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ABSTRACT
In recent years, human trajectory prediction (HTP) has garnered at-
tention in computer vision literature. Although this task has much
in common with the longstanding task of crowd simulation, there is
little from crowd simulation that has been borrowed, especially in
terms of evaluation protocols. The key difference between the two
tasks is that HTP is concerned with forecasting multiple steps at a
time and capturing the multimodality of real human trajectories. A
majority of HTPmodels are trained on the same few datasets, which
feature small, transient interactions between real people and little
to no interaction between people and the environment. Unsurpris-
ingly, when tested on crowd egress scenarios, these models produce
erroneous trajectories that accelerate too quickly and collide too fre-
quently, but the metrics used in HTP literature cannot convey these
particular issues. To address these challenges, we propose (1) the
A2X dataset, which has simulated crowd egress and complex naviga-
tion scenarios that compensate for the lack of agent-to-environment
interaction in existing real datasets, and (2) evaluation metrics that
convey model performance with more reliability and nuance. A
subset of thesemetrics are novelmultiversemetrics, which are better-
suited for multimodal models than existing metrics. The dataset is
available at: https://mubbasir.github.io/HTP-benchmark/.
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1 INTRODUCTION
The study of human navigation has long been of interest to var-
ious research communities such as computer graphics [Helbing
and Molnar 1995], computer vision [Alahi et al. 2016], cognitive
science [Wiener et al. 2009], and robotics [Ferrer et al. 2013]. Ad-
vancements in these areas have seen widespread practical applica-
tion in pandemic response, architectural design, urban planning,
transportation engineering, crowd management, socially compliant
robot navigation, and entertainment. Accordingly, the influence of
human navigation research has reached countless individuals and
will continue to do so in the foreseeable future.

Most applications rely on simulation models [Pelechano et al.
2016], which are sufficiently accurate to human behavior and gener-
alizable to unforeseen circumstances. However, the past five years
of predictivemodeling in computer vision has achieved significantly
better accuracy [Rudenko et al. 2020], giving it a strong potential
to overtake the longstanding models from computer graphics. This
is largely due to the transition from using unimodal, discriminative
models [Alahi et al. 2016] that predict a single future trajectory to
using multimodal, generative models [Gupta et al. 2018; Mangalam
et al. 2020b; Salzmann et al. 2020] that predict a distribution of fu-
ture trajectories, which captures the inherent uncertainty in human
decision-making [Dubey et al. 2019; Scharine and McBeath 2002].
Despite the evolution of models, however, the accuracy metrics
that were introduced with the first unimodal models are still in use
today. In order to adapt these fundamentally unimodal metrics to
multimodal models, the metrics are computed between each pre-
dicted trajectory and the ground truth trajectory, and the minimum
error for each metric is reported. This results in a gross overesti-
mation of accuracy that we later show is not consistent with the
expected accuracy, which may misguide future research efforts.
Furthermore, the minimum value is not actionable, because while it
is evident that a state-of-the-art (SOTA) multimodal model can find
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an accurate trajectory, it cannot determine which trajectory is most
accurate for unseen data. We measure this uncertainty through a
decidability metric.

Generalizability cannot be maximized by solely improving upon
accuracy metrics. An inaccurate model can be robust by producing
realistic trajectories, and an accurate model can fail to be practi-
cable by being undecidable. Models can exist on the continuum
between these two extremes, making it critical to consider realism
and decidability metrics as well.

Furthermore, there is a stark class imbalance in existing datasets.
While datasets are abundant in instances where humans are inter-
acting with each other in open spaces [Alahi et al. 2014; Chavdarova
et al. 2018; Kothari et al. 2021; Lerner et al. 2007; Robicquet et al.
2016; Yan et al. 2017], they are significantly lacking in both envi-
ronment information and instances where humans are interacting
with their environment. Ultimately, this hinders generalization at a
global level and has led to some models being developed without
considering environments at all [Alahi et al. 2016; Gupta et al. 2018].

In this work, we provide an augmented human trajectory predic-
tion dataset that compensates for the lack of agent-to-environment
interaction in existing datasets with a new simulated dataset. To
understand model performance on this new dataset with more reli-
ability and nuance, we propose a comprehensive set of accuracy,
realism, and decidability metrics. A subset of these metrics are novel
multiverse metrics, which are better-suited for multimodal models
than existing metrics but are still applicable to unimodal models.
The evaluation using these metrics decisively evidences that the
new dataset facilitates better robustness and generalization, that
current metrics can be misleading, and that there are still remaining
challenges to modeling human trajectories. We finally showcase
that realism metrics can also be used to decide which prediction to
take from an undecidable multimodal model through the process
of Multimodal Model Collapse. Henceforth, we refer to humans as
agents, since our conceptual framework is broadly applicable, e.g.
to robotic and vehicular agents.

2 BACKGROUND
2.1 Models for Human Trajectory Prediction.
While crowd simulation has been well-studied in computer graphics
literature [Kapadia et al. 2015; Thalmann and Musse 2012], we focus
our attention on the use of machine learning techniques for the
growing field of human trajectory prediction. Earlier methods such
as Social LSTM [Alahi et al. 2016] and Social Attention [Vemula et al.
2018] proposed a deterministic model which predict a future trajec-
tory given observed trajectories. However, forecasting trajectories
inherently introduces uncertainty in the future, hence the utility of
those unimodal models which predict only one future trajectory
is limited. Recent studies [Gupta et al. 2018; Ivanovic and Pavone
2019; Mangalam et al. 2020a,b; Salzmann et al. 2020; Zhao et al.
2019] assume the multi-modalities in the future human behavior
and predict its distribution to embody the uncertainty. In this paper,
we focus on three SOTAmethodologies to showcase our benchmark
dataset: SocialGAN [Gupta et al. 2018], PECNet [Mangalam et al.
2020b], and Trajectron++ [Salzmann et al. 2020].

SocialGAN [Gupta et al. 2018] adopts GAN [Goodfellow et al.
2014] framework to forecast possible future trajectories and it can

avoid collisions among pedestrians by introducing a pooling mech-
anism that captures between-human interaction. PECNet [Man-
galam et al. 2020b] solves the trajectory prediction problem by first
modeling the future goal position distribution using a Variational
Autoencoder (VAE) [Kingma and Welling 2014], and then predict
the future positions by interpolating the observed positions and
the estimated goal position. Trajectron++ [Salzmann et al. 2020]
proposes a graph structured recurrent model based on conditional
VAE [Sohn et al. 2015] to predict the future trajectories. Further
details can be found in the Supplementary Materials.

We investigate these three models as the representatives of the
various SOTA works. We choose them because PECNet [Mangalam
et al. 2020b] shows an outstanding performance on the long-term
trajectory while the short-term trajectory is most well predicted in
Trajectron++ [Salzmann et al. 2020]. We expect SocialGAN [Gupta
et al. 2018], as one of the earliest and most frequently referred
models, to be a bound around existing models with respect to PEC-
Net and Trajectron++. Fig. 1.b shows the coverage comparison
of SOTA models in terms of the short- and long-term human tra-
jectory prediction accuracy. We differentiate between predictive
models of short-term and long-term trajectories on the basis of
goal conditioning. A model that is not goal-conditioned will in-
herently increase in error as the predicted path length increases,
sometimes at an exponential rate [Salzmann et al. 2020], whereas
goal-conditioned models are expected to predict long paths without
the same trade-off between path length and error.

2.2 Datasets for Human Trajectory Prediction.
The computer vision and graphics community have collected sev-
eral human pedestrian trajectory datasets. ETH [Pellegrini et al.
2009] and UCY [Lerner et al. 2007] are commonly used datasets that
contain five outdoor scenes with jointly more than 1,600 pedestrian
trajectories. Stanford Drone Dataset (SDD) [Robicquet et al. 2016]
consists of eight outdoor scenes tracking 19,000 targets including
pedestrians, bicyclists, skateboarders, cars, and buses collected from
a drone. Stanford Crowd Dataset (CFF) [Alahi et al. 2014] consists
of pedestrian trajectories collected within a train station building of
size 25m × 100m for 12 × 2 hours captured by a distributed camera
network. L-CAS 3D Point Cloud People Dataset (LCAS) [Yan et al.
2017] consists of 28,002 scan frames collected within a university
building by a 3D LiDAR sensor mounted on a robot that is either
stationary or moving. WILDTRACK (WT) [Chavdarova et al. 2018]
is a collection of annotated dense pedestrian groups captured by
seven static HD cameras in a public square for about 60 minutes.
The Supplementary Materials provide more details of these datasets.
Some datasets, such as TrajNet++ [Kothari et al. 2021], augment
upon existing datasets. TrajNet++ combines ETH/UCY, CFF, LCAS,
and Wildtrack datasets, as well as a synthetic dataset generated by
ORCA [Van Den Berg et al. 2011].

Existing human trajectory datasets have limitations in the sense
of embodying interactions. They either do not contain agent-to-
environment (A2E) interactions [Chavdarova et al. 2018], or exhibit
limited agent-to-agent (A2A) interactions at small scale in simple
environments. We speculate that many self-centered pedestrians
are prone to avoid or mitigate, consciously or unconsciously, the
influence of the environments and other pedestrians during their
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Figure 1: The above framework image shows (a) the differences between the trajectories of existing datasets (A2A) and the
novel dataset (A2E), (b-c) the models trained and tested on combinations of A2A and A2E, (d) the proposed set of metrics for
evaluating the accuracy, realism, and decidability ofmodels, and (e) a greedymethod for selecting the predictionmost realistic
movement.

navigation. In this work, we are proposing datasets that augment
A2E and A2A interactions, which may bring benefits for enhancing
learning models by encoding more complex trajectory dynamics.

2.3 Evaluation for Human Trajectory
Prediction.

In computer graphics community [Singh et al. 2009], trajectories
are, in general, measured by motion statistics such as the number
of collisions, average speed, average acceleration, and total distance
traveled. On the other hand, in machine learning community [Alahi
et al. 2016; Gupta et al. 2018; Kothari et al. 2021], the most com-
monly used evaluation metrics for trajectory forecasting models
are Average Displacement Error (ADE) and Final Displacement
Error (FDE). ADE is the average 𝐿2 distance between the ground
truth and the predicted trajectories across all future steps. FDE
is the 𝐿2 distance between the ground truth final destination and
the predicted final destination at the end of the future steps. More
evaluation metrics in machine learning community are discussed
in Supplementary Materials.

ADE and FDE are applicable to unimodal methods which predict
only one future sequence that can be compared with the ground
truth future sequence. However, as aforementioned in this section,
many multimodal trajectory forecasting models assuming uncer-
tainty and multimodality in pedestrians’ future behaviors predict 𝑘
future sequences (usually 𝑘 = 20). Most of these models report the
minimum ADE / FDE results among all 𝑘 predictions, which, in our
view, is over optimistic. Not only is this a significant underestima-
tion of the error, but it is also an impossible standard in that these
models are incapable of choosing the prediction with the minimum

error. In Section 4 of this work, we propose new metrics that can
tackle this issue.

3 AGENT-TO-AGENT AND
AGENT-TO-ENVIRONMENT INTERACTION
DATASET

We propose a comprehensive trajectory prediction dataset A2X
that consists of a representative set of trajectories, which will enable
better generalization under realistic circumstances that are either
complex or unsafe and out-of-distribution (OOD) with respect to
current datasets.

In order to understand what the shortcomings of current datasets
are (Sec. 2), we first taxonomize the characteristics of human trajec-
tories. The TrajNet++ benchmark [Kothari et al. 2021] proposed an
initial taxonomy that only considers short-term characteristics, e.g.,
standing still, moving linearly, or avoiding collisions (Fig. 1.a).While
the original taxonomy is sufficient for describing the trajectories
in many real datasets and their agent-to-agent (A2A) interactions,
models that learn exclusively from these types are insufficient for
most applications, which consider environments with obstacles and
time frames longer than 5 seconds, which is the practical limit for
most models before they become exponentially erroneous [Salz-
mann et al. 2020]. We have improved upon this by considering long-
term characteristics (Fig. 1.a), i.e., pathfinding alone and navigating
through crowded bottlenecks. These types of trajectories emerge
from agent-to-environment (A2E) interactions, which unfold over
a longer time frame than A2A interactions and are essential for
navigation within any environment [Sohn et al. 2020].
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3.1 Agent-to-Agent Interactions
For representing A2A interactions, we make use of each prior
dataset described in Section 2.2: ETH [Lerner et al. 2007], UCY [Lerner
et al. 2007], SDD [Robicquet et al. 2016], CFF [Alahi et al. 2014],
LCAS [Yan et al. 2017], WT [Chavdarova et al. 2018], and Tra-
jNet++ [Kothari et al. 2021]. These datasets feature transient inter-
actions between agents and little interaction with the environment,
which is made difficult to measure by the frequent unavailability
of environment information. Therefore, we approximate environ-
ment information based on the principle of stigmergy [Helbing
et al. 1997; Parunak 2005], which observes the self-organization of
human navigation along trails. For each position that agents have
traveled through in either the training or testing sets of the ground
truth, a 1-meter radius around the position is considered to be nav-
igable. This guarantees that predictions with less than 1 meter of
displacement from the ground truth at all times will never intersect
with the environment. Additionally, in order to compensate for the
imbalance between A2A and A2E interactions in prior datasets,
we propose the generation of synthetic data in addition to that of
TrajNet++. While real datasets are valuable for their veridicality,
there are logistical limitations that prevent the acquisition of real
data in OOD scenarios that are unsafe for human participants or
prohibitively expensive from an organizational standpoint.

3.2 Agent-to-Environment Interactions
Two such scenarios are used to sample trajectories exhibiting A2E
interactions: (1) pathfinding alone in a large, complex environment,
which has prohibitive logistical cost and (2) navigating through
bottlenecks of varied width with a dense crowd, which can be
unsafe. Though simulation models are normally less accurate than
predictive models in predicting human trajectories [Alahi et al.
2016], the prevalent Social Force model [Helbing and Molnar 1995]
currently outperforms predictive models in terms of robustness,
has been used in several application domains [Ferrer et al. 2013;
Wei-Guo et al. 2006; Zeng et al. 2014], and has adequate ecological
validity in these A2E scenarios, which lack sufficient real data for
training predictive models until A2X. On one hand, simulation
models are robust enough for producing plausible behavioral data,
so all metrics can be used to evaluate A2E-trained predictive models
on A2E test cases. On the other hand, simulation models are not
perfectly accurate to real human navigation, so A2A-trained models
should not be evaluated on A2E test cases using accuracy metrics.

We leverage the Social Force model to simulate 236 scenarios
of a single agent navigating between random points in complex
112 × 112 m2 environments from [Sohn et al. 2020] (Fig. 2). This
produces long-term isolated interactions between single agents and
the environment. We then use the same model to simulate well-
studied bottleneck scenarios [Haworth et al. 2015; Seyfried et al.
2010] in a 25 × 7 m2 room that vary in terms of (a) the density of
agents (Level of Service) from {0.2, 0.4, 0.6, 0.8, 1.0} agents/m2 and
(b) the ratio between the width of the bottleneck and the width of
the room (Exit-Entrance Ratio) from {0.2, 0.3, 0.4, 0.6, 0.7} (Fig. 2). A
total of 398 scenarios have been generated across all combinations
of Level of Service and Exit-Entrance Ratio. This produces long-
term interactions between agents as a result of the constricting
environment. Exact environment information has been provided

for both types of scenarios. We later show that current models
trained on existing A2A datasets are unable to generalize to these
critical scenarios, but with the addition of training data on these
scenarios, the accuracy of predictions significantly improves.

Goal

Spawn
Region

Bottleneck Scenarios

Path�nding Scenarios

25m1m

7m
16m

112m

112m

1.5m

Figure 2: The above images show the exact dimensions of en-
vironments from the bottleneck and pathfinding scenarios
in A2E.

4 ACCURACY, REALISM, AND DECIDABILITY
OF HUMAN TRAJECTORY PREDICTION

We propose a total of 15 accuracy, realism, and decidability metrics
(Fig. 1.d). These metrics are either borrowed from computer vision
and computer graphics literature [Alahi et al. 2016; Guy et al. 2012;
Pellegrini et al. 2009; Singh et al. 2009] or newly developed multi-
verse metrics, which assess the A2A and A2E interactions of both
multimodal models with 𝑘 > 1 and unimodal models with 𝑘 = 1.

4.1 Preliminaries
In accordance with both unimodal and multimodal predictive mod-
els, we utilize the following notation for their predictions. A predic-
tion scenario is defined by a set of 𝑛 agents present in an environ-
ment E at the same time. Each agent 𝑎 has 𝑡𝑝 frames of past position
data as input and 𝑡𝑓 frames of future position data for ground truth
Y𝑎,0 ∈ R𝑡𝑓 ×2 and for each prediction Ŷ𝑎,𝑗 ∈ R𝑡𝑓 ×2, where 0 ≤ 𝑗 < 𝑘 .
All position data is in meters and has a frame rate of 1/Δ𝑡 hertz
based on the dataset. The position at the 𝑡-th frame is Y𝑎,0,𝑡 ∈ R2 for
the ground truth and Ŷ𝑎,𝑗,𝑡 ∈ R2 for prediction 𝑗 , where 0 ≤ 𝑡 < 𝑡𝑓 .
We then compute the velocities corresponding to the ground truth
V𝑎,0 ∈ R(𝑡𝑓 −1)×2 and each prediction V̂𝑎,𝑗 ∈ R(𝑡𝑓 −1)×2.

Many of the following metrics make use of aggregate functions.
For any 𝑑-dimensional vector v ∈ R𝑑 , we denote the minimum
value by Ω(v), the mean value by Θ(v), and the maximum value
by O(v). For a matrix of 𝑑-many 2D vectors V ∈ R𝑑×2, function
Ξ(V, 𝑏) transforms the 2D vectors into a probability distribution
p ∈ R𝑏 over a vector of 𝑏-many equiangular bins, which radiate
from the origin (Fig. 3) and can optionally be divided along the radial
dimension according to a maximum vector magnitude. Finally, we
denote the 𝐿2 norm by ∥ · ∥.
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4.2 Accuracy Metrics: Comparison to Ground
Truth

Accuracy metrics from computer vision literature are responsible
for comparing the ground truth with the predictions based on the
displacement error.
Average Displacement Error (ADE). ADE is computed for each
prediction 𝑗 as a𝑗 , the average distance between a position in the
ground truth and a position in the prediction across 𝑡𝑓 frames
(Eq. 1) [Pellegrini et al. 2009]. It is then aggregated across the 𝑘
predictions in three ways: minimum, mean, and maximum, which
offers a more reliable expectation of a model’s accuracy than the
minimum alone.
Final Displacement Error (FDE). FDE is computed for each pre-
diction 𝑗 as b𝑗 , the distance between the final positions of the
ground truth and the prediction (Eq. 2) [Alahi et al. 2016]. It is
aggregated across the 𝑘 predictions in the same ways as ADE for
better reliability.

ADE
(
Y𝑎, Ŷ𝑎

)
=

[
Ω(a),Θ(a),O(a)

]
𝑠 .𝑡 . a𝑗 =

1
𝑡𝑓

𝑡𝑓 −1∑
𝑡=0

������Y𝑎,0,𝑡 − Ŷ𝑎,𝑗,𝑡
������ , 0 ≤ 𝑗 < 𝑘

(1)

FDE
(
Y𝑎, Ŷ𝑎

)
=

[
Ω(b),Θ(b),O(b)

]
𝑠 .𝑡 . b𝑗 =

������Y𝑎,0,𝑡𝑓 −1 − Ŷ𝑎,𝑗,𝑡𝑓 −1
������ , 0 ≤ 𝑗 < 𝑘

(2)

4.3 Realism Metrics: Motion and Interaction
Statistics

Realism metrics are used to describe the movement and interac-
tions within the ground truth and the predictions separately. These
metrics can then be used to uncover more nuanced differences be-
tween the ground truth and predictions. While they cannot ensure
that predictions are accurate, they can ensure that predictions are
realistic in their movement and plausible. Every realism metric is
computed in the same way for both the ground truth and predic-
tions, so Y is interchangeable with Ŷ and V with V̂. For generality,
we consider the ground truth as a unimodal model with 𝑘 = 1, but
we refer to it as having 𝑘 paths instead of predictions.

The following motion statistics are used to describe the move-
ment of agent 𝑎 in either the ground truth or averaged across the
𝑘 predictions. They have been used to evaluate crowd simulations

in computer graphics research [Singh et al. 2009], but have not yet
been used to evaluate predictive models in computer vision.

L(Y𝑎) =
[
1
𝑘

𝑘−1∑
𝑗=0

𝑡𝑓 −2∑
𝑡=0

������Y𝑎,𝑗,𝑡+1 − Y𝑎,𝑗,𝑡
������] (3)

S(V𝑎) =
[
1
𝑘

𝑘−1∑
𝑗=0

Θ
(
S𝑗

)
,
1
𝑘

𝑘−1∑
𝑗=0

O
(
S𝑗

) ]
𝑠 .𝑡 . S𝑗,𝑡 =

������V𝑎,𝑗,𝑡 ������ , 0 ≤ 𝑡 < 𝑡𝑓 − 1

(4)

A(V𝑎) =
[
1
𝑘

𝑘−1∑
𝑗=0

Θ
(
A𝑗

)
,
1
𝑘

𝑘−1∑
𝑗=0

O
(
A𝑗

) ]
𝑠 .𝑡 . A𝑗,𝑡 =

������ (V𝑎,𝑗,𝑡+1 − V𝑎,𝑗,𝑡
)
/Δ𝑡

������ , 0 ≤ 𝑡 < 𝑡𝑓 − 2
(5)

Path Length. The average path length (m) for an agent 𝑎 is com-
puted by first finding the length of each path 𝑗 and then averaging
the values across all 𝑘 paths (Eq. 3).
Speed. In order to report the speed (m/s), the magnitudes S ∈
R𝑘×(𝑡𝑓 −1) of velocities in V𝑎 are first computed for each agent 𝑎.
Next, two values are reported for speed: the mean speed averaged
across 𝑘 paths and the maximum speed averaged across 𝑘 paths. For
each path 𝑗 of agent 𝑎, the mean and maximum speed are computed
across 𝑡𝑓 − 1 frames (Eq. 4).
Acceleration Magnitude. Similar to speed, we first compute the
magnitudes A ∈ R𝑘×(𝑡𝑓 −2) of the difference between every pair
of consecutive velocities in V𝑎 for each agent 𝑎. The acceleration
magnitude (m/s2) A(V𝑎) is then reported in the same way as speed:
the mean acceleration magnitude averaged across 𝑘 paths and the
maximum magnitude averaged across 𝑘 paths (Eq. 5).

Traditional measures of collision are unsuitable for multimodal
models in which an agent 𝑎 may be colliding with agent 𝑏 when it
takes the direction of path 𝑗 , but not when it takes the direction of
path 𝑗 + 1. We therefore propose multiverse metrics such as Agent
Collision-Free Likelihood (ACFL) and Environment Collision-Free
Likelihood (ECFL) to measure the A2A and A2E interactions of
multimodal models respectively.

ACFL(Y, 𝑎) =
[
1
𝑘

𝑘−1∑
𝑗=0

𝑛−1∏
𝑏=0

𝑘−1∏
𝑖=0

𝑡𝑓 −1∏
𝑡=0

1R>0
(

Y𝑎,𝑗,𝑡 − Y𝑏,𝑖,𝑡



 − 𝑟

)]
𝑠 .𝑡 . 𝑎 ≠ 𝑏

(6)

ECFL(Y𝑎, E) =
[
1
𝑘

𝑘∑
𝑗=1

𝑡𝑓 −1∏
𝑡=0

E
[ ⌊

𝑠 · Y𝑎,𝑗,𝑡,1
⌋
,
⌊
𝑠 · Y𝑎,𝑗,𝑡,0

⌋ ] ]
(7)

MVE(Y𝑎) = −
∑
𝑝∈p

𝑝 · log2 (𝑝) 𝑠 .𝑡 . p = Ξ
(
D, 20

)
,

D𝑗 =
1

𝑡𝑓 − 1

( 𝑡𝑓 −1∑
𝑡=1

Y𝑎,𝑗,𝑡

)
− Y𝑎,𝑗,0 , 0 ≤ 𝑗 < 𝑘

(8)
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Agent Collision-Free Likelihood (ACFL). In order to assess the
quality of A2A interaction under the𝑘𝑛 possible futures for𝑛 agents,
we propose ACFL, which computes the probability that agent 𝑎 has
a path that is free of collision in all of the 𝑘 (𝑛−1) possible futures
with other agents (Eq. 6). The indicator function 1R>0 returns 1
when the distance between agents 𝑎 and 𝑏 is greater than 𝑟 meters
at time 𝑡 , and 0 otherwise. This means that if their centers of mass
are within 𝑟 meters of each other, they are considered to be colliding.
For analysis, 𝑟 has been set to 0.3 meters (∼1 foot).
Environment Collision-Free Likelihood (ECFL). ECFL com-
plements ACFL in that it measures the quality of A2E interaction
under the 𝑘 possible futures that agent 𝑎 can interact with the envi-
ronment (Eq. 7). Namely, it reports the probability that agent 𝑎 has a
path that is free of collision with the environment. The environment
is represented by a binary matrix E, in which each cell corresponds
to a square space and is equal to 1 if that space is navigable and 0
otherwise. E[0, 0] is aligned with the origin of the position data Y,
but E has a scale of 1/𝑠 meters per unit as opposed to 1 meter per
unit like Y. This means that the position [𝑥,𝑦] = Y𝑎,𝑗,𝑡 of agent 𝑎
taking path 𝑗 at time 𝑡 maps to E

[
⌊𝑠 ·𝑦⌋, ⌊𝑠 · 𝑥⌋

]
. For analysis, 𝑠 has

been set to 2 based on the dataset. When agent 𝑎’s center of mass is
intersecting a non-navigable region of the environment like a wall,
the agent is considered to be colliding with the environment.

4.4 Decidability Metric: Certainty in
Movement Direction

Decidability is a measure of a model’s uncertainty in the movement
direction of agents, and it is not strictly opposite between unimodal
and multimodal models. If a multimodal model has low enough
uncertainty in an agent’s direction of movement, we consider it to
be decidable.
Multiverse Entropy (MVE). We compute MVE to measure the
decidability for agent 𝑎. We first transform each path 𝑗 into an
average direction vector D𝑗 ∈ R2 as the vector from the initial
position Y𝑎,𝑗,0 to the average position of the 𝑡𝑓 − 1 subsequent
points (Eq. 8). The average direction vectorsD are then transformed
into a probability distribution p ∈ R𝑏 over a vector of 𝑏-many
equiangular bins (Fig. 3). Finally, the entropy of p is reported as
MVE. High values of ACFL and ECFL are contingent on low MVE
(high decidability), because high certainty in the direction that an
agent will travel along will cause fewer potential collisions with
other agents (ACFL) and the environment (ECFL). For experimental
purposes, 𝑏 has been set to 𝑘 , so that MVE is maximized when every
prediction is in a different direction.

Te
st Model Train

Accuracy Metrics Realism Metrics Decidab.

ADE ↓ FDE ↓ Length Speed Accel. ACFL ECFL %Diff. ↓ MVE ↓
min / mean / max min / mean / max mean / max mean / max

A
ge
nt
-t
o-
A
ge
nt

In
te
ra
ct
io
n GT N/A 0.00 / 0.00 / 0.00 0.00 / 0.00 / 0.00 4.43 1.01 / 1.32 0.29 / 1.04 0.95 1.00 0 0.00

SG
AN

A2A 0.36 / 0.77 / 1.50 0.62 / 1.61 / 3.33 4.22 0.96 / 1.42 0.09 / 0.56 0.30 0.98 48 0.90
A2E 2.21 / 2.48 / 2.81 4.02 / 4.65 / 5.48 3.15 0.72 / 1.38 0.12 / 0.40 0.58 0.97 51 0.70
Both 0.37 / 0.74 / 1.35 0.65 / 1.55 / 2.97 4.13 0.94 / 1.32 0.06 / 0.33 0.33 0.98 51 0.84

PE
CN

A2A 0.63 / 0.65 / 0.68 1.12 / 1.28 / 1.45 4.50 1.02 / 2.15 0.48 / 3.41 0.56 0.98 56 0.07
A2E 1.25 / 1.28 / 1.31 1.83 / 2.00 / 2.20 4.50 1.02 / 4.16 1.13 / 8.80 0.59 0.98 166 0.10
Both 0.73 / 0.76 / 0.79 1.44 / 1.59 / 1.74 4.78 1.08 / 2.61 0.49 / 4.57 0.57 0.98 85 0.10

T+
+

A2A 0.22 / 0.66 / 1.85 0.42 / 1.51 / 4.16 4.38 1.00 / 2.32 0.36 / 3.09 0.22 0.98 47 1.08
A2E 0.56 / 1.06 / 1.77 1.13 / 2.29 / 3.90 4.22 0.96 / 1.79 0.29 / 2.18 0.25 0.98 46 1.41
Both 0.23 / 0.64 / 1.76 0.43 / 1.48 / 4.02 4.35 0.99 / 2.27 0.35 / 2.96 0.22 0.98 47 1.13

A
ge
nt
-t
o-
En

v.
In
te
ra
ct
io
n

GT N/A 0.00 / 0.00 / 0.00 0.00 / 0.00 / 0.00 5.51 1.25 / 1.40 0.18 / 0.51 1.00 1.00 0 0.00

SG
AN

A2A 0.28 / 0.66 / 1.33 0.50 / 1.48 / 3.14 5.42 1.23 / 1.70 0.08 / 0.45 0.29 0.90 47 0.82
A2E 0.19 / 0.41 / 0.96 0.27 / 0.86 / 2.17 4.19 0.95 / 1.33 0.09 / 0.28 0.35 0.94 48 0.64
Both 0.19 / 0.56 / 1.25 0.32 / 1.28 / 3.02 5.03 1.14 / 1.57 0.08 / 0.40 0.32 0.92 49 0.65

PE
CN

A2A 0.47 / 0.49 / 0.51 0.98 / 1.12 / 1.27 5.35 1.22 / 1.72 0.32 / 2.79 0.64 0.92 117 0.03
A2E 0.29 / 0.31 / 0.34 0.63 / 0.75 / 0.90 5.64 1.28 / 2.44 0.40 / 3.50 0.60 0.94 148 0.04
Both 0.32 / 0.34 / 0.37 0.70 / 0.81 / 0.92 5.64 1.28 / 2.29 0.34 / 3.41 0.60 0.93 157 0.06

T+
+

A2A 0.17 / 0.81 / 2.43 0.34 / 1.86 / 5.54 5.48 1.25 / 3.10 0.53 / 4.41 0.18 0.90 43 1.24
A2E 0.10 / 0.29 / 0.64 0.19 / 0.69 / 1.61 5.41 1.23 / 1.63 0.18 / 1.38 0.47 0.95 40 0.73
Both 0.12 / 0.37 / 1.11 0.23 / 0.87 / 2.55 5.41 1.23 / 2.00 0.27 / 2.04 0.42 0.93 40 0.76

Table 1: This table showcases the evaluation results of Social GAN (SGAN), PECNet (PECN), and Trajectron++ (T++) after train-
ing on either A2A, A2E, or both A2A and A2E and testing on A2A and A2E separately. For every metric in a testing set, the
best value has been made bold for each model. Models where minimum accuracy metrics disagree with the averages are red.
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4.5 Comparing Realism Metrics
In order to compare realism metrics between the ground truth
and predictions for an agent 𝑎, we first compute a feature vec-
tor for the ground truth F𝑎 =

〈
L(Y𝑎,0), S(V𝑎),A(V𝑎),ACFL(Y, 𝑎),

ECFL(Y𝑎, E)
〉
, where ⟨·, ·⟩ denotes vector concatenation. The same

vector concatenation is used to compute the feature vector F̂𝑎,𝑗 ∈ R7
for each prediction 𝑗 . Equation 9 returns the percent differences
Ĉ𝑎 ∈ R𝑘 between the feature vectors of each prediction 𝑗 and the
ground truth of agent 𝑎.

Ĉ𝑎,𝑗 =
100
7

6∑
𝑓 =0

���̂F𝑎,𝑗,𝑓 − F𝑎,0,𝑓
���

F𝑎,0,𝑓
𝑠.𝑡 . F𝑎,0,𝑓 > 0 , 0 ≤ 𝑗 < 𝑘 (9)

5 RESULTS
In order to understand the limits of not only the SOTA but also the
models that paved the way towards the SOTA, we evaluate three
critical multimodal models that are capable of either short-term
or long-term trajectory prediction and provide a large coverage
over the performance of prior models (Fig. 1.b). In particular, we
have selected (1) Social GAN (SGAN) [Gupta et al. 2018], one of
the earliest models; (2) Trajectron++ (T++) [Salzmann et al. 2020],
a SOTA model for short-term trajectory prediction; and (3) PECNet
(PECN) [Mangalam et al. 2020b], a SOTA model for long-term
trajectory prediction.

5.1 Training Protocol
Each of the three models was trained on 3 combinations from the
A2X Dataset: A2A interaction, A2E interaction, and both (Fig. 1.b),
producing a total of 9 models. We denote that either a model has
been trained on a particular combination using a subscript, e.g.,
SGAN𝐵𝑜𝑡ℎ . Each trained model was then evaluated on the testing
sets of the 3 combinations (Fig. 1.c). The results of the evaluations
on A2A and A2E are reported in Table 1, while the results on
both A2A and A2E combined and corresponding visualizations are
reported in the Supplementary Materials. According to the dataset,
the following parameters have been set for the evaluation: 𝑘 = 20,
𝑡𝑝 = 8, 𝑡𝑓 = 12, and Δ𝑡 = 0.4, meaning that each agent is receiving
3.2 seconds of input data and predicting 4.8 seconds into the future.

Each row of Table 1 reports the accuracy, realism, and decidabil-
ity metrics of a model averaged across the agents of every testing
scenario for a given dataset. The first 5 columnns of realism metrics
correspond to the dimensions of F and F̂, the feature vectors used
to compute the percent difference between the ground truth (GT)
and predictions. The mean percent difference Θ(Ĉ𝑎) of each agent
𝑎 is averaged across all agents and reported in the final column of
the realism metrics. For all accuracy metrics, the realism percent
difference, and the decidability metric, a lower value is favorable,
while for the remaining realismmetrics, a value closer to the ground
truth is favorable.

5.2 Analysis
5.2.1 Training on both types of interaction consistently has near-
best accuracy. As expected, we find that in terms of all accuracy
metrics, models trained on a single type of interaction perform very
poorly on test scenarios that feature the other type of interaction.

By training any of the three models (SGAN, PECN, or T++) on
both types of interactions, we find that the accuracy is consistently
near-best among all three training datasets by a small margin. For
testing on A2A, a model trained on both types is closer in accuracy
to the same model trained on A2A, and for testing on A2E, it is
closer to the same model trained on A2E. In fact, when testing
on A2A, training SGAN and T++ on both types achieves the best
mean/maximum ADE and mean FDE among all training datasets.
This makes training on both types of interactions an excellent
compromise for balancing accuracy between real-world cases from
A2A and critical synthetic cases from A2E.

5.2.2 Existing evaluationmetrics canmisjudgemodel accuracy. When
testing on A2A, SGAN𝐴2𝐴 and T++𝐴2𝐴 are misjudged as being bet-
ter than SGAN𝐵𝑜𝑡ℎ and T++𝐵𝑜𝑡ℎ according to minimum ADE and
minimum FDE (highlighted in red). Reliance on these overly opti-
mistic existing metrics will lead to choosing models that are less
accurate than others on average.

5.2.3 Realism metrics influence model choice based on the use case.
We cannot rely only on the accuracy of models to determine which
is best, since anything short of perfect accuracy carries risk. The re-
alism metrics allow us to better understand a model’s performance
in the context of its application. For example, we find that the max-
imum speed and acceleration for T++𝐵𝑜𝑡ℎ are significantly higher
than the ground truth, which for an application in socially compli-
ant robot navigation can discomfort or potentially harm surround-
ing humans [Kruse et al. 2013]. In contrast, SGAN𝐵𝑜𝑡ℎ has lower
average accuracy by a small margin, but it boasts higher realism
by a large margin in terms of maximum speed, maximum accelera-
tion magnitude, and ACFL. We attribute SGAN𝐵𝑜𝑡ℎ ’s higher ACFL
to the tighter spread of its predictions than T++𝐵𝑜𝑡ℎ according to
MVE. Ultimately, the choice of a model depends on the application,
but without the joint consideration of the proposed accuracy and
realism metrics, a practitioner may be led to choose an unsuitable
model.

5.2.4 A2E is essential for learning collision avoidance. Models trained
exclusively on A2E interactions tend to have lower likelihoods of
A2A collision (higher ACFL) than models trained on A2A interac-
tions alone or on both types of interactions. This highlights the
importance of A2E for improving robustness even in real-world
scenarios such as A2A.

5.2.5 ECFL indicates that A2A scenarios have trivial A2E interac-
tions. Models trained on A2E achieve the lowest likelihood of A2E
collision (highest ECFL) when testing on A2E, but still have some
room to improve. In contrast, we find that ECFL is nearly perfect
for A2A scenarios, indicating that A2A scenarios do not challenge
models with A2E interactions.

5.2.6 Multimodal models can be decidable. Although PECN is a
multimodal model, it has a near-zero MVE, which is significantly
lower than SGAN and T++. This indicates that PECNhas certainty in
the direction that agents will travel along (regardless of whether the
direction is correct). PECN also achieves the highest ACFL owing
to its low MVE, which is low enough to consider PECN as being
decidable and likely helps it in performing long-term trajectory
prediction.
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Te
st Model Train Accuracy Metrics Realism Metrics Decidab.

ADE ↓ FDE ↓ Length Speed Accel. ACFL ECFL %Diff. ↓ MVE ↓
min = mean = max min = mean = max mean / max mean / max

A
ge
nt
-t
o-
A
ge
nt

In
te
ra
ct
io
n GT N/A 0.00 0.00 4.43 1.01 / 1.32 0.29 / 1.04 0.95 1.00 0 0.00

SG
AN

A2A 0.91 1.99 4.28 0.97 / 1.20 0.16 / 0.41 0.69 0.99 37 0.00
A2E 2.57 4.97 3.75 0.85 / 1.32 0.20 / 0.37 0.79 0.97 40 0.00
Both 0.86 1.86 4.25 0.97 / 1.15 0.11 / 0.23 0.70 0.99 41 0.00

PE
CN

A2A 0.65 1.27 4.44 1.01 / 1.56 0.33 / 1.79 0.66 0.98 56 0.00
A2E 1.28 2.03 4.33 0.98 / 3.23 1.02 / 6.37 0.68 0.98 166 0.00
Both 0.76 1.55 4.70 1.07 / 2.12 0.44 / 3.18 0.64 0.98 85 0.00

T+
+

A2A 0.81 1.83 4.51 1.03 / 1.31 0.44 / 0.98 0.66 0.99 26 0.00
A2E 1.05 2.27 4.53 1.03 / 1.32 0.42 / 0.97 0.63 0.98 30 0.00
Both 0.81 1.84 4.51 1.03 / 1.31 0.44 / 1.00 0.65 0.99 26 0.00

A
ge
nt
-t
o-
En

v.
In
te
ra
ct
io
n

GT N/A 0.00 0.00 5.51 1.25 / 1.40 0.18 / 0.51 1.00 1.00 0 0.00

SG
AN

A2A 0.76 1.84 5.00 1.14 / 1.44 0.15 / 0.33 0.63 0.96 38 0.00
A2E 0.69 1.60 4.73 1.08 / 1.30 0.13 / 0.23 0.68 0.98 40 0.00
Both 0.73 1.77 4.55 1.03 / 1.36 0.16 / 0.27 0.66 0.97 40 0.00

PE
CN

A2A 0.49 1.11 5.39 1.22 / 1.45 0.25 / 1.10 0.69 0.93 117 0.00
A2E 0.30 0.71 5.54 1.26 / 1.71 0.31 / 1.41 0.62 0.93 148 0.00
Both 0.34 0.78 5.60 1.27 / 1.97 0.32 / 1.41 0.64 0.94 157 0.00

T+
+

A2A 0.90 2.06 4.99 1.13 / 1.48 0.57 / 1.27 0.46 0.97 31 0.00
A2E 0.34 0.86 5.36 1.22 / 1.44 0.29 / 0.85 0.61 0.98 24 0.00
Both 0.52 1.20 5.34 1.21 / 1.48 0.41 / 0.99 0.57 0.97 28 0.00

Table 2: This table reports the results of MMC on each of the 9 trained models. On average, MMC produces predictions that
are consistently better than the worse case prediction prior to MMC. Only one value is reported for ADE and FDE, because the
minimum, mean, and maximum are equal when 𝑘 = 1. The MVE is always 0 when 𝑘 = 1.

5.3 Multimodal Model Collapse (MMC)
Accuracy metrics cannot be computed on never-before-seen data,
because the ground truth is unknown. Consequently, it becomes
impossible to find the predicted path with minimum error in accu-
racy and selecting an arbitrary prediction risks the maximum error.
We therefore propose MMC, a baseline greedy method which can
make use of the realism metrics to collapse the 𝑘 predictions of an
undecidable multimodal model into the single most socially compli-
ant prediction. In particular, we rely on the proposed comparison of
realism metrics (Sec. 4.5), but instead of computing F𝑎 from ground
truth testing dataY𝑎,0 for each agent 𝑎, we compute it as the average
across all agents in the ground truth training data from the same
environment. We then replace the 𝑘 predictions Ŷ𝑎 with the single
prediction 𝑗 that minimizes the percent difference Ĉ𝑎,𝑗 for each
agent 𝑎. This prediction is the closest in realism to prior ground
truth for the same type of scenario (Eq. 9). Table 2 shows the result
of applying this technique to all 9 models. Across all models, we
find that the ADE/FDE of the collapsed prediction is only ∼15.76%
worse than the mean ADE/FDE of the uncollapsed predictions,
and ∼31.63% better than the maximum ADE/FDE. Although the
accuracy of the most realistic prediction is lower than the average
accuracy over 20 predictions, its performance is consistently much
better than the worst-case. Furthermore, the social compliance of
models is drastically improved through MMC, making them less
likely to produce collisions with other agents.

6 CONCLUSION
With the growing attention toward human trajectory prediction,
it has become more important than ever to unify future research
efforts in the right direction in terms of datasets and evaluation.
In this work, we have brought to light the shortcomings of exist-
ing datasets, which hinder generalization, and existing evaluation
metrics, which misrepresent model performance. By augmenting
existing datasets with critical scenarios that feature substantial
interactions between pedestrian agents and the environment, we
have evidenced that models can generalize better. By proposing
a comprehensive set of novel and existing evaluation metrics, we
have not only proven the unreliability of existing evaluation met-
rics, but also highlighted the subtle factors that are essential for
choosing the best trajectory prediction model for a particular appli-
cation. Together, these contributions show that there is still much
room for improvement even among the SOTA models.
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