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ABSTRACT

This paper considers the problem of spatiotemporal object-centric reasoning in
videos. Central to our approach is the notion of object permanence, i.e., the ability
to reason about the location of objects as they move through the video while
being occluded, contained or carried by other objects. Existing deep learning
based approaches often suffer from spatiotemporal biases when applied to video
reasoning problems. We propose Hopper, which uses a Multi-hop Transformer
for reasoning object permanence in videos. Given a video and a localization
query, Hopper reasons over image and object tracks to automatically hop over
critical frames in an iterative fashion to predict the final position of the object of
interest. We demonstrate the effectiveness of using a contrastive loss to reduce
spatiotemporal biases. We evaluate over CATER dataset and find that Hopper
achieves 73.2% Top-1 accuracy using just 1 FPS by hopping through just a few
critical frames. We also demonstrate Hopper can perform long-term reasoning
by building a CATER-h dataset' that requires multi-step reasoning to localize
objects of interest correctly.

1 INTRODUCTION

In this paper, we address the problem of ( PREVIOUS FRAMES ... )
spatiotemporal object-centric reasoning in
videos. Specifically, we focus on the problem
of object permanence, which is the ability
to represent the existence and the trajectory
of hidden moving objects (Baillargeon, o

1986). Object permanence can be essential snitch

in understanding videos in the domain of: (1) FRAME 11 FRAME 12
sports like soccer, where one needs to reason, +Y
“which player initiated the pass that resulted in

a goal?”, (2) activities like shopping, one needs BOl 36
to infer “what items the shopper should be
billed for?”, and (3) driving, to infer “is there
a car next to me in the right lane?”. Answering
these questions requires the ability to detect

+X

6 11

. ; . FRAME 13
and understand the motion of objects in the (LAST FRAME UUDER 1 FPS) 0/1/2[3[4]|5

scene. This requires detecting the temporal

order of one or more actions of objects. Figure 1: Snitch Localization in CATER (Girdhar &
Furthermore, it also requires learning object Ramanan, 2020) is an object permanence task where the
permanence, since it requires the ability to goal is to classify the final location of the snitch object

predict the location of non-visible objects as within a 2D grid space.
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they are occluded, contained or carried by other objects (Shamsian et al., 2020). Hence, solving
this task requires compositional, multi-step spatiotemporal reasoning which has been difficult to
achieve using existing deep learning models (Bottou, 2014; Lake et al., 2017).

Existing models have been found lacking when applying to video reasoning and object permanence
tasks (Girdhar & Ramanan, 2020). Despite rapid progress in video understanding benchmarks such
as action recognition over large datasets, deep learning based models often suffer from spatial and
temporal biases and are often easily fooled by statistical spurious patterns and undesirable dataset
biases (Johnson et al., 2017b). For example, researchers have found that models can recognize the
action “swimming” even when the actor is masked out, because the models rely on the swimming
pool, the scene bias, instead of the dynamics of the actor (Choi et al., 2019).

Hence, we propose Hopper to address debiased video reasoning. Hopper uses multi-hop
reasoning over videos to reason about object permanence. Humans realize object permanence by
identifying key frames where objects become hidden (Bremner et al., 2015) and reason to predict the
motion and final location of objects in the video. Given a video and a localization query, Hopper
uses a Multi-hop Transformer (MHT) over image and object tracks to automatically identify and
hop over critical frames in an iterative fashion to predict the final position of the object of interest.
Additionally, Hopper uses a contrastive debiasing loss that enforces consistency between attended
objects and correct predictions. This improves model robustness and generalization. We also build
a new dataset, CATER-h, that reduces temporal bias in CATER and requires long-term reasoning.

We demonstrate the effectiveness of Hopper over the recently proposed CATER ‘Snitch
Localization’ task (Girdhar & Ramanan, 2020) (Figure 1). Hopper achieves 73.2% Top-1 accuracy
in this task at just 1 FPS. More importantly, Hopper identifies the critical frames where objects
become invisible or reappears, providing an interpretable summary of the reasoning performed
by the model. To summarize, the contributions of our paper are as follows: First, we introduce
Hopper that provides a framework for multi-step compositional reasoning in videos and achieves
state-of-the-art accuracy in CATER object permanence task. Second, we describe how to perform
interpretable reasoning in videos by using iterative reasoning over critical frames. Third, we perform
extensive studies to understand the effectiveness of multi-step reasoning and debiasing methods that
are used by Hopper. Based on our results, we also propose a new dataset, CATER-h, that requires
longer reasoning hops, and demonstrates the gaps of existing deep learning models.

2 RELATED WORK

Video understanding. Video tasks have matured quickly in recent years (Hara et al., 2018);
approaches have been migrated from 2D or 3D ConvNets (Ji et al., 2012) to two-stream
networks (Simonyan & Zisserman, 2014), inflated design (Carreira & Zisserman, 2017), models
with additional emphasis on capturing the temporal structures (Zhou et al., 2018), and recently
models that better capture spatiotemporal interactions (Wang et al., 2018; Girdhar et al., 2019).
Despite the progress, these models often suffer undesirable dataset biases, easily confused by
backgrounds objects in new environments as well as varying temporal scales (Choi et al., 2019).
Furthermore, they are unable to capture reasoning-based constructs such as causal relationships (Fire
& Zhu, 2017) or long-term video understanding (Girdhar & Ramanan, 2020).

Visual and video reasoning. Visual and video reasoning have been well-studied recently, but
existing research has largely focused on the task of question answering (Johnson et al., 2017a;
Hudson & Manning, 2018; 2019a; Yi et al., 2020). CATER, a recently proposed diagnostic video
recognition dataset focuses on spatial and temporal reasoning as well as localizing particular object
of interest. There also has been significant research in object tracking, often with an emphasis on
occlusions with the goal of providing object permanence (Wojke et al., 2017; Wang et al., 2019b).
Traditional object tracking approaches often require expensive supervision of location of the objects
in every frame. In contrast, we address object permanence and video recognition on CATER with a
model that performs tracking-integrated object-centric reasoning without this strong supervision.

Multi-hop reasoning. Reasoning systems vary in expressive power and predictive abilities, which
include symbolic reasoning, probabilistic reasoning, causal reasoning, etc. (Bottou, 2014). Among
them, multi-hop reasoning is the ability to reason with information collected from multiple passages
to derive the answer (Wang et al., 2019a), and it gives a discrete intermediate output of the reasoning
process, which can help gauge model’s behavior beyond just the final task accuracy (Chen et al.,
2019). Several multi-hop datasets and models have been proposed for the reading comprehension
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Figure 2: An overview of the Hopper framework. Hopper first obtains frame representations from the input
video. Object representations and object tracks are then computed to enable tracking-integrated object-centric
reasoning for the Multi-hop Transformer (details in Section 4).

task (Welbl et al., 2018; Yang et al., 2018b; Dua et al., 2019; Dhingra et al., 2020). We extend multi-
hop reasoning to the video domain by developing a dataset that explicitly requires aggregating clues
from different spatiotemporal parts of the video, as well as a multi-hop model that automatically
extracts a step-by-step reasoning chain, which improves interpretability and imitates a natural way
of thinking. We provide an extended discussion of related work in Appendix I.

3 HOPPER

Hopper (Figure 2) is a framework inspired from the observation that humans think in terms
of entities and relations. Unlike traditional deep visual networks that perform processing over
the pixels from which they learn and extract features, object-centric learning-based architecture
explicitly separates information about entities through grouping and abstraction from the low-level
information (Locatello et al., 2020). Hopper obtains representations of object entities from the low-
level pixel information of every frame (Section 3.2). Additionally, to maintain object permanence,
humans are able to identify key moments when the objects disappear and reappear. To imitate
that, Hopper computes object tracks with the goal to have a more consistent object representation
(Section 3.3) and then achieves multi-step compositional long-term reasoning with the Multi-hop
Transformer to pinpoint these critical moments. Furthermore, Hopper combines both fine-grained
(object) and coarse-grained (image) information to form a contextual understanding of a video. As
shown in Figure 2, Hopper contains 4 components; we describe them below.

3.1 BACKBONE

Starting from the initial RGB-based video representation x, € RT*3*HoxWo \where T represents
the number of frames of the video, 3 is for the three color channels, and Hy and W, denote
the original resolution height and width, a conventional CNN backbone would extract the feature
map f € RIXPXHXW anqd for every frame ¢ a compact image representation iy € RY. The
backbone we use is ResNeXt-101 from Ma et al. (2018), P = 2048 and H,W = §8,10. A 1x1
convolution (Carion et al., 2020) then reduces the channel dimension of f from P to a smaller
dimension d (d = 256), and a linear layer is used to turn the dimension of ¢; from P to d.

3.2 OBIECT DETECTION AND REPRESENTATION

We collapse the spatial dimensions into 1 dimension and combine the batch dimension with the
temporal dimension for the feature map f. Positional encodings are learned for each time step
(T in total) and each spatial location (H x W in total), which are further added to the feature
map in an element-wise manner. The positional encoding-augmented feature map is the source
input to the transformer encoder (Vaswani et al., 2017) of DETR (Carion et al., 2020). DETR is
a recently proposed transformer-based object detector for image input; it additionally accepts N
embeddings of object queries for every image (assuming every image at most has NV objects?) to the
transformer decoder. We also combine the batch dimension with temporal dimension for the object
queries. Outputs from DETR are transformed object representations that are used as inputs to a
multilayer perceptron (MLP) to predict the bounding box and class label of every object. For Snitch
Localization, DETR is trained on object annotations from LA-CATER (Shamsian et al., 2020).

2@, i.e., none object, will be predicted if the number of objects in an image is less than V.
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3.3 TRACKING

Tracking produces consistent object representations as it links the representations of each object
through time. We perform tracking using the unordered object representations, bounding boxes and
labels as inputs, and applying our Hungarian-based algorithm to match objects between every two
consecutive frames. We describe the details as follows.

Tracking is essentially an association problem (Bewley et al., 2016). An association between 2
objects respectively from consecutive 2 frames can be defined by the object class agreement and the
difference of the two bounding boxes. Let us denote by § = [g;]Z_; the predicted list of objects
at all frames in a video, where §; = {§:}¥; denotes the predicted set of objects at frame ¢. Each

object is represented as a 4-tuple i = (&, bi, {pi(c)|c € C},0!) where & denotes the class label
that has the maximum predicted likelihood for object ¢ at frame ¢, lA)i € [0, 1]* is a vector that defines
the bounding box top left and bottom right coordinates relative to the image size, p:(c) denotes the
predicted likelihood for class ¢ (where C' = {large metal green cube, small metal green cube, .. .,

@}), and o} € R? denotes the representation vector of this object i at frame ¢.

In order to obtain the optimal bipartite matching between the set of predicted objects at frame ¢ and
t + 1, we search for a permutation of N elements o € G with the lowest permutation cost:

N
(5' = arg min Z c%crack (?Jz, g:.ﬁ?) (1)

ogeGN i=1
where Z;ack 1s a pair-wise track matching cost between predicted object gg (i.e., object ¢ at frame
t) and predicted object at frame ¢ + 1 with index o (¢) from the permutation o, denoted by g)ffl)
Following Carion et al. (2020), the optimal assignment is computed efficiently with the Hungarian

algorithm. The track matching cost at time ¢ for object ¢ is defined as
Lirack (3};7 Qz&)) = _Ac]l{g,;#g}ﬁ;(jl) (é;) + )\b]].{q;ﬁg}%ox (b; b,c;(rll)) (2)

where 1 denotes an indicator function such that the equation after the symbol 1 only takes effect
when the condition inside the {...} is true, otherwise the term will be 0. A;, A\p € R weight
each term. %« is defined as a linear combination of the L, loss and the generalized IoU
loss (Rezatofighi et al., 2019). When the predicted class label of object 7 at frame ¢ is not &, we
aim to maximize the likelihood of the class label ¢! for the predicted object (i) at frame ¢ + 1, and
minimize the bounding box difference between the two. The total track matching cost of a video is

the aggregation of % ack (g)l, e fl)) from object i = 1 to NV and frame ¢t = 1to T — 1.

This Hungarian-based tracking algorithm is used due to its simplicity. A more sophisticated tracking
solution (e.g. DeepSORT (Wojke et al., 2017)) could be easily integrated into Hopper, and may
improve the accuracy of tracking in complex scenes.

3.4 VIDEO QUERY REPRESENTATION AND RECOGNITION

The N object tracks obtained from the Hungarian algorithm and a single track of image features
from the backbone are further added with the learned positional time encodings to form the source
input to our Multi-hop Transformer (which will be introduced in Section 4). Multi-hop Transformer
produces the final latent representation of the video query e € R?. A MLP uses the video query
representation e as an input and predicts the grid class for the Snitch Localization task.

4 MULTI-HOP TRANSFORMER

Motivated by how humans reason an object permanence task through identifying critical moments
of key objects in the video (Bremner et al., 2015), we propose Multi-hop Transformer (MHT). MHT
reasons by hopping over frames and selectively attending to objects in the frames, until it arrives at
the correct object that is the most important for the task. MHT operates in an iterative fashion, and
each iteration produces one-hop reasoning by selectively attending to objects from a collection of
frames. Objects in that collection of frames form the candidate pool of that hop. Later iterations are
built upon the knowledge collected from the previous iterations, and the size of the candidate pool
decreases as iteration runs. We illustrate the MHT in Figure 16 in Appendix. The overall module is

described in Algorithm 1. MHT accepts a frame track 7;: [i1, i2, - - -, 47], an object track 7: [o%,
0%, -+, 0k, - ol 0, -+ ol ], aninitial target video query embedding &, the number of objects
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N and number of frames 7'. h denotes the hop index, and ¢ is the frame index that the previous hop
(i.e., iteration) mostly attended to, in Algorithm 1.

Overview. Multiple iterations are applied over MHT, and each iteration performs one hop of
reasoning by attending to certain objects in critical frames. With a total of H hops, MHT produces
refined representation of the video query £ (£ € R'*%). As the complexity of video varies, H
should also vary across videos. In addition, MHT operates in an autoregressive manner to process
the incoming frames. This is achieved by ‘Masking()’ (will be described later). The autoregressive
processing in MHT allows hop h+1 to only attend to objects in frames after frame ¢, if hop h mostly
attends to an object at frame ¢. We define the most attended object of a hop as the object that has the
highest attention weight (averaged from all heads) from the encoder-decoder multi-head attention
layer in Transformer, (will be described later). The hopping ends when the most attended object is
an object in the last frame.

MHT Architecture. Inside of the MHT, there are 2 encoder-decoder transformer units (Vaswani
et al., 2017): Transformery and Transformer,. This architecture is inspired by study in cognitive
science that reasoning consists of 2 stages: first, one has to establish the domain about which one
reasons and its properties, and only after this initial step can one’s reasoning happen (Stenning &
Van Lambalgen, 2012). We first use Transformer to adapt the representations of the object entities,
which form the main ingredients of the domain under the context of an object-centric video task.
Then, Transformer; is used to produce the task-oriented representation to perform reasoning.

We separate 2 types of information from the input: attention candidates and helper information. This
separation comes from the intuition that humans sometimes rely on additional information outside
of the candidate answers. We call such additional information as helper information H (specifically
in our case, could be the coarse-grained global image context, or information related to the previous
reasoning step). We define candidate answers as attention candidates U/, which are representations of
object entities (because object permanence is a task that requires reasoning relations of objects). For
each hop, we first extract attention candidates and helper information from the source sequence, then
use Transformer; to condense the most useful information by attending to attention candidates via
self-attention and helper information via encoder-decoder attention. After that, we use Transformer
to learn the latent representation of the video query by attentively utilizing the information extracted
from Transformer; (via encoder-decoder attention). Thus, MHT decides on which object to mostly
attend to, given the current representation of the video query &, by reasoning about the relations
between the object entities ({/), and how would each object entity relate to the reasoning performed
by the previous hop or global information ().

Transformer ;. Transformer; uses helper
information H from the previous hop, to
Input: 7; € RT™>4 7, ¢ RVNT*4 £ ¢ R4 N ¢ R, adapt the representations of the object

Algorithm 1 Multi-hop Transformer module.

TeR entities U/ to use in the current reasoning
Params: LayerNorm, Transformer ¢, Transformers, Wy, by step. Formally, I/ is the object track
L h+ 0,0 sequence 7, as in line 9 in Algorithm 1
2: whilet # (T'— 1) do U € RNTxd NT tokens), whereas H
i ﬁ ;z_ >h 1+t111en encompasses different meanings for hop 1

: and the rest of the hops. For hop 1, H is
2 elseH < Extract (T, N, T’ 1) the frame t.ragk T (H e RTX?, T tokens,
7. H T; line 7). This is because hop 1 is necessary
8: end if for all videos with the goal to find the
9 U, first critical object (and frame) from the
10: Uypdate, _ +— Transformer; (U, H) global information. Incorporating frame
11: Unpaate <—Sigmoid (Wy - Unpdate + bg) © U representations is also beneficial because
12: Umasx < Masking (Uupdace, t) it provides complementary information
13: &, A < Transformers (Unmask, £) and can mitigate occasional errors from

14: t «Softargmax (A)
15: end while
16: e < LayerNorm (£)

the object detector and tracker. For the rest
of the hops, H is the set of representations
of all objects in the frame that the previous
Return e hop mostly attended to (H € RN*4, N
tokens, Extract() in line 5). The idea is that, to select an answer from object candidates after frame
t, objects in frame ¢ could be the most important helper information. Transformer; produces Uypdate
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Unpaae € RNT*4 NT tokens), an updated version of U, by selectively attending to H. Further,
MHT conditionally integrates helper-fused representations and the original representations of /.
This conditional integration is achieved by Attentional Feature-based Gating (line 11), with the role
to combine the new modified representation with the original representation. This layer, added on
top of Transformer s, provides additional new information, because it switches the perspective into
learning new representations of object entities by learning a feature mask (values between 0 and 1)
to select salient dimensions of I/, conditioned on the adapted representations of object entities that
are produced by Transformer . Please see details about this layer in Margatina et al. (2019)).

Transformer,. Transformer, is then used to produce the task-oriented video query representation
E. As aforementioned, MHT operates in an autoregressive manner to proceed with time. This
is achieved by ‘Masking()’ that turns Uypdae into Umask Unmask € RYT*?) for Transformer, by
only retaining the object entities in frames affer the frame that the previous hop mostly attended to
(for hop 1, Umask 1S Uypdae). Masking is commonly used in NLP for the purpose of autoregressive
processing (Vaswani et al., 2017). Masked objects will have O attention weights. Transformerg
learns representation of the video query £ by attending to Un,sx (line 13). It indicates that, unlike
Transformer; in which message passing is performed across all connections between tokens in I/,
between tokens in H, and especially across ¢/ and H (we use U for Transformer, instead of Upyask,
because potentially, to determine which object a model should mostly attend to in frames after ¢,
objects in and before frame ¢ might also be beneficial), message passing in Transformer, is only
performed between tokens in £ (which has only 1 token for Snitch Localization), between tokens
in unmasked tokens in Uypqae, and more importantly, across connections between the video query £
and unmasked tokens in Uypgae- The indices of the most attended object and the frame that object is
in, are determined by attention weights A from the previous hop with a differentiable ‘Softargmax()’
(Chapelle & Wu, 2010; Honari et al., 2018), defined as, softargmax(z) = >, %i, where 3
J

is an arbitrarily large number. Attention weights A (A € RVYT*1) is averaged from all heads. & is
updated over the hops, serving the information exchange between the hops.

Summary & discussion. H, Unask and € are updated in every hop. £ should be seen as an encoding
for a query of the entire video. Even though in this dataset, a single token is used for the video
query, and the self-attention in the decoder part of Transformer, is thus reduced to a stacking of 2
linear transformations, it is possible that multiple queries would be desirable in other applications.
These structural priors that are embedded in (e.g., the iterative hopping mechanism and attention,
which could be treated as a soft tree) essentially provide the composition rules that algebraically
manipulate the previously acquired knowledge and lead to the higher forms of reasoning (Bottou,
2014). Moreover, MHT could potentially correct errors made by object detector and tracker, but
poor performance of them (especially object detector) would also make MHT suffer because (1)
inaccurate object representations will confuse MHT in learning, and (2) the heuristic-based loss for
intermediate hops (will be described in Section 5) will be less accurate.

5 TRAINING

We propose the following training methods for the Snitch Localization task and present an ablation
study in Appendix A. We provide the implementation details of our model in Appendix H.

» Dynamic hop stride. A basic version of autoregressive MHT is to set the per-hop frame stride to
1 with ‘Masking()’ as usually done in NLP. It means that Transformer, will only take in objects in
frame ¢+1 as the source input if the previous hop mostly attended to an object in frame ¢. However,
this could produce an unnecessary long reasoning chain. By using dynamic hop stride, we let the
model automatically decide on which upcoming frame to reason by setting ‘Masking()’ to give
unmasked candidates as objects in frames after the frame that the previous hop mostly attended to.

» Minimal hops of reasoning. We empirically set the minimal number of hops that the model has to
perform for any video as 5 to encourage multi-hop reasoning with reasonably large number of hops
(unless not possible, e.g., if the last visible snitch is in the second last frame, then the model is only
required to do 2 hops). This is also achieved by ‘Masking()’. E.g., if hop 1 mostly attends to an
object in frame 3, ‘Masking()’ will not mask objects in frames from frame 4 to frame 10 for hop 2,
in order to allow hop 3, 4, 5 to happen (suppose 13 frames per video, and frame 4 is computed from
3 + 1, frame 10 is computed as max(3 + 1,13 — (5 — 2))).

» Auxiliary hop 1 object loss. Identifying the correct object to attend to in early hops is critical and
for Snitch Localization, the object to attend to in hop 1 should be the last visible snitch (intuitively).
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Hence, we define an auxiliary hop 1 object loss as the cross-entropy of classifying index of the last
visible snitch. Inputs to this loss are the computed index of the last visible snitch from 7, (with
the heuristic that approximates it from predicted object bounding boxes and labels), as well as the
attention weights A from Transformer, of hop 1, serving as predicted likelihood for each index.

» Auxiliary hop 2 object loss. Similarly, we let the second hop to attend to the immediate occluder
or container of the last visible snitch. The auxiliary hop 2 object loss is defined as the cross-entropy
of classifying index of the immediate occluder or container of the last visible snitch. Inputs to this
loss are the heuristic > computed index and attention weights A from Transformer, of hop 2.

» Auxiliary hop 1&2 frame loss. Attending to objects in the correct frames in hop 1 and 2 is critical
for the later hops. A L; loss term could guide the model to find out the correct frame index.

» Teacher forcing is often used as a strategy for training recurrent neural networks that uses the
ground truth from a prior time step as an input (Williams & Zipser, 1989). We use teacher forcing
for hop 2 and 3 by providing the ground truth H and {/y,g (since we can compute the frame index
of the last visible snitch with heuristics as described above).

» Contrastive debias loss via masking out. This loss is inspired from the human mask confusion
loss in Choi et al. (2019). It allows penalty for the model if it could make predictions correctly
when the most attended object in the last frame is masked out. However, in contrast to human mask,
we enforce consistency between attended objects and correct predictions, ensuring that the model
understands why it is making a correct prediction. The idea here is that the model should not be
able to predict the correct location without seeing the correct evidence. Technically, the contrastive
debias loss is defined as the entropy function that we hope to maximize, defined as follows.

K

gdebias =E Z go (Mneg; e ) (IOgge (Mneg; e )) (3)

k=1

where gy denotes the video query representation and recognition module (Multi-hop Transformer
along with MLP) with parameter 6 that produces the likelihood of each grid class, M., is the
source sequence to the Multi-hop Transformer with the most attended object in the last hop being
masked out (set to zeros), and K denotes the number of grid classes.
Summary & discussion. The total loss of the model is a linear combination of hop 1 and hop
2 object & frame loss, contrastive debiasing loss for the last hop, and the final grid classification
cross-entropy loss. The object & frame loss for hop 1 and 2 are based on heuristics. The motivation
is to provide weak supervision for the early hops to avoid error propagation, as multi-hop model can
be difficult to train, without intermediate supervision or when ground truth reasoning chain is not
present (as in Hopper) (Dua et al., 2020; Qi et al., 2019; Ding et al., 2019; Wang et al., 2019a; Chen
& Durrett, 2018; Jiang & Bansal, 2019). One can use similar ideas as the ones here on other tasks
that require multi-hop reasoning (e.g., design self-supervision or task-specific heuristic-based weak
supervision for intermediate hops, as existing literature often does).

6 EXPERIMENTS

Datasets. Snitch Localization (Figure 1) is the most challenging task in the CATER dataset and it
requires maintaining object permanence to solve the task successfully (Girdhar & Ramanan, 2020).
However, CATER is highly imbalanced for Snitch Localization task in terms of the temporal cues:
snitch is entirely visible at the end of the video for 58% samples, and entirely visible at the second
last frame for 14% samples. As a result, it creates a temporal bias in models to predict based on
the last few frames. To address temporal bias in CATER, we create a new dataset, CATER-hard
(CATER-h for short), with diverse temporal variations. In CATER-h, every frame index roughly
shares an equal number of videos, to have the last visible snitch in that frame (Figure 13).

Baselines & metrics. We experiment with TSM (Lin et al., 2019), TPN (Yang et al., 2020), and
SINet (Ma et al., 2018). Additionally, Transformer that uses the time-encoded frame track as the
source sequence is utilized. Both SINet and Transformer are used to substitute our novel MHT
in the Hopper framework in order to demonstrate the effectiveness of the proposed MHT. This
means that Hopper-transformer and Hopper-sinet use the same representations of image track
and object tracks as our Hopper-multihop. Moreover, we report results from a Random baseline,
a Tracking baseline used by Girdhar & Ramanan (2020) (DaSiamRPN), and a Tracking baseline
based on our Hungarian algorithm (Section 3.3) in order to have a thorough understanding of how

3The heuristic is L; distance to find out that in the immediate frame which object’s bounding box bottom
midpoint location is closest to that of the last visible snitch.
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well our tracking component performs. For CATER. we also compare with the results in Girdhar &
Ramanan (2020). Details of the baselines are available in Appendix H. We evaluate models using
Top-1 and Top-5 accuracy, as well as mean L; distance of the predicted grid cell from the ground
truth following Girdhar & Ramanan (2020). L; is cognizant of the grid structure and will penalize
confusion between adjacent cells less than those between distant cells.

Methods FPS #Frames TopltT Top51 L1l
Random - - 2.8 13.8 3.9
DaSiamRPN (Tracking) (Zhu et al., 2018) - - 33.9 40.8 2.4

Hungarian (Tracking - ours) - 46.0 52.7 1.9

TSN (RGB) (Wang et al., 2016) - 3 14.1 38.5 3.2
TSN (RGB) + LSTM (Wang et al., 2016) - 3 25.6 67.2 2.6
TSN (Flow) (Wang et al., 2016) - 3 9.6 32.3 3.7
TSN (Flow) + LSTM (Wang et al., 2016) - 3 14.0 43.5 3.2
13D-50 (Carreira & Zisserman, 2017) 5 64 57.4 78.4 1.4
I13D-50 + LSTM (Carreira & Zisserman, 2017) 5 64 60.2 81.8 1.2
I3D-50 + NL (Wang et al., 2018) 2.5 32 26.7 68.9 2.6
I3D-50 + NL + LSTM (Wang et al., 2018) 2.5 32 46.2 69.9 1.5
TPN-101 (Yang et al., 2020) 2.5 32 65.3* 83.0 1.09
TSM-50 (Lin et al., 2019) 1 13 64.0 85.7 0.93
SINet (Ma et al., 2018) 1 13 21.1 47.1 3.14
Transformer (Vaswani et al., 2017) 1 13 13.7 39.9 3.53
Hopper-transformer (last frame) 1 13 61.1 86.6 1.42
Hopper-transformer 1 13 64.9 90.1* 1.11
Hopper-sinet 1 13 69.1 91.8 1.02*
Hopper-multihop (our proposed method) 1 13 73.2% 93.8*  0.85F

Table 1: CATER Snitch Localization results (on the test set). The top 3 performance scores are highlighted as:
First*, Second, Third". Hopper outperforms existing methods under only 1 FPS.

Methods FPS #Frames Topl?tT Topb51t Lil
Random - - 2.4 13.6 3.9

DaSiamRPN (Tracking) (Zhu et al., 2018) - - 17.1 26.1 2.9

Hungarian (Tracking - ours) - - 37.2 44.4 2.3

TPN-101 (Yang et al., 2020) 2.5 32 50.2 88.3* 1.46
TSM-50 (Lin et al., 2019) 1 13 44.0 75.7 1.54
SINet (Ma et al., 2018) 1 13 18.6 44.3 3.24
Transformer (Vaswani et al., 2017) 1 13 11.6 34.4 3.49
Hopper-transformer (last frame) 1 13 41.8 79.3 2.10
Hopper-transformer 1 13 57.6" 90.1 1.39*
Hopper-sinet 1 13 62.8 91.7* 1.25
Hopper-multihop (our proposed method) 1 13 68.4* 87.9 109"

Table 2: CATER-h Snitch Localization results (on the test set). The top 3 performance scores are highlighted
as: First*, Second, Third”. Hopper outperforms existing methods under only 1 FPS.

Results. We present the results on CATER in Table 1 and on CATER-h in Table 2. For all methods,
we find that the performance on CATER-h is lower than that on CATER, which demonstrates the
difficulty of CATER-h. Such performance loss is particularly severe for the tracking baseline and the
temporal video understanding methods (TPN and TSM). The DaSiamRPN tracking approach only
solves about a third of the videos on CATER and less than 20% on CATER-h. This is because the
tracker is unable to maintain object permanence through occlusions and containments, showcasing
the challenging nature of the task. Our Hungarian tracking has 46.0% Top-1 on CATER and 37.2%
Top-1 on CATER-h. On CATER, TPN and TSM, as two state-of-the-art methods focusing on
temporal modeling for videos, achieve a higher accuracy than methods in Girdhar & Ramanan
(2020). However, on CATER-h, TPN only has 50.2% Top-1 accuracy and 44.0% for TSM. SINet
performs poorly even though SINet reasons about the higher-order object interactions via multi-
headed attention and fusion of both coarse- and fine-grained information (similar to our Hopper).
The poor performance of SINet can be attributed to the less accurate object representations and
the lack of tracking whereas effective temporal modeling is critical for the task. Without the
object-centric modeling, Transformer that uses a sequence of frame representations performs poorly.
However, for both SINet and Transformer, a significant improvement is observed after utilizing our
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Snitch is contained by the purple cone at frame 5 (the last visible snitch is in frame 4). Then, purple
cone is contained by the blue cone at frame 7. After that the blue cone keeps sliding. The blue cone
uncontains the purple cone at frame 13. In the end, the snitch is inside the purple cone.

Figure 3: Qualitative result & interpretability of our model. We highlight the object attended per hop and
per head from Hopper-multihop. The frame border of attended object is colored based on the hop index
(accordingly: Hopl, Hop2, Hop3, Hop4, and HopS5). The bounding box of the most attended object in each
hop shares the same color as the color of the hop index. Please zoom in to see the details. Best viewed in color.

Hopper framework. This shows the benefits of tracking-enabled object-centric learning embedded
in Hopper. Since almost 60% of videos in CATER have the last visible snitch in the last frame,
we run another experiment by using Transformer in Hopper but only uses the representations of
the frame and objects in the last frame. This model variant achieves 61.1% Top-1 on CATER,
even higher than the best-performing method in Girdhar & Ramanan (2020), but only 41.8% Top-1
on CATER-h, which proves and reiterates the necessity of CATER-h. The accuracy is relatively
high, likely due to other dataset biases. More discussion is available in Appendix G.6. Our
method, Hopper with the MHT, outperforms all baselines in Top-1 using only 13 frames per video,
highlighting the effectiveness and importance of the proposed multi-hop reasoning. Shamsian et al.
(2020) report slightly better Top-1 (74.8%) and L (0.54) on CATER but they impose strong domain
knowledge, operate at 24 FPS (300 frames per video) and require the location of the snitch to be
labeled in every frame, even when contained or occluded, for both object detector and their reasoning
module. Labeling these non-visible objects for every frame of a video would be very difficult in real
applications. Furthermore, their method only has 51.4% Top-1 and L; of 1.31 on CATER-h at 24
FPS. Please refer to Appendix where we provide more quantitative results.

Interpretability. We visualize the attended objects in Figure 3. As illustrated, the last visible snitch
is in frame 4 in this video, and at frame 5 snitch is contained by the purple cone. At frame 7,
the purple cone is contained by the blue cone, but in the end, the blue cone excludes the purple
cone. Hop 1 of Hopper-multihop attends to the last visible snitch at frame 4, and hop 2 attends to
snitch’s immediate container: the purple cone at frame 5. Hop 3 mostly attends to the purple cone’s
immediate container: the blue cone at frame 7, and secondly attends to the blue cone at frame 11 (by
the other head) as the blue cone is just sliding from frame 7 till 12. Hop 4 mostly attends to the blue
cone at frame 12. Hop 5 mostly attends to the purple cone (who contains the snitch) at frame 13,
and secondly attends to the blue cone at frame 13. The visualization exhibits that Hopper-multihop
performs reasoning by hopping over frames and meanwhile selectively attending to objects in the
frame. It also showcases that MHT provides more transparency to the reasoning process. Moreover,
MHT implicitly learns to perform snitch-oriented tracking automatically. More visualizations are
available in Appendix.

7 CONCLUSION AND FUTURE WORK

This work presents Hopper with a novel Multi-hop Transformer to address object permanence in
videos. Hopper achieves 73.2% Top-1 accuracy at just 1 FPS on CATER, and demonstrates the
benefits of multi-hop reasoning. In addition, the proposed Multi-hop Transformer uses an iterative
attention mechanism and produces a step-by-step reasoning chain that improves interpretability.
Multi-hop models are often difficult to train without supervision for the middle hops. We propose
several training methods that can be applied to other tasks to address the problem of lacking a ground
truth reasoning chain. In the future, we plan to experiment on real-world video datasets and extend
our methods to deal with other complex tasks (such as video QA).
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A ABLATION STUDY

Dynamic Minb Hopl Hop2 Frame Teacher Debias
Stride Hops Loss  Loss Loss  Forcing  Loss

v 68.41  87.80  1.09
64.65  87.75  1.19
63.32  86.94 1.23
62.88  86.57 1.19
61.92  88.19  1.20
59.48  84.58  1.37

59.11 86.20  1.37
97.27 84.43  1.39

Toplt TopbtT Lid

AN
SRR NN
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X% % % WNNN
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Table 3: Ablation Study of Hopper training methods. We gradually add training methods described in
Section 4, i.e., dynamic hop stride, minimal 5 hops of reasoning, auxiliary hop 1 object loss, auxiliary hop
2 object loss, auxiliary frame loss, teacher forcing, and contrastive debias loss via masking out, onto the base
Hopper-multihop model. The results are obtained from the CATER-h test set.

We conduct an ablation study of training methods described in Section 4 in Table 3. As shown, all
proposed training methods are beneficial. ‘Dynamic Stride’ gives the model more flexibility whereas
‘Min 5 Hops’ constrains the model to perform a reasonable number of steps of reasoning. ‘Hop 1
Loss’, ‘Hop 2 Loss’, ‘Frame Loss’ and ‘Teacher Forcing’ stress the importance of the correctness of
the first 2 hops to avoid error propagation. ‘Debias Loss’ is the most effective one by contrastively
inducing the latent space to capture information that is maximally useful to the task at hand.

Object Detector & Tracker Reasoning Model Toplt Topd5T L1l

DETR + Hungarian (ours) MHT (both Masked) 65.73 88.39 1.13
DETR + Hungarian (ours) MHT (no Gating) 66.62 87.43 1.16

DETR (no Tracking) MHT (no Tracking) 67.51 88.32 1.14
DETR + Hungarian (ours) MHT (mask out LAST)  32.49 60.92 2.53
DETR + Hungarian (ours) ~ MHT (mask out ALL) 11.68 28.98 3.60

Table 4: Ablation study & comparative results of analyzing components of our method (on CATER-h test set).

We then study how would different choices of the sub-components of our method affect the Snitch
Localization performance. In Table 4:

e ‘MHT (both Masked)’: This refers to using our Hopper-multihop but replacing the
original U input to Transformer; with a masked version. In this way, both Transformer s
and Transformer, have ‘Masking()’ applied beforehand.

e ‘MHT (no Gating)’: This refers to using our Hopper-multihop but removing the
Attentional Feature-based Gating (line 11 in Algorithm 1) inside of MHT.

o ‘MHT (no Tracking)’: This refers to using our Hopper-multihop but entirely removing the
Hungarian tracking module. Thus, MHT directly takes in unordered object representations
as inputs.

e ‘MHT (mask out LAST)’: This refers to taking our trained Hopper-multihop, masking
out the representation of the most attended object in the last hop by zeros, and then making
predictions. This is to verify whether the most attended object in the last hop is important
for the final Snitch Localization prediction task.

e ‘MHT (mask out ALL)’: Similar to the above, ‘MHT (mask out ALL)’ refers to taking our
trained Hopper-multihop, masking out the representations of the most attended objects
in all hops by zeros, and then making predictions. This is to verify how important are the
most attended objects in all hops that are identified by our Hopper-multihop.
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As shown in Table 4, all of these ablations give worse performance, thus, indicating that our
motivations for these designs are reasonable (see Section 4). Recall that in Table 2, ‘DETR +
Hungarian’ (without MHT) has only 37.2% Top-1 accuracy on CATER-h (learning a perfect object
detector or tracker is not the focus of this paper). This highlights the superiority of our MHT as a
reasoning model, and suggests that MHT has the potential to correct mistakes from the upstream
object detector and tracker, by learning more robust object representations during the process of
learning the Snitch Localization task. Masking out the most attended object identified by our
Hopper-multihop in the last hop only has 32.49% Top-1 accuracy. Masking out all of the most
attended objects from all hops only has 11.68% Top-1 accuracy. Such results reassure us about the
interpretability of our method.

B PARAMETER COMPARISON

Model # Parameters (M) GFLOPs Top 1 Acc.
SINet 138.69 7.98 18.6
Transformer 15.01 0.11 11.6
Hopper-transformer (last frame) 15.01 0.09 41.8
Hopper-transformer 15.01 1.10 57.6
Hopper-sinet 139.22 8.05 62.8
Hopper-multihop (our proposed method) 6.39 1.79 68.4

Table 5: Parameter and FLOPs comparison of our Hopper-multihop to alternative methods. (M) indicates
millions. Results of the methods on CATER-h test set is also listed.

In Table 5, we compare the number of parameters of our Hopper-multihop with alternative
methods. Our proposed method is the most efficient one in terms of the number of parameters.
This is because of the iterative design embedded in MHT. Unlike most existing attempts on using
Transformer that stack multiple encoder and decoder layers in a traditional way, MHT only has one
layer of Transformer; and Transformer,. As multiple iterations are applied to MHT, parameters
of Transformery and Transformer, from different iterations are shared. This iterative transformer
design is inspired by previous work Locatello et al. (2020). This design saves parameters,
accumulates previously learned knowledge, and adapts to varying number of hops, e.g., some require
1 hop and some require more than 1 hop (e.g, 5 hops). Because for these videos that tentatively
only require 1 hop, stacking multiple layers of Transformer such as 5 might be wasteful and not
necessary, our design of MHT could address such issue, being more parameter-efficient. We also
report the GFLOPs comparison. Given that the FLOPs for MHT depends on the number of hops
predicted for a video, we report the average number of FLOPs for the CATER-h test set.

C DIAGNOSTIC ANALYSIS
C.1 DIAGNOSTIC ANALYSIS ON THE HOPPING MECHANISM

# Hops ‘ 1 2 3 4 >5
Ground Truth 104 105 111 110 1026
Prediction 109 102 112 108 1025

Jaccard Similarity T | 0.9541 0.9714 0.9561 0.9818 0.9990

Table 6: Diagnostic analysis of the Multi-hop Transformer in terms of the ‘hopping’ ability (# hops performed).

We evaluate the ‘hopping’ ability of the proposed Multi-hop Transformer in Table 6. The prediction
is made by our Hopper-multihop that requires at least 5 hops of reasoning unless not possible.
For each test video, we compute the ground truth number of hops required by this video and obtain
the number of hops that Hopper actually runs. In the table, we provide the ground truth count
and predicted count of test videos that require 1 hop, 2 hops, 3 hops, 4 hops, and equal or greater
than 5 hops. Since the numbers are close, we further compute Jaccard Similarity (range from 0 to
1 and higher is better) to measure the overlapping between the ground truth set of the test videos
and predicted set of the test videos. According to these metrics, our proposed Hopper-multihop
functionally performs the correct number of hops for almost all test videos.

16



Published as a conference paper at ICLR 2021

Frame Index | 1 2 3 4 5 6 7 8 9 10 11 12 13
Hop 1 127 136 106 120 104 111 109 107 105 0 0 0 0
Hop 2 0 127 136 106 120 104 111 109 107 105 0 0 0
Hop 3 0 0 8 2 66 10 13 24 17 107 778 0 0
Hop 4 0 0 0 1 0 0 0 1 0 0 10 1013 0
Hop 5 0 0 0 0 0 0 0 0 0 0 0 9 1016
Hop 6 0 0 1 0 0 0 1 0 0 0 0 0 9

Table 7: Hop Index vs. Frame Index: the number of times hop h mostly attends to frame ¢ (results are obtained
from Hopper-multihop on CATER-h). See details in Appendix C.1.

In Table 7, we show the number of times hop

137 o @ 7 mostly attends to frame ¢. The results are

121 ® W obtained from Hopper-multihop on CATER-

< Ll) N 8 O h, for those 1025 test videos predicted with

% ol == > 5 hops shown in Table 6. In Figure 4, we

c .l Ef Ef O plot the index of frame of the most attended

E 7] e) S object identified by each hop (conveying the

c o S) S same meaning as Table 7). The transparency

G ° @ &) of the dot denotes the normalized frequency of
&Y 8 ;2 © that frame index for that particular hop.

34 ()

21 @ bl We can observe that: (1) Hop 3 to 6 tend

14 to attend to later frames, and this is due

T 7 4 : to lacking supervision for the intermediate

3 4

hops. As we discussed in Section 5, multi-
Hop Index hop model is hard to train in general when
the ground truth reasoning chain is missing
during training (Dua et al.,, 2020; Chen &
Durrett, 2018; Jiang & Bansal, 2019; Wang
et al., 2019a). Researchers tend to use ground
truth reasoning chain as supervision when they
train a multi-hop model (Qi et al., 2019; Ding et al., 2019; Chen et al., 2019). The results reconfirm
that, without supervision for the intermediate steps, it is not easy for a model to automatically figure
out the ground truth reasoning chain; (2) MHT has learned to predict the next frame of the frame
that is identified by hop 1, as the frame that hop 2 should attend to; (3) there are only 9 videos
predicted with more than 5 hops even though we only constrain the model to perform at least 5
hops (unless not possible). Again, this is because no supervision is provided for the intermediate
hops. As the Snitch Localization task itself is largely focused on the last frame of the video, without
supervision for the intermediate hops, the model tends to “look at” later frames as soon as possible.
These results suggest where we can improve for the current MHT, e.g., one possibility is to design
self-supervision for each intermediate hop.

Figure 4: Hop Index vs. Frame Index: we plot the
index of frame of the most attended object identified
by each hop. Each hop has its unique color, and
the transparency of the dot denotes the normalized
frequency of that frame index for that particular hop.

C.2 COMPARATIVE DIAGNOSTIC ANALYSIS ACROSS FRAME INDEX

. In Figure 5, we present the comparative
e S u DS o 509 diagnostic analysis of the performance in terms
Hopper (CV: 0.1 SD: 0.07) ° of when snitch becomes last visible. We bin the
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becomes last visible in the video. For each,
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plot, the performance over that bin using the
/.—‘\'/. line plot, and performance of that model on

o B O the full test set with the dashed line. We find
that for Tracking (DaSiamRPN) and TSM, the
Snitch Localization performance drops if the
snitch becomes not visible earlier in the video.
Figure 5: Diagnostic analysis of the performance in Such phenomenon, though still exists, but is

terms of when snitch becomes last visible in the video. ~alleviated for Hopper -multihop. We compute
the standard deviation (SD) and coefficient of
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variation (CV). Both are measures of relative variability. The higher the value, the greater the level
of dispersion around the mean. The values of these metrics as shown in Figure 5 further reinforce
the stability of our model and necessity of CATER-h dataset.

D EXTRA QUALITATIVE RESULTS

In Figure 6, we visualize the attention weights per hop and per head from Transformer to showcase
the hops performed by Hopper-multihop for video ‘CATERh_054110" (the one in Figure 3) in
details. Please see Figure 7, 8, 9, 10, and 11 for extra qualitative results from Hopper-multihop.
We demonstrate the reasoning process for different cases (i.e., ‘visible’, ‘occluded’, ‘contained’,
‘contained recursively’, and ‘not visible very early in the video’).

(a) Qualitative result via visualizing the most attended object(s) of every hop.

BEGINNING ... FRAME 1 FRAME 2 FRAME 3 FRAME 4 FRAME 5 FRAME 6
- - - - IHBP 1 Head 1, JI“UP 2 Head 1, 2 -

FRAME 12 FRAME 13

FRAME 7 FRAME 8 FRAME 9 FRAME 10 FRAME 11
Hop 5 Head 1
Hop 3 Head 2 Hop 4 Head 1, 2 Hop 5 Head 2

Snitch is contained by the purple cone at frame 5 (the last visible snitch is in frame 4). Then, purple
cone is contained by the blue cone at frame 7. After that the blue cone keeps sliding. The blue cone
uncontains the purple cone at frame 13. In the end, the snitch is inside the purple cone.

(b) Attention weights visualization.

0 20 40 60 80 100 120

Hop 1: Video CATERh_054110 mostly attends to the 3@th element from the object tracks in the memory sequence, i.e., track 3 at frame 4

Hop 1 Head 1: Video CATERh_054110 mostly attends to the 30th element from the object tracks in the memory sequence, i.e., track 3 at frame 4

Hop 1 Head 2: Video CATERh_054110 mostly attends to the 30th element from the object tracks in the memory sequence, i.e., track 3 at frame 4
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Hop 2: Video CATERh_054110 mostly attends to the 83th element from the object tracks in the memory sequence, i.e., track 7 at frame 5

Hop 2 Head 1: Video CATERh_054110 mostly attends to the 83th element from the object tracks in the memory sequence, i.e., track 7 at frame 5

Hop 2 Head 2: Video CATERh_054110 mostly attends to the 83th element from the object tracks in the memory sequence, i.e., track 7 at frame 5
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Hop 3: Video CATERh_054110 mostly attends to the 98th element from the object tracks in the memory sequence, i.e., track 8 at frame 7

Hop 3 Head 1: Video CATERh_054110 mostly attends to the 98th element from the object tracks in the memory sequence, i.e., track 8 at frame 7

Hop 3 Head 2: Video CATERh_054110 mostly attends to the 102th element from the object tracks in the memory sequence, i.e., track 8 at frame 11
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Hop 4: Video CATERh_054110 mostly attends to the 103th element from the object tracks in the memory sequence, i.e., track 8 at frame 12

Hop 4 Head 1: Video CATERh_054110 mostly attends to the 103th element from the object tracks in the memory sequence, i.e., track 8 at frame 12

Hop 4 Head 2: Video CATERh_054110 mostly attends to the 103th element from the object tracks in the memory sequence, i.e., track 8 at frame 12
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Hop 5: Video CATERh_054110 mostly attends to the 13th element from the object tracks in the memory sequence, i.e., track 1 at frame 13
Hop 5 Head 1: Video CATERh_054110 mostly attends to the 104th element from the object tracks in the memory sequence, i.e., track 8 at frame 13
Hop 5 Head 2: Video CATERh_054110 mostly attends to the 13th element from the object tracks in the memory sequence, i.e., track 1 at frame 13

Figure 6: Visualization of attention weights & interpretability of our model. In (a), we highlight object(s)
attended in every hop from Hopper-multihop (frame border is colored accordingly: Hopl, Hop2, Hop3,
Hop4, and Hop5). In (b), we visualize the attention weights per hop (the smaller attention weight that an
object has, the larger opacity is plotted for that object entity). As shown, Hopper-multihop performs 5 hops
of reasoning for the video ‘CATERh_054110’. Our model performs reasoning by hopping over frames and
meanwhile selectively attending to objects in the frame. Please zoom in to see the details. Best viewed in color.

E TRACK REPRESENTATION VISUALIZATION

Please see Figure 12 for visualization of the object track representations of video ‘CATERh_054110°
(attention weights from Hopper-multihop for this video are shown in Figure 6). Hopper utilizes
tracking-integrated object representations since tracking can link object representations through time
and the resulting representations are more informative and consistent. As shown in the figure, the
tracks that are obtained from our custom Hungarian algorithm that are competitive. Our model
Hopper-multihop takes in the best-effort object track representations (along with the coarse-
grained frame track) as the source input to the Multi-hop Transformer, and then further learns the
most useful and correct task-oriented track information implicitly (as shown in Figure 6).
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(a) Qualitative result via visualizing the most attended object(s) of every hop.
BEGINNING FRAME 1

FRAME 9 FRAME 10

(visible) In the end, the snitch is visible.

FRAME 4 FRAME S

(b) Attention weights visualization.

0 20 40 60 80 100 120

Hop 1: Video CATERh_015360 mostly attends to the 104th element from the object tracks in the memory sequence, i.e., track 8 at frame 13
Hop 1 Head 1: Video CATERh_015360 mostly attends to the 104th element from the object tracks in the memory sequence, i.e., track 8 at frame 13
Hop 1 Head 2: Video CATERh_015360 mostly attends to the 104th element from the object tracks in the memory sequence, i.e., track 8 at frame 13

Figure 7: We visualize the attention weights per hop and per head from Transformer, in our Hopper-multihop.

Objects attended in every hop are highlighted (whose frame border is colored accordingly: Hop1, Hop2, Hop3,
Hop4, and Hop5). Please zoom in to see the details. Best viewed in color.

(a) Qualitative result via visualizing the most attended object(s) of every hop.

BEGINNING ... FRAME 1 FRAME 2 FRAME 3 FRAME 4 FRAME S FRAME 6

FRAME 7 FRAME 8 FRAME 10

-----Iﬂoplueldl ZIHOPZHeadl 2

(Occlusion) In the end, the snitch is occluded by the green cylinder.

(b) Attention weights visualization.
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Hop 1: Video CATERh_012713 mostly attends to the 77th element from the object tracks in the memory sequence, i.e., track 6 at frame 12

Hop 1 Head 1: Video CATERh_012713 mostly attends to the 77th element from the object tracks in the memory sequence, i.e., track 6 at frame 12

Hop 1 Head 2: Video CATERh_012713 mostly attends to the 77th element from the object tracks in the memory sequence, i.e., track 6 at frame 12
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Hop 2: Video CATERh_012713 mostly attends to the 91th element from the object tracks in the memory sequence, i.e., track 7 at frame 13
Hop 2 Head 1: Video CATERh_012713 mostly attends to the 91th element from the object tracks in the memory sequence, i.e., track 7 at frame 13
Hop 2 Head 2: Video CATERh_012713 mostly attends to the 91th element from the object tracks in the memory sequence, i.e., track 7 at frame 13

Figure 8: We visualize the attention weights per hop and per head from Transformer, in our Hopper-multihop.
Objects attended in every hop are highlighted (whose frame border is colored accordingly: Hop1, HopZ2, Hop3,
Hop4, and Hop5). Please zoom in to see the details. Best viewed in color.

F FAILURE CASES

We present a sample of the failure cases of Hopper-multihop in Figure 15. Generally, a video
is more difficult if: (1) there are similar looking objects present simultaneously (especially if the
object is similar to snitch or another cone in the video); (2) wrong hop 1 or 2 identified; (3) critical
moments are occluded (e.g. in Figure 15, when the snitch becomes occluded, it is contained by the
brown cone); (4) complex object interactions such as recursive containment along with container
moving (since such case usually has the last visible snitch very early). Hopper-multihop fails in
the first scenario due to the error made by the object representation and detection module, which
can be avoided by using a fine-tuned object detector model. Hopper-multihop fails in the second
scenario can attribute to the error made by the object detector, tracker, our heuristics, or capability
of the inadequately-trained Multi-hop Transformer. The third scenario is not easy even for humans
under 1 FPS, thus increasing FPS with extra care might ease the problem. The last scenario requires
more sophisticated multi-step reasoning, thus changing the minimal number of hops of the Multi-hop
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(a) Qualitative result via visualizing the most attended object(s) of every hop.
FRAME S

BEGINNING ... FRAME 1 FRAME 2 FRAME 3 FRAME 4 FRAME 6
4
|““““““““‘\ “““““““““\ I““““““““‘\ “““““““““\ “““““““““\ “‘ll““““““‘\ “““““““““\

FRAME 8 FRAME 9 FRAME 10 FRAME 11 FRAME 12 FRAME 13
Hop 2 Head 1, 2

FRAME 7
- - Hop 1 Head 1, 2

Iunp 3 Head 1, Jlﬂop 4 Head 1, 2 qup 5 Head 1, J

(Containment) In the end, the snitch is inside of the green cone.

(b) Attention weights visualization.
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Hop 1: Video CATERh_032274 mostly attends to the 74th element from the object tracks in the memory sequence, i.e., track 6 at frame 9

Hop 1 Head 1: Video CATERh_032274 mostly attends to the 74th element from the object tracks in the memory sequence, i.e., track 6 at frame 9

Hop 1 Head 2: Video CATERh_032274 mostly attends to the 74th element from the object tracks in the memory sequence, i.e., track 6 at frame 9
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Hop 2: Video CATERh_032274 mostly attends to the 127th element from the object tracks in the memory sequence, i.e., track 10 at frame 10

Hop 2 Head 1: Video CATERh_032274 mostly attends to the 127th element from the object tracks in the memory sequence, i.e., track 10 at frame 10

Hop 2 Head 2: Video CATERh_032274 mostly attends to the 127th element from the object tracks in the memory sequence, i.e., track 10 at frame 10
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Hop 3: Video CATERh_032274 mostly attends to the 128th element from the object tracks in the memory sequence, i.e., track 10 at frame 11
Hop 3 Head 1: Video CATERh_032274 mostly attends to the 128th element from the object tracks in the memory sequence, i.e., track 10 at frame 11
Hop 3 Head 2: Video CATERh_032274 mostly attends to the 128th element from the object tracks in the memory sequence, i.e., track 10 at frame 11
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Hop 4: Video CATERh_032274 mostly attends to the 129th element from the object tracks in the memory sequence, i.e., track 10 at frame 12

Hop 4 Head 1: Video CATERh_032274 mostly attends to the 129th element from the object tracks in the memory sequence, i.e., track 10 at frame 12

Hop 4 Head 2: Video CATERh_032274 mostly attends to the 129th element from the object tracks in the memory sequence, i.e., track 10 at frame 12
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Hop 5: Video CATERh_032274 mostly attends to the 130th element from the object tracks in the memory sequence, i.e., track 10 at frame 13
Hop 5 Head 1: Video CATERh_032274 mostly attends to the 13@th element from the object tracks in the memory sequence, i.e., track 10 at frame 13
Hop 5 Head 2: Video CATERh_032274 mostly attends to the 13@th element from the object tracks in the memory sequence, i.e., track 10 at frame 13

v

Figure 9: We visualize the attention weights per hop and per head from Transformer, in our Hopper-multihop.
Objects attended in every hop are highlighted (whose frame border is colored accordingly: Hop1, HopZ2, Hop3,
Hop4, and HopS5). Please zoom in to see the details. Best viewed in color.

Transformer into a larger number with self-supervision for the intermediate hops to handle the long
hops should help in solving this scenario. Overall, an accurate backbone, object detector, tracking
method, or the heuristics to determine visibility and the last visible snitch’s immediate container
(or occluder) will help improve the performance of Hopper-multihop. We would like to focus on
enhancing Hopper-multihop for these challenges and verify our hypothesis in our future work.

G THE CATER-H DATASET

G.1 Basics: CATER

CATER (Girdhar & Ramanan, 2020) provides a diagnostic video dataset that requires spatial and
temporal understanding to be solved. It is built against models that take advantage of wrong scene
biases. With fully observable and controllable scene bias, the 5, 500 videos in CATER are rendered
synthetically at 24 FPS (300-frame 320x240px) using a library of standard 3D objects: 193 different
object classes in total which includes 5 object shapes (cube, sphere, cylinder, cone, snitch) in 3
sizes (small, medium, large), 2 materials (shiny metal and matte rubber) and 8 colors. Every video
has a small metal snitch (see Figure 1). There is a large “table” plane on which all objects are
placed. At a high level, the dynamics in CATER videos are in analogy to the cup-and-balls magic
routine*. A subset of 4 atomic actions (‘rotate’, ‘pick-place’, ‘slide’ and ‘contain’) is afforded by
each object. See Appendix G.2 for definition of the actions. Note that ‘contain’ is only afforded
by cone and recursive containment is possible, i.e., a cone can contain a smaller cone that contains
another object. Every video in CATER is split into several time slots, and every object in this video
randomly performs an action in the time slot (including ‘no action’). Objects and actions vary
across videos. The “table” plane is divided into 6 x 6 grids (36 rectangular cells), and the Snitch

*nttps://en.wikipedia.org/wiki/Cups_and_balls
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(a) Qualitative result via visualizing the most attended object(s) of every hop.

BEGINNING ... FRAME 1 FRAME 2 FRAME 3 FRAME 4 FRAME 5

FRAME 7 FRAME 8 FRAME 9 FRAME 10 FRAME 11 FRAME 12 FRAME 13
- - Ian 1 Head 1, 2 Iuap 2 Head 1, 2 IHop 3 Head 1, 2 IHDp 4 Head 1, 2 INop 4 Head 1, J
(Recursive containment) In the end, the snitch is inside of the yellow cone.

(b) Attention weights visualization.
€ | ]
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Hop 1: Video CATERh_037200 mostly attends to the 61th element from the object tracks in the memory sequence, i.e., track 5 at frame 9

Hop 1 Head 1: Video CATERh_037200 mostly attends to the 61th element from the object tracks in the memory sequence, i.e., track 5 at frame 9

Hop 1 Head 2: Video CATERh_037200 mostly attends to the 61th element from the object tracks in the memory sequence, i.e., track 5 at frame 9
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Hop 2: Video CATERh_037200 mostly attends to the 101th element from the object tracks in the memory sequence, i.e., track 8 at frame 10

Hop 2 Head 1: Video CATERh_037200 mostly attends to the 101th element from the object tracks in the memory sequence, i.e., track 8 at frame 10

Hop 2 Head 2: Video CATERh_037200 mostly attends to the 101th element from the object tracks in the memory sequence, i.e., track 8 at frame 10
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Hop 3: Video CATERh_037200 mostly attends to the 102th element from the object tracks in the memory sequence, i.e., track 8 at frame 11

Hop 3 Head 1: Video CATERh_037200 mostly attends to the 102th element from the object tracks in the memory sequence, i.e., track 8 at frame 11

Hop 3 Head 2: Video CATERh_037200 mostly attends to the 102th element from the object tracks in the memory sequence, i.e., track 8 at frame 11
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Hop 4: Video CATERh_037200 mostly attends to the 103th element from the object tracks in the memory sequence, i.e., track 8 at frame 12

Hop 4 Head 1: Video CATERh_037200 mostly attends to the 103th element from the object tracks in the memory sequence, i.e., track 8 at frame 12

Hop 4 Head 2: Video CATERh_037200 mostly attends to the 103th element from the object tracks in the memory sequence, i.e., track 8 at frame 12
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Hop 5: Video CATERh_037200 mostly attends to the 78th element from the object tracks in the memory sequence, i.e., track 6 at frame 13
Hop 5 Head 1: Video CATERh_037200 mostly attends to the 78th element from the object tracks in the memory sequence, i.e., track 6 at frame 13
Hop 5 Head 2: Video CATERh_037200 mostly attends to the 78th element from the object tracks in the memory sequence, i.e., track 6 at frame 13

Figure 10: We visualize the attention weights per hop and per head from Transformer, in our Hopper-
multihop. Objects attended in every hop are highlighted (whose frame border is colored accordingly: Hopl,
Hop2, Hop3, Hop4, and Hop5). Please zoom in to see the details. Best viewed in color.

Localization task is to determine the grid that the snitch is in at the end of the video, as a single-label
classification task. The task implicitly requires the understanding of object permanence because
objects could be occluded or contained (hidden inside of) by another object.

G.2 DEFINITION OF ACTIONS
We follow the definition of the four atomic actions in Girdhar & Ramanan (2020). Specifically:

1. ‘rotate’: the ‘rotate’ action means that the object rotates by 90° about its perpendicular or
horizontal axis, and is afforded by cubes, cylinders and the snitch.

2. ‘pick-place’: The ‘pick-place’ action means the object is picked up into the air along the
perpendicular axis, moved to a new position, and placed down. This is afforded by all
objects.

3. ‘slide’: the ‘slide’ action means the object is moved to a new location by sliding along the
bottom surface, and is also afforded by all objects.

4. ‘contain’: ‘contain’ is a special operation, only afforded by the cones, in which a cone is
pick-placed on top of another object, which may be a sphere, a snitch or even a smaller
cone. This allows for recursive containment, as a cone can contain a smaller cone that
contains another object. Once a cone ‘contains’ an object, the ‘slide’ action of the cone
effectively slides all objects contained within the cone. This holds until the top-most cone
is pick-placed to another location, effectively ending the containment for that top-most
cone.
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(a) Qualitative result via visualizing the most attended object(s) of every hop.
BEGINNING ... FRAME

1 FRAME 2
)\
-INop 1 Head 1, 2 IHop 2 Head 1, 2

FRAME 3 FRAME 4 FRAME S

J
--

FRAME 13

FRAME 7 FRAME 8 FRAME 9 FRAME 10 FRAME 1 FRAME 12
- -
Hop 4 Head 1, 2 Hop 5 Head 1, 2

(Snitch becomes not visible very early) In the end, the snitch is inside of the medium red rubber cone.

(b) Attention weights visualization.
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Hop 1: Video CATERh_031371 mostly attends to the 27th element from the object tracks in the memory sequence, i.e., track 3 at frame 1

Hop 1 Head 1: Video CATERh_031371 mostly attends to the 27th element from the object tracks in the memory sequence, i.e., track 3 at frame 1

Hop 1 Head 2: Video CATERh_031371 mostly attends to the 27th element from the object tracks in the memory sequence, i.e., track 3 at frame 1
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Hop 2: Video CATERh_031371 mostly attends to the 93th element from the object tracks in the memory sequence, i.e., track 8 at frame 2

Hop 2 Head 1: Video CATERh_031371 mostly attends to the 93th element from the object tracks in the memory sequence, i.e., track 8 at frame 2

Hop 2 Head 2: Video CATERh_031371 mostly attends to the 93th element from the object tracks in the memory sequence, i.e., track 8 at frame 2
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Hop 3: Video CATERh_031371 mostly attends to the 127th element from the object tracks in the memory sequence, i.e., track 10 at frame 10
Hop 3 Head 1: Video CATERh_031371 mostly attends to the 127th element from the object tracks in the memory sequence, i.e., track 10 at frame 10
Hop 3 Head 2: Video CATERh_031371 mostly attends to the 127th element from the object tracks in the memory sequence, i.e., track 10 at frame 10
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Hop 4: Video CATERh_031371 mostly attends to the 129th element from the object tracks in the memory sequence, i.e., track 10 at frame 12
Hop 4 Head 1: Video CATERh_031371 mostly attends to the 129th element from the object tracks in the memory sequence, i.e., track 10 at frame 12
Hop 4 Head 2: Video CATERh_031371 mostly attends to the 129th element from the object tracks in the memory sequence, i.e., track 10 at frame 12
C n
0 20 40 60 80 100 120

Hop 5: Video CATERh_031371 mostly attends to the 130th element from the object tracks in the memory sequence, i.e., track 10 at frame 13
Hop 5 Head 1: Video CATERh_031371 mostly attends to the 130th element from the object tracks in the memory sequence, i.e., track 10 at frame 13
Hop 5 Head 2: Video CATERh_031371 mostly attends to the 130th element from the object tracks in the memory sequence, i.e., track 10 at frame 13
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Figure 11: We visualize the attention weights per hop and per head from Transformers in our Hopper-
multihop. Objects attended in every hop are highlighted (whose frame border is colored accordingly: Hopl,
Hop2, Hop3, Hop4, and Hop5). Please zoom in to see the details. Best viewed in color.

G.3 DATASET GENERATION PROCESS

The generation of the CATER-h dataset is built upon the CLEVR (Johnson et al., 2017a) and
CATER (Girdhar & Ramanan, 2020) codebases. Blender is used for rendering. The animation
setup is the same as the one in CATER. A random number of objects with random parameters are
spawned at random locations at the beginning of the video. They exist on a 6 x 6 portion of a
2D plane with the global origin in the center. Every video has a snitch, and every video is split
into several time slots. Each action is contained within its time slot. At the beginning of each slot,
objects are randomly selected to perform a random action afforded by that object (with no collision
ensured). Please refer to Girdhar & Ramanan (2020) for more animation details.

In order to have a video dataset that emphasizes on recognizing the effect of the temporal variations
on the state of the world, we set roughly equal number of video samples to have the last visible
snitch along the temporal axis. In order to obtain such a dataset, we generated a huge number of
videos, computed the frame index of the last visible snitch in every video under 1 FPS (13 frames
per video). Then, for every frame index ¢, we obtained the set of videos whose last visible snitch is
at frame index ¢, and finally, we randomly chose 500 and more videos from this set and discarded
the rest. Eventually, the total number of videos in CATER-h is 7,080. We split the data randomly
in 70 : 30 ratio into a training and test set, resulting in 5, 624 training samples and 1,456 testing
samples.

G.4 CATER-H v.s. CATER

Figure 13 compares the CATER-h dataset and the CATER dataset.
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TRACK1 TRACK2 TRACK3 TRACK4 TRACKS TRACK6 TRACK7 TRACK8 TRACK9 TRACK10O

Figure 12: Tracking-integrated object representation visualization. Hopper utilizes tracking-integrated object
representations since tracking can link object representations through time and the resulting representations are

more informative and consistent. We visualize the object track representations of video ‘CATERh_054110’
(attention weights from Hopper-multihop for this video are shown in Figure 6). Here, every column is for
a track and every row is for a frame. The bounding box and object class label computed from the object
representation are plotted (404 is the object class label for &, i.e., none object, and 140 is the object class label
for the snitch). As shown in the figure, the tracks that are obtained from our designed Hungarian algorithm are
not perfect but acceptable since having perfect tracking here is not the goal of this paper. Our model Hopper-
multihop takes in the (imperfect) object track representations (along with the coarse-grained frame track) as
the source input to the Multi-hop Transformer, and then further learns the most useful and correct task-oriented
track information implicitly (as shown in Figure 6). Hopper-multihop preforms 5 hops of reasoning for this
video; objects attended in every hop are highlighted (whose frame border is colored accordingly: Hop1, Hop2,
Hop3, Hop4, and Hop5). Please zoom in to see the details. Best viewed in color.

FRAME 13 FRAME 1Z FRAME 1! FRAME 10 FRAME 9 FRAME 8 FRAME 7 FRAME 6 FRAME S FRAME 4 FRAME 3 FRAME 2 FRAME 1

G.5 TRAIN/TEST DISTRIBUTION

Figure 14 shows the data distribution over classes in CATER-h.

G.6 OTHER POTENTIAL DATASET BIAS

As shown in Table 2, ‘Hopper-transformer (last frame)’ still has a relatively high accuracy on
CATER-h. We hypothesize that the reason it has 41.8% Top-1 accuracy on CATER-h might be due
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Figure 13: Histogram of the frame index of the last visible snitch of every video. We find that CATER is highly
imbalanced for the Snitch Localization task in terms of the temporal cues: e.g., snitch is entirely visible at the
end of the video for 58% samples. This temporal bias results in high-accuracy even if it ignores all but the last
frame of the video. Our dataset CATER-h addresses this issue with a balanced dataset.

to other dataset biases (apart from the snitch grid distribution bias, and temporal bias that CATER
has). Upon further investigation, we identify one type of additional bias, the “cone bias”, i.e., snitch
can only be contained by a cone in the videos of CATER and CATER-h.

In order to verify the existence of the “cone bias”, we compute the accuracy if we make a random
guess among the grids of cones that are not covered by any other cones, for all test videos whose
snitch is covered in the end. This gives us 48.26% Top-1 accuracy. This shows that the “cone bias”
does exist in the dataset. The so-called “cone bias” comes from the nature of objects used in CATER
and the fact that only the cone can carry the snitch (thus, it is closer to a feature of the dataset, rather
than being a “bias” per se). Furthermore, because of the animation rules of CATER, there might
exist other dataset biases, such as bias in terms of object size and shape, etc., which are hard to
discover and address. This highlights the glaring challenge in building a fully unbiased (synthetic
or real) dataset. CATER-h addresses the temporal bias that CATER has. A model has to perform
long-term spatiotemporal reasoning in order to have a high accuracy on CATER-h.

H IMPLEMENTATION DETAILS

H.1 HoPPER

We introduce the implementation of Hopper-multihop in this section. For both training and testing,
we only used 1 FPS (frames per second) to demonstrate the efficiency of our approach. This
means we only have 13 frames per video. Note that we trained the video query representation
and recognition part (Multi-hop Transformer along with the final MLP) end to end.

The CNN backbone we utilized is the pre-trained ResNeXt-101 (Xie et al., 2017) model from Ma
et al. (2018). We trained DETR (Carion et al., 2020)° on LA-CATER (Shamsian et al., 2020) which
is a dataset with generated videos following the same configuration to the one used by CATER,
but additional ground-truth object bounding box location and class label annotations are available
(Shamsian et al. (2020) predicts the bounding box of snitch in the video given the supervision of
the bounding box of the snitch in 300 frames). We followed the settings in Carion et al. (2020)
to set up and train DETR, e.g., stacking 6 transformer encoder layers and 6 transformer decoder
layers, utilizing the object detection set prediction loss and the auxiliary decoding loss per decoder
layer. d is 256, N is 10 and C' is 193. The initial N object query embeddings are learned.
The MLP for recognizing the object class label is one linear layer and for obtaining the object
bounding box is a MLP with 2 hidden layers with d neurons. After DETR was trained, we tested
it on CATER to obtain the object representations, predicted bounding boxes and class labels. For
tracking, we set A = 1, A\, = 0 because under a low FPS, using the bounding boxes for tracking
is counterproductive, and it yielded reasonable results. Then, we trained the video recognition part,
i.e., Multi-hop Transformer along with the final MLP, end to end with Adam (Kingma & Ba, 2014)
optimizer. The final MLP we used is one linear layer that transforms the video query representation
e of dimension d into the grid class logits. The initial learning rate was set to 10~* and weight
decay to 1073, The batch size was 16. The number of attention heads for DETR was set to 8 and

‘https://github.com/facebookresearch/detr
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for the Multi-hop Transformer was set to 2. Transformer dropout rate was set to 0.1. We used
multi-stage training with the training methods proposed. Moreover, we found that DETR tends to
predict a snitch for every cone on the “table” plane when there is no visible snitch in that frame.
To mitigate this particular issue of the DETR object detector trained on Shamsian et al. (2020), we
further compute an object visibility map V € RV7*1, which is a binary vector and determined by
a heuristic: an object is visible if the bounding box of the object is not completely contained by any
bounding box of another object in that frame. The ‘Masking()’ function uses V by considering only
the visible objects.

H.2 DESCRIPTION OF REPORTED CATER BASELINES

For CATER, we additionally compare our results with the ones reported by Girdhar & Ramanan
(2020) from TSN (Wang et al., 2016), I3D (Carreira & Zisserman, 2017), NL (Wang et al., 2018)
as well as their LSTM variants. Specifically, TSN (Temporal Segment Networks) was the top
performing method that is based on the idea of long-range temporal structure modeling before
TSM and TPN. Two modalities were experimented with TSN, i.e., RGB or Optical Flow (that
captures local temporal cues). I3D inflates 2D ConvNet into 3D for efficient spatiotemproal feature
learning. NL (Non-Local Networks) proposed a spacetime non-local operation as a generic building
block for capturing long-range dependencies for video classification. In order to better capture the
temporal information for these methods, Girdhar & Ramanan (2020) further experimented with a
2-layer LSTM aggregation that operates on the last layer features before the logits. Conclusions
from Girdhar & Ramanan (2020) are: (1) TSN ends up performing significantly worse than 13D
instead of having similar performance which contrasts with standard video datasets; (2) the optical
flow modality does not work well as the Snitch Localization task requires recognizing objects
which is much harder from the optical flow; (3) more sampling from the video would give higher
performance; (4) LSTM for more sophisticated temporal aggregation leads to a major improvement
in performance.

H.3 BASELINES

We introduce the implementation of the baselines that we experimented with in this section. First,
for our Hungarian tracking baseline, for every test video, we obtain the snitch track (based on which
track’s first object has snitch as its label) produced from our Hungarian algorithm, and project the
center point of the bounding box of the last object in that track to the 3D plane (and eventually, the
grid class label) by using a homography transformation between the image and the 3D plane (same
method used in Girdhar & Ramanan (2020)). We also try with the majority vote, i.e., obtain the
snitch track as the track who has the highest number of frames classified as snitch. We report the
majority vote result in Table 1 and 2 because it is a more robust method. The results of using the
first frame of our Hungarian tracking baseline are 31.8% Top-1, 40.2% Top-5, 2.7 L1 on CATER,
and 28.2% Top-1, 36.3% Top-5, 2.8 Ly on CATER-h.

We used the public available implementation provided by the authors (Yang et al., 2020) for
TSM and TPN. Models were defaultly initialized by pre-trained models on ImageNet (Deng
et al., 2009). The original ResNet (He et al., 2016) serves as the 2D backbone, and the inflated
ResNet (Feichtenhofer et al., 2019) as the 3D backbone network. We used the default settings of
TSM and TPN provided by Yang et al. (2020), i.e., TSM-50 (2D ResNet-50 backbone) settings that
they used to obtain results on Something-Something (Goyal et al., 2017), which are also the the
protocols used in Lin et al. (2019), as well as TPN-101 (I3D-101 backbone, i.e. 3D ResNet-101)
with multi-depth pyramid and the parallel flow that they used to obtain results on Kinetics (their
best-performing setting of TPN) (Carreira & Zisserman, 2017). Specifically, the augmentation of
random crop, horizontal flip and a dropout of 0.5 were adopted to reduce overfitting. BatchNorm
(BN) was not frozen. A momentum of 0.9, a weight decay of 0.0001 and a synchronized SGD
with the initial learning rate 0.01, which would be reduced by a factor of 10 at 75, 125 epochs (150
epochs in total). The weight decay for TSM was set to 0.0005. TPN used auxiliary head, spatial
convolutions in semantic modulation, temporal rate modulation and information flow (Yang et al.,
2020). For SINet, we used the implementation provided by Ma et al. (2018). Specifically, image
features for SINet were obtained from a pre-trained ResNeXt-101 (Xie et al., 2017) with standard
data augmentation (randomly cropping and horizontally flipping video frames during training). Note
that the image features used by SINet are the same as the ones used in our Hopper. The object
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features were generated from a Deformable RFCN (Dai et al., 2017). The maximum number of
objects per frame was set to 10. The number of subgroups of higher-order object relationships (K)
was set to 3. SGD with Nesterov momentum were used as the optimizer. The initial learning rate
was 0.0001 and would drop by 10x when validation loss saturates for 5 epochs. The weight decay
was 0.0001 and the momentum was 0.9. The batch size was 16 for these 3 baselines. Transformer,
Hopper-transformer, and Hopper-sinet used the Adam optimizer with a total of 150 epochs, a
initial learning rate of 1074, a weight decay of 1073, and a batch size of 16. Same as our model, the
learning rate would drop by a factor of 10 when there has been no improvement for 10 epochs on
the validation set. The number of attention heads for the Transformer (and Hopper-transformer)
was set to 2, the number of transformer layers was set to 5 to match the 5 hops in our Multi-hop
Transformer, and the Transformer dropout rate was set to 0.1. For OPNet related experiments,
we used the implementation provided from authors (Shamsian et al., 2020). We verified we could
reproduce their results under 24 FPS on CATER by using their provided code and trained models.

For the Random baseline, it is computed as the average performance of random scores passed into the
evaluation functions Girdhar & Ramanan (2020). For the Tracking baseline, we use the DaSiamRPN
implementation from Girdhar & Ramanan (2020) °. Specifically, the ground truth information of
the starting position of the snitch was first projected to screen coordinates using the render camera
parameters. A fixed size box around the snitch is defined to initialize the tracker, and run the tracker
until the end of the video. At the last frame, the center point of the tracked box is projected to the
2D plane by using a homography transformation between the image and the 2D plane, and then
converted to the class label. With respect to TSN, I3D, NL and their variants, the results were
from Girdhar & Ramanan (2020), and we used the same train, val split as theirs when obtaining our
results on CATER.
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Figure 14: Data distribution over classes in CATER-h.

Shttps://github.com/rohitgirdhar/CATER
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(a) Snitch is contained by the brown cone at frame 5 (the last visible snitch is in frame 4). Brown cone
moves to the back of cube at frame 6. After that, the snitch is behind of the cube till the end
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(b) Snitch is contained by the cyan cone at frame 3 (the last visible snitch is in frame 2). After that,
cyan cone is contained by the yellow cone twice (frame 5 and frame 9), but in the end the cyan cone is
visible and the snitch is inside of the cyan cone.

Figure 15: Failure cases. Hopper produces wrong Top-1, Top-5 prediction and terrible L results for these
failure cases. Similarly, we highlight the attended object per hop and per head (Hop1, Hop2, Hop3, Hop4, and
Hop5). Case (a). ‘CATERh_048295: the occlusion has made the Snitch Localization task extremely difficult
since when the snitch got occluded it was contained by the brown cone. Meanwhile, Hopper fails to attend to
the immediate container of the last visible snitch (should be the brown cone at frame 5) in Hop 2. Case (b).
‘CATERhO_022965’: the snitch was not visible very early in the video (at frame 3), the recursive containment,
as well as the presence of two similar looking cones have made the task extremely difficult. Hopper fails to
attend to the correct object in Hop 3 (should be the yellow cone).

I RELATED WORK (FULL VERSION)

In this section, we provide detailed discussion of related work. Our work is generally related to the
following recent research directions.

Video understanding & analysis. With the release of large-scale datasets such as Kinetics (Carreira
& Zisserman, 2017), Charades (Sigurdsson et al., 2016), and Something something (Goyal
et al.,, 2017), the development of video representation has matured quickly in recent years.
Early approaches use deep visual features from 2D ConvNets with LSTMs for temporal
aggregation (Donahue et al., 2015; Yue-Hei Ng et al., 2015). As a natural extension to handle the
video data, 3D ConvNets were later proposed (Ji et al., 2012; Taylor et al., 2010) but with the issue
of inefficiency and huge increase in parameters. Using both RGB and optical flow modalities, Two-
stream networks (Simonyan & Zisserman, 2014; Feichtenhofer et al., 2016) and Two-Stream Inflated
3D ConvNets (I3D) (Carreira & Zisserman, 2017) were designed. With the emphasis on capturing
the temporal structure of a video, TSN (Wang et al., 2016), TRN (Zhou et al., 2018), TSM (Lin
et al.,, 2019) and TPN (Zhou et al., 2018) were successively proposed and gained considerate
improvements. Recently, attention mechanism and Transformer design (Vaswani et al., 2017) have
been utilized for more effective and transparent video understanding. Such models include Non-
local Neural Networks (NL) (Wang et al., 2018) that capture long-range spacetime dependencies,
SINet (Ma et al., 2018) that learns higher-order object interactions and Action Transformer (Girdhar
et al., 2019) that learns to attend to relevant regions of the actor and their context. Nevertheless,
instead of the reasoning capabilities, existing benchmarks and models for video understanding and
analysis mainly have focused on pattern recognition from complex visual and temporal input.

Visual reasoning from images. To expand beyond image recognition and classification, research
on visual reasoning has been largely focused on Visual Question Answering (VQA). For example,
a diagnostic VQA benchmark dataset called CLEVR (Johnson et al., 2017a) was built that reduces
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spatial biases and tests a range of visual reasoning abilities. There have been a few visual reasoning
models proposed (Santoro et al., 2017; Perez et al., 2017; Mascharka et al., 2018; Suarez et al.,
2018; Aditya et al., 2018). For example, inspired by module networks (Andreas et al., 2016b;a),
Johnson et al. (2017b) propose a compositional model for visual reasoning on CLEVR that consists
of a program generator that constructs an explicit representation of the reasoning process to be
performed, and an execution engine that executes the resulting program to produce an answer; both
are implemented by neural networks. Evaluated on the CLEVR dataset, Hu et al. (2017) proposed
N2NMN:s, i.e., End-to-End Module Networks, which learn to reason by directly predicting the
network structures while simultaneously learning network parameters. MAC networks (Hudson
& Manning, 2018), that approach CLEVR by decomposing the VQA problems into a series of
attention-based reasoning steps, were proposed by stringing the MAC cells end-to-end and imposing
structural constraints to effectively learn to perform iterative reasoning. Further, datasets for real-
world visual reasoning and compositional question answering are released such as GQA (Hudson &
Manning, 2019b). Neural State Machine (Hudson & Manning, 2019a) was introduced for real-world
VQA that performs sequential reasoning by traversing the nodes over a probabilistic graph which is
predicted from the image.

Video reasoning. There has been a notable progress for joint video and language reasoning. For
example, in order to strengthen the ability to reason about temporal and causal events from videos,
the CLEVRER video question answering dataset (Yi et al., 2020) was introduced being a diagnostic
dataset generated under the same visual settings as CLEVR but instead for systematic evaluation
of video models. Other artificial video question answering datasets include COG (Yang et al.,
2018a) and MarioQA (Mun et al., 2017). There have been also numerous datasets that are based on
real-world videos and human-generated questions such as MovieQA (Tapaswi et al., 2016), TGIF-
QA (Jang et al., 2017), TVQA (Lei et al., 2018) and Social-1Q (Zadeh et al., 2019). Moving beyond
the question and answering task, CoPhy (Baradel et al., 2019) studies physical dynamics prediction
in a counterfactual setting and a small-sized causality video dataset (Fire & Zhu, 2017) was released
to study the causal relationships between human actions and hidden statuses. To date, research on
the general video understanding and reasoning is still limited. Focusing on both video reasoning and
a general video recognition and understanding, we experimented on the recently released CATER
dataset (Girdhar & Ramanan, 2020), a synthetic video recognition dataset which is also built upon
CLEVR focuses on spatial and temporal reasoning as well as localizing particular object of interest.
There also has been significant research in object tracking, often with an emphasis on occlusions
with the goal of providing object permanence (Bewley et al., 2016; Wojke et al., 2017; Li et al., 2018;
Zhu et al., 2018; Wang et al., 2019b). Traditional object tracking approaches have focused on the
fine-grained temporal and spatial understanding and often require expensive supervision of location
of the objects in every frame (Shamsian et al., 2020). We address object permanence and video
recognition on CATER with a model that performs tracking-integrated object-centric reasoning for
localizing object of interest.

Multi-hop reasoning. Reasoning systems vary in expressive power and predictive abilities, which
include systems focus on symbolic reasoning (e.g., with first order logic), probabilistic reasoning,
causal reasoning, etc (Bottou, 2014). Among them, multi-hop reasoning is the ability to reason with
information collected from multiple passages to derive the answer (Wang et al., 2019a). Because
of the desire for chains of reasoning, several multi-hop datasets and models have been proposed
for nature language processing tasks (Dhingra et al., 2020; Dua et al., 2019; Welbl et al., 2018;
Talmor & Berant, 2018; Yang et al., 2018b). For example, Das et al. (2016) introduced a recurrent
neural network model which allows chains of reasoning over entities, relations, and text. Chen et al.
(2019) proposed a two-stage model that identifies intermediate discrete reasoning chains over the
text via an extractor model and then separately determines the answer through a BERT-based answer
module. Wang et al. (2019a) investigated that whether providing the full reasoning chain of multiple
passages, instead of just one final passage where the answer appears, could improve the performance
of the existing models. Their results demonstrate the existence of the potential improvement using
explicit multi-hop reasoning. Multi-hop reasoning gives us a discrete intermediate output of the
reasoning process, which can help gauge model’s behavior beyond just final task accuracy (Chen
et al., 2019). Favoring the benefits that multi-hop reasoning could bring, in this paper, we developed
a video dataset that explicitly requires aggregating clues from different spatiotemporal parts of
the video and a multi-hop model that automatically extracts a step-by-step reasoning chain. Our
proposed Multi-hop Transformer improves interpretability and imitates a natural way of thinking.
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The iterative attention-based neural reasoning (Locatello et al., 2020; Hudson & Manning, 2019a)
with a contrastive debias loss further offers robustness and generalization.

J MHT ARCHITECTURE
We illustrate the architecture of the proposed Multi-hop Transformer (MHT) in Figure 16.
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Figure 16: Architecture of the Multi-hop Transformer (MHT) that learns a comprehensive video
query representation and meanwhile encourages multi-step compositional long-term reasoning of a
spatiotemporal sequence. As inputs to this module, the ‘Source Sequence’ is [Ty, 75], where [ , ] denote
concatenation; and the “Target Video Query’ is £ € R'*?. “Final Video Query Representation’ is e € R**<,
A € RN refers to attention weights from the encoder-decoder multi-head attention layer in Transformers,
averaged over all heads. To connect this figure with Algorithm 1, ‘Obtain Helper Information & Attention
Candidates’ refers to line 5 for ‘Helqper Information” H (or line 7 for the first iteration), and line 9 for
the ‘Attention Candidates’ &/ € RM7*? Dimensionality of ‘Helper Information’ # is T x d for hop 1
and N x d for the rest of the hops. Transformer; and Transformer, are using the original Transformer
architecture (Vaswani et al., 2017). ‘Attentional Feature-based Gating’ corresponds to line 11. ‘Updated
Attention Candidates’ is Uypaze € R Txd  “Masking’ corresponds to line 12. Its output, ‘Masked Attention
Candidates’ is Unask € RYT>? (however, certain tokens out of these N'T' tokens are masked and will have 0
attention weights). The last ‘Layer Norm’ after the Transformer, corresponds to line 16. H denotes the total
number of hops, i.e., total number of iterations, and it varies across videos. Please refer to Section 4 for details.
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