine xi,j = 1
T

∑T−1
t=0 E[xi,j(t)], w

(k)
i,j = E[w

(k)
i,j (t)] and ρ

(k)
j =

E[ρ
(k)
j (t)] in the optimization problem (3)-(5). We consider

the following offline optimization problem (or fluid optimiza-
tion problem):

max
x

∑
i,j

ri,jxi,j (7)

s.t. λi =
∑
j

xi,j , ∀i, xi,j ≥ 0, ∀i, j, (8)

∑
i

w
(k)
i,j xi,j ≤ ρ

(k)
j , ∀j, k. (9)

where xi,j corresponds to the average number of type-i jobs
assigned to server j per time slot; (8) includes throughput
constraints; (9) includes capacity constraints, fairness con-
straints and resource budget constraints.

Next, we define performance metrics including regret and
constraint violation, and present an informal version of the
main theorem.

Regret: Let X be the feasible set and x∗ be the solution
to the offline problem (7)-(9). We define the regret of an
online dispatching algorithm to be

R(T ) = T
∑
i,j

ri,jx
∗
i,j −

T−1∑
t=0

E

[∑
i,j

ri,jxi,j(t)

]
.

Constraint violation: We define constraint violations to
be

V(T ) =
∑
j

∑
k

(
T−1∑
t=0

E

[∑
i

w
(k)
i,j (t)xi,j(t)− ρ

(k)
j (t)

])+

,



which includes violations from capacity, fairness, and bud-
get constraints. Note that V(T ) ≤ C implies that each con-
straint violation is bounded by C.

Theorem 1 (Informal Statement). Assuming bounded

arrivals and rewards and let V = O(
√
T ) and ε = O(1/

√
T ),

the regret and constraint violations under POND are

R(T ) = O(
√
T ) and V(T ) = O(1).

The formal statement of the theorem can be found [4].

4. EXPERIMENTS
In this section, we present simulation results that demon-

strate the performance of our POND algorithm. In partic-
ular, we show that POND achieves the O(

√
T ) regret and

O(1) constraint violations with “tightness”, while without

tightness, the algorithm achieves O(
√
T ) regret and O(

√
T )

constraint violations. We also see that POND outperforms
the Explore-Then-Commit algorithm (baseline) significantly.

We considered a model with two types of jobs and four
servers. In particular, we assumed geometric arrivals with
mean λ = [1.0, 2.0], Bernoulli rewards with mean

r =

[
0.5 0.6 0.1 0.2
0.2 0.6 0.5 0.2

]
.

We assumed capacity constraints
∑2

i=1 xi,j ≤ μj , fairness

constraints
∑2

i=1 xi,j ≥ dj
∑2

i=1 λi, and resource constraints∑2
i=1 wi,jxi,j ≤ ρj where we set d = [0.25, 0.25, 0.20, 0.20],

μ = [0.85, 0.85, 0.8, 0.8] and w =

[
2 2 2 2
4 4 4 3.5

]
and ρ =

[3, 3, 2.5, 2.5] (these values are deterministic in the simula-

tion). Let V = 2
√
T . We compared POND algorithm with

“tightness” ε = O(1/
√
T ), and “no tightness”, i.e. ε = 0.

We simulated POND and Explore-Then-Commit over T
time slots with T = [502, 752, 1002, 1252, 1502], where 500
independent trials were averaged for each T. We plotted the
regret, capacity violation, fairness violation and resource vi-
olation against

√
T in Figure 1, where we used the maximum

average violation among four servers for each type of con-

straint violations, i.e., maxj
(∑T−1

t=0

∑
i w

(k)
i,j (t)xi,j(t)− ρ

(k)
j (t)

)
.

Figure 1 shows that using POND with tightness constants
ε = 0.5/

√
T and 1/

√
T , POND achieved O(

√
T ) regret as in

Figure 1a and O(1) constraint violation as in Figure 1b-1d.

Without the tightness constant, POND achieved O(
√
T ) re-

gret but O(
√
T ) constraint violation as shown by the orange

curve in Figure 1b. These numerical results are consistent
with our theoretical analysis. The experimental results also
show that using the tightness constant is critical for achiev-
ing the O(1) constraint violations. Moreover, POND per-
formed much better than Explore-Then-Commit by achiev-
ing both lower regret and constraint violations.

5. CONCLUSION
In this paper, we developed a novel online dispatching

algorithm, POND, to maximize cumulative reward over a
finite time horizon, subject to general constraints that arise
from resource capacity and fairness considerations. Given
unknown arrival, reward, and constraint distributions, POND

(a) Regret (b) Capacity violation

(c) Fairness violation (d) Resource violation

Figure 1: Regret and constraint violation v.s. T .

leverages the UCB approach to learn the reward while us-
ing the MaxWeight algorithm to make the dispatching deci-
sion with virtual queues tracking the constraint violations.
POND achieves O(

√
T ) regret and O(1) constraint viola-

tion with the key being introducing a “tightness” constant
to balance between the regret and constraint violation.

Acknowledge
This work has been supported in part by NSF grants CNS-
1815563, CNS-2001687, and CNS-2002608.

6. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multiarmed bandit problem. Machine
Learning, 47(2–3):235–256, May 2002.

[2] S. Kunniyur and R. Srikant. Analysis and design of an
adaptive virtual queue (avq) algorithm for active queue
management. ACM SIGCOMM Computer
Communication Review, 31(4):123–134, 2001.

[3] T. Lattimore and C. Szepesvári. Bandit Algorithms.
Cambridge University Press, 2020.

[4] X. Liu, B. Li, P. Shi, and L. Ying. POND:
Pessimistic-Optimistic oNline Dispatching. arXiv
preprint arXiv:2010.09995, 2020.

[5] M. J. Neely. Stochastic network optimization with
application to communication and queueing systems.
Synthesis Lectures on Communication Networks,
3(1):1–211, 2010.

[6] R. Srikant and L. Ying. Communication Networks: An
Optimization, Control and Stochastic Networks
Perspective. Cambridge University Press, 2014.


