2011.08544v1 [cs.LG] 17 Nov 2020

arxiv

Recursive Inference for Variational Autoencoders

Minyoung Kim' Vladimir Pavlovic!-2
!Samsung AI Center 2Rutgers University
Cambridge, UK Piscataway, NJ, USA
mikim21@gmail.com vladimir@cs.rutgers.edu
Abstract

Inference networks of traditional Variational Autoencoders (VAEs) are typically
amortized, resulting in relatively inaccurate posterior approximation compared
to instance-wise variational optimization. Recent semi-amortized approaches
were proposed to address this drawback; however, their iterative gradient update
procedures can be computationally demanding. To address these issues, in this
paper we introduce an accurate amortized inference algorithm. We propose a novel
recursive mixture estimation algorithm for VAEs that iteratively augments the
current mixture with new components so as to maximally reduce the divergence
between the variational and the true posteriors. Using the functional gradient
approach, we devise an intuitive learning criteria for selecting a new mixture
component: the new component has to improve the data likelihood (lower bound)
and, at the same time, be as divergent from the current mixture distribution as
possible, thus increasing representational diversity. Compared to recently proposed
boosted variational inference (BVI), our method relies on amortized inference in
contrast to BVI’s non-amortized single optimization instance. A crucial benefit
of our approach is that the inference at test time requires a single feed-forward
pass through the mixture inference network, making it significantly faster than the
semi-amortized approaches. We show that our approach yields higher test data
likelihood than the state-of-the-art on several benchmark datasets.

1 Introduction

Accurately modeling complex generative processes for high dimensional data (e.g., images) is a key
task in deep learning. In many application fields, the Variational Autoencoder (VAE) [13, 29] was
shown to be very effective for this task, endowed with the ability to interpret and directly control the
latent variables that correspond to underlying hidden factors in data generation, a critical benefit over
synthesis-only models such as GANs [7]. The VAE adopts the inference network (aka encoder) that
can perform test-time inference using a single feed-forward pass through a neural network. Although
this feature, known as amortized inference, allows VAE to circumvent otherwise time-consuming
procedures of solving the instance-wise variational optimization problem at test time, it often results
in inaccurate posterior approximation compared to the instance-wise variational optimization [4].

Recently, semi-amortized approaches have been proposed to address this drawback. The main idea is
to use an amortized encoder to produce a reasonable initial iterate, followed by instance-wise posterior
fine tuning (e.g., a few gradient steps) to improve the posterior approximation [11, 14, 23, 27]. This
is similar to the test-time model adaptation of the MAML [5] in multi-task (meta) learning. However,
this iterative gradient update may be computationally expensive during both training and test time:
for training, some of the methods require Hessian-vector products for backpropagation, while at test
time, one has to perform extra gradient steps for fine-tuning the variational optimization. Moreover,
the performance of this approach is often very sensitive to the choice of the gradient step size and the
number of gradient updates.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

In this paper, we consider a different approach; we build a mixture encoder model, for which we
propose a recursive estimation algorithm that iteratively augments the current mixture with a new
component encoder so as to reduce the divergence between the resulting variational and the true
posteriors. While the outcome is a (conditional) mixture inference model, which could also be
estimated by end-to-end gradient descent [34], our recursive estimation method is more effective and
less susceptible to issues such as the mixture collapsing. This resiliency is attributed to our specific
learning criteria for selecting a new mixture component: the new component has to improve the data
likelihood (lower bound) and, at the same time, be as divergent as possible from the current mixture
distribution, thus increasing the mixture diversity.

Although a recent family of methods called Boosted Variational Inference (BVI) [8, 21, 22, 2, 25]
tackles this problem in a seemingly similar manner, our approach differs from BVI in several
aspects. Most notably, we address the recursive inference in VAEs in the form of amortized inference,
while BVI is developed within the standard VI framework, leading to a non-amortized single
optimization instance, inappropriate for VAEs in which the decoder also needs to be simultaneously
learned. Furthermore, for the regularization strategy, required in the new component learning stage to
avoid degenerate solutions, we employ the bounded KL loss instead of the previously used entropy
regularization. This approach is better suited for amortized inference network learning in VAEs, more
effective as well as numerically more stable than BVI (Sec. 3.1 for detailed discussions).

Another crucial benefit of our approach is that the inference at test time is accomplished using a
single feed-forward pass through the mixture inference network, a significantly faster process than
the inference in semi-amortized methods. We show that our approach empirically yields higher test
data likelihood than standard (amortized) VAE, existing semi-amortized approaches, and even the
high-capacity flow-based encoder models on several benchmark datasets.

2 Background

We denote by x observation (e.g., image) that follows the unknown distribution p4(x). We aim to
learn the VAE model that fits the given iid data {x’}¥_, sampled from py(x). Specifically, letting z
be the underlying latent vector, the VAE is composed of a prior p(z) = A/ (z; 0, I) and the conditional
model pg(x|z) where the latter, also referred to as the decoder, is defined as a tractable density (e.g.,
Gaussian) whose parameters are the outputs of a deep network with weight parameters 6.

To fit the model, we aim to maximize the data log-likelihood, Efil log pe(x?) where pg(x) =
E,(2)[pe(x|z)]. As evaluating the marginal likelihood exactly is infeasible, the variational inference
aims to approximate the posterior by a density in some tractable family, that is, pg(z|x) &= ¢x(z|x)
where ¢ (z|x) is a tractable density (e.g., Gaussian) with parameters A. For instance, if the Gaussian
family is adopted, then gx(z|x) = N (z; u, X), where {p, X} constitutes X. The approximate
posterior gx(z]x) is often called the encoder. It is well known that the marginal log-likelihood is
lower-bounded by the so-called evidence lower bound (ELBO, denoted by L),

log pe(x) > L(X, 0;%) := Eg, (2% [logpg(x|z) + log p(z) — log q)\(z|x)}, (D
where the gap in (1) is exactly the posterior approximation error KL(gx (z|x)||pe(z|x)).

Hence, maximizing £(A, €;x) with respect to A for the current 8 and the given input instance x,
amounts to finding the density in the variational family that best approximates the true posterior
pe(z|x). However, notice that the optimum A must be specific to (i.e., dependent on) the input x,
and for some other input point x” one should do the ELBO optimization again to find the optimal
encoder parameter A’ that approximates the posterior pg(z|x’). The stochastic variational inference
(SVI) [9] directly implements this idea, and the approximate posterior inference for a new input point
x in SVI amounts to solving the ELBO optimization on the fly by gradient ascent.

However, the downside is computational overhead since we have to perform iterative gradient ascent
to have approximate posterior gx(z|x) for a new input x. To remedy this issue, one can instead
consider an ideal function A*(x) that maps each input x to the optimal solution arg maxy L(X, €; x).
We then introduce a deep neural network A(x; ¢) with the weight parameters ¢ as a universal
function approximator of A*(x). Then the ELBO, now denoted as £(¢, 8; x), is optimized with
respect to ¢. This approach, called the amortized variational inference (AVI), was proposed in the
original VAE [13]. A clear benefit of it is the computational speedup thanks to the feed-forward
passing A(x; ¢) used to perform posterior inference for a new input x.

Although AVI is computationally more attractive, it is observed that the quality of data fitting is
degraded due to the amortization error, defined as an approximation error originating from the
difference between A*(x) and A(x; ¢) [4]. That is, the AVI’s computational advantage comes at the
expense of reduced approximation accuracy; the SVI posterior approximation can be more accurate
since we minimize the posterior approximation error KL(gx(z|x)||pe(z|x)) individually for each
input x. To address this drawback, the semi-amortized variational inference (SAVI) approaches have
been proposed in [11, 23, 14]. The main idea is to use the amortized encoder to produce a reasonably
good initial iterate for the subsequent SVI optimization. The parameters ¢ of the amortized encoder
are trained in such a way that several steps of warm-start SVI gradient ascent would yield reduction
of the instance-wise posterior approximation error, which is similar in nature to the gradient-based
meta learning [5] aimed at fast adaptation of the model to a new task in the multi-task meta learning.

However, the iterative gradient update procedure in SAVI is computationally expensive during both
training and test times. For training, it requires backpropagation for the objective that involves
gradients, implying the need for Hessian evaluation (albeit finite difference approximation). More
critically, at test time, the inference requires a time-consuming gradient ascent optimization. Moreover,
its performance is often quite sensitive to the choice of the gradient step size and the number of
gradient updates; and it is difficult to tune these parameters to achieve optimal performance-efficiency
trade-off. Although more recent work [27] mitigated the issue of choosing the step size by the
first-order approximate solution method with the Laplace approximation, such linearization of the
deep decoder network restricts its applicability to the models containing only fully connected layers,
and makes it difficult to be applied to more structured models such as convolutional networks.

3 Recursive Mixture Inference Model (Proposed Method)

Our method is motivated by the premise of the semi-amortized inference (SAVI), i.e., refining the
variational posterior to further reduce the difference from the true posterior. However, instead of
doing the direct SVI gradient ascent as in SAVI, we introduce another amortized encoder model that
augments the first amortized encoder to reduce the posterior approximation error.

Formally, let g4 (z|x) be our amortized encoder model with the parameters ¢. For the current decoder
0, the posterior approximation error KL(q(z|x)||pe(z|x)) equals -£(q, 8; x) (up to constant).” The
goal is to find another amortized encoder model ¢'(z|x) with the parameters ¢’ such that, when
convexly combined with ¢(z|x) in a mixture ¢’ + (1 — €)g for some small ¢ > 0, the resulting
reduction of the posterior approximation error, AKL := L(eq' + (1 — €)q, 0;x) — L(q, 0;%), is
maximized. That is, we seek ¢’ that maximizes AKL.

Compared to SAVI. The added encoder ¢’ can be seen as the means for correcting ¢, to reduce
the mismatch between ¢ and the true pg(z|x). In SAVI, this correction is done by explicit gradient
ascent (finetuning) along ¢ for every inference query, at train or test time, which is computationally
expensive. In contrast, we learn a differential amortized encoder at training time, which is fixed at test
time, requiring only a single neural network feed-forward pass to obtain the approximate posterior.

This encoder correction-by-augmentation can continue by regarding the mixture e¢’ + (1 — €)g
as our current inference model to which another new amortized encoder will be added, with the
recursion repeated a few times. This leads to a mixture model for the encoder, Q(z|x) = apq(z|x) +
a1q'(z|x) +---, where >~ a,, = 1. The main question is how to find the next encoder model to
augment the current mixture). We do this by the functional gradient approach [6, 24].

Functional gradients for mixture component search. Following the functional gradient frame-
work [6, 24], the (ELBO) objective for the mixture ()(z|x) can be expressed as a functional, namely
a function that takes a density function @ as input,

J(Q) = Eqajx) [log pe (x|2) + log p(z) — log Q(z]x)]. 2
Let Q(z|x) be our current mixture. We aim to find ¢(z|x) to be added to) by convex combination,
Q(z]x) = €q(z[x) + (1 - 6)Q(z[x) 3)

for some small € > 0, that maximizes our objective functional J. To this end we take the functional
gradient of the objective J(Q)) with respect to Q. For a given input x, we regard the function Q(z|x)

'This is a shorthand for gx(x;4)(z|x). We often drop the subscript and use g(z|x) for simplicity in notation.
We often abuse the notation, either £(¢, 8; x) or £(q, 0; x) interchangeably.

Recursive Mixture (Instance 1) Recursive Mixture (Instance 2)
Iter 5 & = Iter 8 e = Iter 15 o =
Iter 1 Iter 5
Conventional Mixture Conventional Mixture
Iter 1 = Iter 13 = Iter 60 =
L4 < L4 o b,
W = - = -
| 2~ h
fter 1 Iter 12 Iter 81

Figure 1: Illustration on MNIST using 2D latent z space. Results on two data instances (left and
right) are shown. (Top) Our recursive estimation: The progress of learning the second mixture
component is shown from left to right. The contour shows the true posterior p(z|x), the red is
go(z|x), the cyan is the second component that we learn here ¢ (z|x). We only trained g7 ; remaining
parameters (of the decoder and qg) are fixed. Parameters of ¢; are initialized to those of gq. (Bottom)
Conventional (blind) mixture estimation by end-to-end gradient ascent. For the instance 1 (left), the
two components collapse onto each other. For the second (right), a single component (red) becomes
dominant while the other (cyan) stays away, unutilized, from the support of the true posterior. The
cyan is initialized randomly to be different from the red (otherwise, it constitutes a local minimum).

as an infinite-dimensional vector indexed by z, and take the partial derivative at each z, which yields:

0J(Q)
———— =logpe(x|z) + logp(z) — log Q(z|x) — 1. 4)
50(ax) (x]2) + log p(z) — log Q(z]x)
Since we have a convex combination (3), the steepest ascent direction (4) needs to be projected onto
the feasible function space {q(-|x) — Q(-|x) : ¢ € Q} where Q = {¢4}¢ is the set of variational
densities realizable by the parameters ¢». Formally we solve the following optimization:

9J(Q) >
max 1x) - Q(x), =————=), 5
s (a) - QU o ®
where (-, -) denotes the inner product in the function space. Using (4), and considering all training
samples x ~ pg(x), the optimization (5) can be written as:

max Ep,(x) []Eq¢(z|x) [log pe(x|z) + log p(z) — log Q(Z|X)]], (6)
where the outer expectation is with respect to the data distribution p,(x). By adding and subtracting
log g4 (z|x) to and from the objective, we see that (6) can be rephrased as follows:

i By,)| £(6. 053) + KL(g(2]0)] [Q(z})]. ™

Note that (7) gives us very intuitive criteria of how the new encoder component q¢ should be selected:
it has to maximize the ELBO (the first objective term), and at the same time, g4 should be different
from the current mixture) (the KL term). That is, our next encoder has to keep explaining the
data well (by large ELBO) while increasing the diversity of the encoder distribution (by large KL),
concentrating on those regions of the latent space that were poorly represented by the current). This
supports our original intuition stated at the beginning of this section. See Fig. 1 for the illustration.

Why recursive estimation. Although we eventually form a (conditional) mixture model for the
variational encoder, and such a mixture model can be estimated by end-to-end gradient descent, our
recursive estimation is efficient and less susceptible to the known issues of blind mixture estimation,
including collapsed mixture components and domination by a single component. This resiliency is
attributed to our specific learning criteria for selecting a new mixture component: improve the data
likelihood and at the same time be as distinct as possible from the current mixture, thus increasing
diversity. See Fig. 1 for an illustrative comparison between our recursive and blind mixture estimation.

3.1 Optimization Strategy

Although we discussed the key idea of recursive mixture estimation, that is, at each step, fixing
the current mixture () and add a new component ¢, it should be noted that the previously added
components ¢’s (and their mixing proportions) need to be refined every time we update the decoder

Algorithm 1 Recursive Learning Algorithm for Mixture Inference Model.

Input: Initial {gm (z]%; Pm) M0, {em (x;1m) }_ 1, and pe(x|z). Learning rate v. KL bound C.

Output: Learned inference and decoder models.
Let: Qm, = (1 — €m)Qm—-1 4 €mgqm (m =1... M), Qo = go. BKL(p||q) = max(C, KL(p||q)).
repeat
Sample a batch of data B from p4(x).
Update qo(z|x; ¢0): @0 + Po + YV goExnn[L(q0,0;%)].
form=1,...,M do
Update g (z|%; $m): Pm < Pm + YV, ExB [L(gm, 0;%) + BKL(gm||Qm-1)]-
Update € (X; Nm): Mm < Nm + YV, Ex~B [ﬁ((l —em)Qm—1 + €Emqm, O;X)].
end for
Update po (x|z): 6 6 +7VoEx~n[L(Qu, 0;x)].
until convergence

parameters 0. This is due to the VAE framework in which we have to learn the decoder in conjunction
with the inference model, one of the main differences from the previous BVI approaches (See Sec. 4).
To this end, we consider a mixture model @) that consists of the fixed number (M) of components
added to the initial component (denoted by ¢p), namely

M
Q(Z‘X) = aO(X)qO(Z|X) + Z am(X)qm(Z|X), (8)

m=1
where ¢, (z|x) (m =0, ..., M) are all amortized encoders whose parameters are denoted by ¢,

and a,, are the mixing proportions. Since the impact of each component can be different from instance
to instance, we consider functions cv,, (x), instead of scalars. To respect the idea of recursively adding
components (i.e., ¢,, with €,,), the mixing proportions conform to the following implicit structure:

M
am(x) = em(x) [] (1-¢(x) form=0,1,...,M (lete(x) =1).)

j=m+1
This is derived from the recursion, Q,, = (1 — €,,)Qm—1 + €mgm form = 1,..., M, where we
denote by @Q,,, the mixture formed by qo, q1, - - - , ¢m With eg(= 1), €1, . .., €m, and Qg := go. Hence

Q= Q. Note also that we model €, (x) as neural networks €, (X; 7,,) with parameters 7.

Now we describe our recursive mixture learning algorithm. As we seek to update all components
simultaneously together with the decoder 8, we employ gradient ascent optimization with all param-
eters iteratively and repeatedly. Our algorithm is described in Alg. 1. Notice that for the ¢ update
in the algorithm, we used the BKL which stands for Bounded KL, in place of KL. The KL term in
(7) is to be maximized, and it can be easily unbounded; In typical situations, KL(¢||Q) can become
arbitrarily large by having ¢ concentrate on the region where () has zero support. To this end, we
impose an upper barrier on the KL term, that is, BKL(¢||Q) = max(C, KL(q||@)), so that increasing
KL beyond the barrier point C' gives no incentive. C' = 500.0 works well empirically.

Similar degeneracy issues have been dealt with in the previous BVI approaches for non-VAE vari-
ational inference [8, 21]. Most approaches attempted to regularize small entropy when optimizing
the new components to be added. However, the entropy regularization may be less effective for the
iterative refinement of the mixture components within the VAE framework, since we have indirect
control of the component models (and their entropy values) only through the density parameter net-
works A(X; @) in gx(x;e)(2]%) (i.e., amortized inference). Furthermore, it encourages the component
densities to have large entropy all the time as a side effect, which can lead to a suboptimal solution in
certain situations. Our upper barrier method, on the other hand, regularizes the component density
only if they are too close (within the range of C' KL divergence) to the current mixture, rendering
it better chance to find an optimal solution outside the C'-ball of the current mixture. In fact, the
empirical results in Sec. 5.3 demonstrate that our strategy leads to better performance.

The nested loops in Alg. 1 may appear computationally costly, however, the outer loop usually takes
a few epochs (usually no more than 20) since we initialize all components ¢,, identically with the
trained encoder parameters of the standard VAE (afterwards, the components quickly move away
from each other due to the BKL term). The mixture order M (the number of the inner iterations) is
typically small as well (e.g., between 1 and 4), which renders the algorithm fairly efficient in practice.

4 Related Work

The VAE’s issue of amortization error was raised recently [4], and the semi-amortized inference
approaches [11, 23, 14] attempted to address the issue by performing the SVI gradient updates at test
time. Alternatively one can enlarge the representational capacity of the encoder network, yet still
amortized inference. A popular approach is the flow-based models that apply nonlinear invertible
transformations to VAE’s variational posterior [31, 12]. The transformations could be complex autore-
gressive mappings, while they can also model full covariance matrices via efficient parametrization
to represent arbitrary rotations, i.e., cross-dimensional dependency. Our use of functional gradient
in designing a learning objective stems from the framework in [6, 24]. Mathematically elegant and
flexible in the learning criteria, the framework was more recently exploited in [3] to unify seemingly
different machine learning paradigms. Several mixture-based approaches aimed to extend the repre-
sentational capacity of the variational inference model. In [33] the variational parameters were mixed
with a flexible distribution. In [32] the prior is modeled as a mixture (aggregate posterior), while [17]
attempted to tighten the lower bound by matching optimal prior with functional Frank-Wolfe.

Boosted VI. Previously, there were approaches to boost the inference network in variational infer-
ence similar to our idea [8, 21, 22, 2, 25], where some of them [21, 22, 2] focused on theoretical
convergence analysis, inspired by the Frank-Wolfe [10] interpretation of the greedy nature of the
algorithm in the infinite-dimensional (function) space. However, these approaches all aimed for
stochastic VI in the non-VAE framework, hence non-amortized inference, whereas we consider
amortized inference in the VAE framework in which both the decoder and the inference model need
to be learned. We briefly summarize the main differences between the previous BVI approaches and
ours as follows: 1) We learn ()(z|x), a density functional of input x, while BVI optimizes Q(z),
a single variational density (not a function of x), and thus involves only single optimization. 2)
Within the VAE framework, as the decoder is not optimal in the course of training, we update the
decoder and all the inference components iteratively and repeatedly. 3) To avoid degeneracy in KL
maximization, we employ the bounded KL instead of BVI’s entropy penalization, better suited for
amortized inference and more effective in practice. 4) The instant impacts of the components, €(x)
are also modeled input-dependent (as neural networks) rather than tunable scalars as in BVI.

5 Evaluations

We test the proposed recursive inference model® on several benchmark datasets. We highlight
improved test likelihood scores and reduced inference time, compared to semi-amortized VAEs. We
also contrast with flow models that aim to increase modeling accuracy using high capacity encoders.

Competing approaches. VAE: The standard VAE model (amortized inference) [13, 29]. SA: The
semi-amortized VAE [11]. We fix the SVI gradient step size as 10~3, but vary the number of SVI steps
from {1, 2, 4,8}. IAF: The autoregressive-based flow model for the encoder ¢(z|x) [12], which has
richer expressiveness than VAE’s Gaussian encoder. HF: The Householder flow encoder model that
represents the full covariance using the Householder transformation [31]. The numbers of flows for
TAF and HF are chosen from {1, 2, 4, 8}. ME: For a baseline comparison, we also consider the same
mixture encoder model, but unlike our recursive mixture learning, the model is trained conventionally,
end-to-end; all mixture components’ parameters are updated simultaneously. The number of mixture
components is chosen from {2, 3, 4,5}. RME: Our proposed recursive mixture encoder model. We
vary the number of additional components M from {1, 2, 3,4}, leading to mixture order 2 to 5. All
components are initialized identically with the VAE’s encoder. See Supplement for the details.

Datasets. MNIST [19], OMNIGLOT [18], SVHN [26], and CelebA [20]. We follow train/test
partitions provided in the data, where 10% of the training sets are randomly held out for validation.
For CelebA, we randomly split data into 80%,/10%/10% train/validation/test sets.

Network architectures. We adopt the convolutional neural networks for the encoder and decoder
models for all competing approaches. This is because the convolutional networks are believed to
outperform fully connected networks for many tasks in the image domain [16, 30, 28]. We also
provide empirical evidence in the Supplement by comparing the test likelihood performance between
the two architectures.* For the details of the network architectures, refer to the Supplement.

3The code is publicly available from https://github.com/minyoungkim21/recmixvae
“Fully-connected decoder architectures are inferior to the deconvnet when the number of parameters are
roughly equal. This is why we exclude comparison with the recent [27], but see Supplement for the results.

https://github.com/minyoungkim21/recmixvae

Table 1: Test log-likelihood scores estimated by IWAE sampling. The parentheses next to model
names indicate: the number of SVI steps in SA, the number of flows in IAF and HF, and the mixture
order in ME and RME. The superscripts are the standard deviations. The best (on average) results
are boldfaced in red. In each column, the statistical significance of the difference between the best
model (red) and each competing model, is depicted as color: anything non-colored indicates p < 0.01

(strongly distinguished), p € (0.01,0.05] as ,p € (0.05,0.1] as ,p > 0.1as
red orange (little evidence of difference) by the Wilcoxon signed rank test. Best viewed in color.

Dataset | MNIST | OMNIGLOT | SVHN | CelebA

dim(z) | 20 50 | 20 50 | 20 50 | 20 50
VAE 930.7%9 1185.7%% | 501.6"% 801.6"0 | 4054.5'"% 5363.7°"* | 12116.4%°3 15251.9%7
sAM 921.22:3 1172.1%8 499.32%° 792.77-9 4031.5190 5362.1%°7 | 12091.121-6 15285.829-4
SA™ 932.024 1176.3%4 501.0%27 793.1%% | 4041.5'°-° 5377.0%%2 | 12087.12%-° 15252.729-0
SAM 925.5%% 1171.3%° 488.2%8 794.4%° | 4051.9%2:2 5391.7204 | 12116.320-° 15187.327-9
SA®) 928.139 1183.2%4 490.3%% 799.4%7 | 4041.6°° 5370.8'%5 | 12100.6%%-8 15096.527-2
IAF() 934.033 1180.6%7 489.91°9 788.8%4:1 4050.0°+4 5368.311° | 12098.0%°-° 15271.228:6
IAF(®) 931.437 1190.1%° 494,914 795.7%7 | 4054.610-° 5360.01%° | 12104.52-8 15262.227-8
IAF(®) 926.326 1178.116 496.02° 775.1%22 | 4048.6%7 5338.110-2 | 12094.62%:¢ 15261.028-1
IAF®) 934.124 1150.0%-2 498.82%3 774.7%° 4042.0°-6 5341.810-1 | 12109.322:0 15241.527-°
HF™M 917.22:6 1204.3%0 488.620 795.9%3 | 4028.897 5372.010-1 | 12077.2314 15240.527-6
HF(® 923.93-1 1191.519-8 | 495.918 784.5%8 4030.7°-° 5376.610-2 | 12093.0%°-¢ 15258.230-3
HF® 927.32-8 1197.21-° 487.0%7 799.73-2 4038.4%7 5371.89-8 12082.027-0 15266.52%-°
HE(®) 928.53-1 1184.1%-8 488.3%2% 794.6*° | 4035.98° 5351.1'11 | 12087.325-5 15248.7297
ME®) 926.730 1152.8'7 491.7%% 793.43-8 | 4037.2110 5343.213-1 | 12072.723-3 15290.529-3
ME®) 0933.141 1162.8%7 491.2%% 807.5%° | 4053.8'61 5367.71%% | 12100.3%'7 15294.628-3
ME® 914.723 1205.1%3 | 491.3%8 732.031 4061.312:0 5191.9185 | 12092.222:6 15270.720-6
ME®) 920.61-° 1198.5%-° 478.0%8 805.73-8 4057.512:2 5209.212-% | 12095.32%1 15268.827-%
RME® 508.212 821.0%1 | 4085.3%7 12193.123-° 15363.0%7
RME®) | 945.1'° 507.5%1 820.4°-9 4085.99-8 5405.1194 | 12192.323:5 15365.651+4
RME™® | 945.2'6 1203.11° 509.01-2 819.99-9 4080.7°-° 12192.623-4 15364.331-5
RME®) | 945.0"7 1203.7%0 509.1%* 819.9%° 4086.9'9°% 5405.5%° | 12194.2''° 15366.2'%7

Experimental setup. We vary the latent dim(z), small (20) or large (50).° To Table 2: Test data log-
report the test log-likelihood scores log p(x), we use the importance weighted likelihood scores for
sampling estimation (IWAE) method [1] with 100 samples (Supplement for the Binary MNIST.
details). For each model/dataset, we perform 10 runs with different random Our results are in the
train/validation splits, where each run consists of three trainings by starting column titled “CNN”.
with different random model parameters, among which only one model with The column “FC” is

the best validation result is chosen. excerpted from [27].
CNN FC
5.1 Results VAE -84.49 -85.38

The test log-likelihood scores are summarized in Table 1.° Overall the results SA™ -83.64 -85.20
. 2

indicate that our recursive mixture encoder (RME) outperforms the competing 5AE4; -83.79 -85.10
approaches consistently for all datasets. To see the statistical significance, :2(8) Zzg; Z; ';i
we performed the one-sided Wilcoxon sign;d .rank test for. every pair' (the AFD 8337 846
best model, non-best model). The results indicate that this superiority is [ap® _g3.15 -84.16

statistically significant. IAF®) _83.08 -84.03

. . . . IAF® .83.12 -83.80
Comparison to ME. With one exception, specifically ME (4) with dim(z) = rm——g355 5527

50 on the MNIST, the blind end-to-end mixture learning (ME) consistently ggr 8370 -85.31
underperforms our RME. As also illustrated in Fig. 1, the blind mixture HF -83.87 -85.22
estimation can potentially suffer from mixture collapsing and single dominant HE® _ -83.76 -85.41
component issues. The fact that even the VAE often performs comparably to MEEz; 8377 -
the ME with different mixture orders supports this observation. On the other ME s

. - R o ME® 8383 -
hand, our recursive mixture estimation is more robust to the initial parameters. g _g3.75

Due to its incremental learning nature, it "knows" the regions in the latent VLAE® - §3.72
space ill-represented by the current mixture, then updates mixture components VLAE(i) - -83.84
to complement those regions. This strategy allows the RME to effectively VLAE™ - -83.73
. . LomLT e S VLAE®) - .83.60
model highly multi-modal posterior distributions, yielding more robust and MED S a

accurate variational posterior approximation. RME® -83.14 R

Comparison to SA. The semi-amortized approach (SA) sometimes achieves ixgizi gi?g
improvement over the VAE, but not consistently. In particular, its performance B -

3The results for dim(z) = 10 and 100, also on the CIFAR10 dataset [15], are reported in the Supplement.
5The MNIST results mismatch those reported in the related work (e.g., [32]). Significantly higher scores.
This is because we adopt the Gaussian decoder models, not the binary decoders, for all competing methods.

is generally very sensitive to the number of SVI gradient update steps. This is another drawback of
the SA, where the gradient-based adaption has to be performed at the test time. Although one could
adjust the gradient step size (in place of currently used fixed step size) to improve the performance,
there is little principled way to tune the step size at test time that can attain optimal accuracy and
inference time trade off. The number of SVI steps in the SA may correspond to the mixture order in
our RME model, and the results show that increasing the mixture order usually improves, and not
deteriorate, the generalization performance.

Comparison to IAF/HF. Although flow models have rich representational capacity, possibly with
full covariance matrices (HF), the improvement over the VAE is limited compared to our RME;
the models sometimes perform not any better than the VAE. The failure of the flow-based models
may originate from the difficulty of optimizing the complex encoder models. (Similar observations
were made in related previous work [27]). This result signifies that sophisticated and discriminative
learning criteria are critical, beyond just enlarging the structural capacity of the neural networks,
similarly observed from the failure of conventional mixtures.

Non-Gaussian likelihood model. Our empirical evaluations were predominantly conducted with
the convolutional architectures on real-valued image data. For the performance of our model with
non-convolutional (fully connected) network architectures, the readers can refer to Table 5 and 6 in
the supplementary material. For the binarized input images, we have conducted extra experiments
on the Binary MNIST dataset. The binary images can be modeled by a Bernoulli likelihood in the
decoder. Table 2 summarized the results. We have set the latent dimension dim(z) = 50, and used
the same CNN architectures as before, except that the decoder output is changed from Gaussian to
Bernoulli. We also include the reported results from [27] for comparison, which employed the same
latent dimension 50 and fully connected encoder/decoder networks with similar model complexity
as our CNNs’. As shown, IAF and our RME performs equally the best, although the performance
differences among the competing approaches are not very pronounced compared to real-valued image
cases.

5.2 Test Inference Time

Another key advantage of our recursive mixture inference is the computational efficiency of test-time
inference, comparable to that of VAE. Unlike the semi-amortized approaches, where one performs
the SVI gradient adaptation at test time, the inference in our RME is merely a single feed forward
pass through our mixture encoder network. That is, once training is done, our mixture inference
model remains fixed, with no adaptation required.

To verify this empirically, we measure the actual inference time for the competing approaches.
The per-batch test inference times (batch size 128) on all benchmark datasets are shown in Tab. 8.
To report the results, for each method and each dataset, we Taple 3: Inference time (milliseconds).
run the inference over the entire test set batches, measure the
running time, then take the per-batch average. We repeat the

. VAE 3.6 4.8 22 27
procedure five times and report the average. All models are SATD 5T 16 R
run on the same machine with a single GPU (RTX 2080 Ti), ¢, 151 192 155 138
Core i7 3.50GHz CPU, and 128 GB RAM. While we only sa® 32.2 344 301 27.1
report test times for dim(z) = 50, the impact of the latent SA® 608 657 603 5338

MNIST OMNIG. SVHN CELEBA

dimension appears to be less significant. AR 48 5.7 34 44

IAF® 59 6.4 37 s
As expected, the semi-amortized approach suffers from the I1AF® 6.2 7.0 47 57
computational overhead of test-time gradient updates, with IAF(g)z 7.7 8.2 5.7 7.7
the inference time significantly increased as the number of RMEES; 4734 320 42
updates increases. Our RME is comparable to VAE, and faster Eﬁﬁw i:z 22 ;2 i:;

than IAF (with more than a single flow), which verifies our gyg® 43 5.6 33 48
claim. Interestingly, increasing the mixture order in our model
rarely affects the inference time, due to intrinsic parallelization of the feed forward pass through the
multiple mixture components networks, leading to inference time as fast as that of VAE.

5.3 Comparison with Boosted VI’s Entropy Regularization

Recall that our RME adopted the bounded KL (BKL) loss to avoid degeneracy in the component
update stages. Previous boosted VI (BVI) approaches employ different regularization, namely
penalizing small entropy for the new components. However, such indirect regularization can be

Table 4: Comparison with the BVI’s entropy regularization [21]. The same color scheme as Tab. 1.

Dataset | MNIST | OMNIGLOT | SVHN | CelebA

dim(z) | 20 50 [20 50 [20 50 [20 50
RME®) 1201.79-9 508.21+2 821.0%1 | 4085.3%7 12193.1%3-2 15363.0317
RME®) | 945110 507.511 820.4°-9 4085.9%-8 5405.1104 | 12192.323-° 15365.6314

RME® | 945.2'6 509.0%-2 819.99-9 4080.7°-9 12192.6%34 15364.331°
RME®) | 94507 1203.7'° | 509.1%% 819.9° 4086.9'°% 5405.5%° | 12194.2''° 15366.2'%7
BVI® 939.72-8 1196.2%-8 5388.210-2 | 12133.5%°! 15206.4%8-2
BVI®) 939.5%% 1191.6%° 5384.2105 | 12146.5224 15249.528:1
BVI® 937.829 1191.6%-8 ’ 5371.1104 | 12127.7%2:3 15085.828-4

BVI®) 931.2%°% 1183.1%° 5378.110-1 | 12092.322-3 15052.528-0

less effective for the iterative refinement of the mixture components within the VAE framework (the
second last paragraph of Sec. 3.1). To verify this claim, we test our RME models with the BKL loss
replaced by the BVI’s entropy regularization. More specifically, following the scheme of [21], we
replace our BKL loss by v - E,x)[— log ¢(z|x)] estimated by Monte Carlo, where v = 1/v/t + 1
is the impact that decreases as the training iteration t.” See Tab. 4 for the results. This empirical
result demonstrates that our bounded KL loss consistently yields better performance than entropy
regularization. We also observe that our BKL loss leads to numerically more stable solutions: For
entropy regularization, we had to reduce the learning rate to the tenth of that of BKL to avoid NaNs.

6 Conclusion

In this work we addressed the challenge of improving traditional, amortized inference in VAEs using
a mixture of inference networks approach. We demonstrated that this method is both effective in
increasing the accuracy of inference and computationally efficient, compared to state-of-the-art semi-
amortized inference approaches. This is, in part, due to the effectiveness of the functional recursive
mixture learning algorithm we devise and the nature of the inference model, which does not need to be
adapted during the test phase. As a consequence, our approach yields higher test data likelihood than
the competing approaches on several benchmark datasets, but remains as computationally efficient as
the conventional VAE inference. Our recursive model currently requires users to supply the mixture
order as an input to the algorithm. In our future work, we aim to investigate principled ways of
selecting the mixture order (i.e., model augmentation stopping criteria). We also seek to apply our
model to domains with structured data, including sequences (e.g., videos, natural language sentences)
and graphs (e.g., molecules, 3D shapes).

Broader Impact

1. Who may benefit from this research? For any individuals, practitioners, organizations,
and groups who aim to identify the underlying generative process of the high-dimensional
structured data via the variational auto-encoding model framework, this research can be a
very useful tool that provides highly accurate solutions generalizable to unseen data.

2. Who may be put at disadvantage from this research? Not particularly applicable.

3. What are the consequences of failure of the system? Any failure of the system that
implements our algorithm would not do any serious harm since the failure can be easily
detectable at the validation stage, in which case alternative strategies or internal decisions
might be looked for.

4. Whether the task/method leverages biases in the data? Our method does not leverage
biases in the data.

"We also tested a slight variant, [8]’s closed-form Gaussian entropy log det 3 where X is the (diagonal)
covariance of the new component g(z|x). The results were very similar to the scheme of [21]. See Supplement.

Supplementary Material

This supplement consists of the following materials:

* Detailed experimental setups (Sec. 7).

— Summary of competing approaches (Sec. 7.1)
— Summary of datasets (Sec. 7.2)

— Network architectures (Sec. 7.3)

— Experimental setups (Sec. 7.4)

» Experimental results (Sec. 8).

— Test inference time (Sec. 8.1)
¢ Comparison with fully-connected decoder networks (Sec. 9).
¢ Pseudo Codes (Sec. 10).

7 Detailed Experimental Setups

7.1 Competing Approaches
The competing approaches are summarized as follows:

¢ VAE: The standard VAE model (amortized inference) [13, 29].

¢ SA: The semi-amortized VAE [11]. We fix the SVI gradient step size as 1073, but vary the
number of SVI steps from {1, 2, 4, 8}.

* IAF: The autoregressive-based flow model for the encoder ¢(z|x) [12], which has richer
expressiveness than VAE’s post-Gaussian encoder. The number of flows is chosen from
{1,2,4,8}.

* HF: The Householder flow encoder model that represents the full covariance using the
Householder transformation [31]. The number of flows is chosen from {1, 2, 4, 8}.

* ME: For a baseline comparison, we also consider the same mixture encoder model, but
unlike our recursive mixture learning, the model is trained conventionally, end-to-end;
all mixture components’ parameters are updated simultaneously. The number of mixture
components is chosen from {2,3,4,5}.

* RME: Our proposed recursive mixture encoder model. We vary the number of the compo-
nents to be added M from {1, 2,3, 4}, leading to mixture order 2 to 5.

In addition, we test our RME model modified to employ the previous Boosted VI’s entropy regulariza-
tion schemes. More specifically, we replace our bounded KL loss with the two entropy regularization
methods as follows:

* BVI-ER1: Following [21], we replace our bounded KL loss by v - g, x)[— log ¢(z|x)]

estimated by Monte Carlo, where v = 1/+/t + 1 is the impact that decreases as the training
iteration ¢.

* BVI-ER2: Instead of the Monte Carlo estimation of the entropy, we use [8]’s closed-form
Gaussian entropy log det 3 where X is the (diagonal) covariance of the new component
q(z[x).

7.2 Datasets

The following benchmark datasets are used. We randomly hold out 10% of the training data as
validation sets, except for CelebA.

e MNIST [19]: 60,000 training images and 10,000 test images where each image is of
dimension (28 x 28 x 1).

* OMNIGLOT [18]: 24, 345 training images and 8, 070 test images where each image is of
dimension (28 x 28 x 1).

10

* CIFAR10 [15]: 50,000 training images and 10, 000 test images where each image is of
dimension (32 x 32 x 3).

* SVHN [26]: 73,257 training images and 26,032 test images where each image is of
dimension (32 x 32 x 3).

* CelebA [20]: 202,599 tightly cropped face images of size (64 x 64 x 3). We randomly
split the data into 80%/10%/10% train/validation/test sets.

7.3 Network Architectures

We adopt the convolutional neural networks for both the encoder and decoder models for all competing
approaches. This is because the convolutional networks are believed to outperform fully connected
networks for many tasks in the image domain [16, 30, 28]. We also provide empirical evidence in
Sec. 9 of this Supplement that the fully-connected decoder architecture is inferior to the deconvnet
decoder that we adopted, when the two architectures have roughly equal numbers of parameters. This
is why we excluded comparison with the recent Laplacian approximation approach of [27] in the main
paper. They use the first-order approximate solver method to obtain the mode of the true posterior,
but such linearization of a deep network is only computationally feasible for fully connected decoder
models. On the other hand, our recursive mixture learning admits arbitrary types of encoder/decoder
architectures, which is another advantage. In Sec. 9 of this Supplement we empirically compare the
performance between the Laplace approximation [27] and our approach.

For the encoder architecture, we first apply L convolutional layers with (4 x 4)-pixels kernels,
followed by two fully-connected layers with hidden layers dimension h. For the decoder, the
input images first go through two fully connected layers, followed by L deconvolution (transposed
convolution) layers with (4 x 4)-pixels filters. Here, L = 3 for all datasets except CelebA which has
L = 4. The hidden layer dimension & = 256 for MNIST/OMNIGLOT and h = 512 for the others.
For fair comparison, the same convolutional network architectures are used in all competing methods.

For our recursive mixture RME, all mixture components of the inference model are initialized
identically with the VAE’s encoder. For the ME (blind end-to-end mixture learning), the first
mixture component is initialized with the VAE’s encoder while the others are chosen randomly.
This is because initializing all components identically would constitute a local maximum of the
log-likelihood objective function of the ME, making it unable to update the model further. For the
IAF, we follow the inverse autoregressive flow modeling [12] where we use the two-layer MADE [?]
(with the number of hidden units 500) as the autoregressiveNN network. The base density, which
is transformed to a more complex density by the flow, is initialized with the trained VAE’s encoder
q(z|x). For the HF, the latents of the base encoder go through a number of linear transformations,
followed by the Householder transformation, where the base encoder is also initialized with the
VAE’s encoder.

The decoder is modeled as transposed convolutional networks. The network architectures are slightly
different across the datasets due to different input image dimensions. We summarize the full network
architectures in Tab. 5 (MNIST and OMNIGLOT), Tab. 6 (CIFAR10 and SVHN), and Tab. 7 (CelebA).

In our recursive mixture model, we also need to define the impact function ¢(x) for each component.
We used a fully connected network e(x; 77) with one hidden layer of dimension 10. To prevent a new
component from overly taking the mixing proportion, we set an upper bound €,,,,x on the output of
the network. This is done by applying the sigmoid function to the output of €(x), and multiplication
by €max. For all our experiments €,,,x = 0.1 worked well.

7.4 Experimental Setups

For all optimization, we used the Adam optimizer with batch size 128 and learning rate 0.0005. We
run the optimization until 2000 epochs. We vary the latent dimension dim(z), from {10, 20, 50, 100}.
To report the test log-likelihood scores log p(x), we use the importance weighted sampling estimation
(IWAE) method [1]. More specifically,

1 & (x,2;)
IWAEzlog(Yy) (10)

Table 5: Encoder (i.e., each component in our mixture model) and decoder network architectures
for MNIST and OMNIGLOT datasets. In the convolutional and transposed convolutional layers, the
paddings are properly adjusted to match the input/output dimensions.

ENCODER | DECODER

INPUT: (28 x 28 x 1) | INPUT: z € RP (p € {10, 20, 50, 100})

32 (4 x 4) CONV.; STRIDE 2; LEAKYRELU (0.01) \ FC. 256; RELU

32 (4 x 4) cCONV.; STRIDE 2; LEAKYRELU (0.01) ‘ FC.3-3-64; RELU

64 (4 x 4) CONV.; STRIDE 2; LEAKYRELU (0.01) | 32 (4 x 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 256; LEAKYRELU (0.01) \ 32 (4 x 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 2 xp (p = pM(z) € {10, 20,50, 100}) | 1(4 x 4) TRANSPOSED CONV.; STRIDE 2

Table 6: Encoder and decoder network architectures for CIFAR10 and SVHN datasets.

ENCODER | DECODER

INPUT: (32 x 32 x 3) | INPUT: z € RP (p € {10, 20,50, 100})

32 (4 X 4) CONV.; STRIDE 2; LEAKYRELU (0.01) \ FC. 512; RELU

32 (4 x 4) cONV.; STRIDE 2; LEAKYRELU (0.01) ‘ FC.4-4-64; RELU

64 (4 x 4) CONV.; STRIDE 2; LEAKYRELU (0.01) | 32 (4 x 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 512; LEAKYRELU (0.01) | 32 (4 x 4) TRANSPOSED CONV.; STRIDE 2; RELU
FC. 2 xp (p = pDM(z) € {10, 20,50, 100}) | 3 (4 x 4) TRANSPOSED CONV.; STRIDE 2
where z1, ...,z are i.i.d. samples from ¢(z|x). It can be shown that IWAE lower bounds log p(x)

and can be arbitrarily close to the target as the number of samples K grows. We use K = 100
throughout the experiments.

For each model/dataset, we perform 10 runs with different random train/validation splits, where each
run consists of three trainings by starting with different random model parameters, among which only
one model with the highest validation performance is chosen. To see the statistical significance of
difference between competing models, we also performed the one-sided Wilcoxon signed rank test
for every pair, namely (the best model vs. each non-best model), using the 10 log-likelihood scores
per model.

Table 7: Encoder and decoder network architectures for CelebA dataset.

ENCODER | DECODER

INPUT: (64 x 64 % 3) | INPUT: z € RP (p € {10, 20, 50, 100})

32 (4 x 4) CONV.; STRIDE 2; LEAKYRELU (0.01) | FC.512; RELU

32 (4 x 4) cCONV.; STRIDE 2; LEAKYRELU (0.01) ‘ FC.4-4-64; RELU

64 (4 x 4) CONV.; STRIDE 2; LEAKYRELU (0.01) | 64 (4 x 4) TRANSPOSED CONV.; STRIDE 2; RELU

64 (4 x 4) CONV.; STRIDE 2; LEAKYRELU (0.01) \ 32 (4 x 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 512; LEAKYRELU (0.01) \ 32 (4 x 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 2 xp (p = dM(z) € {10, 20,50, 100}) | 3 (4 x 4) TRANSPOSED CONV.; STRIDE 2

12

Table 8: (Per-batch) Test inference time (in milliseconds) with batch size 128. The latent dimension
dim(z) = 50.

MNIST OMNIG. CIFAR10 SVHN CELEBA

VAE 3.6 4.8 3.7 2.2 2.7
SA (D 9.7 1.6 9.8 7.0 8.4
SA (2) 18.1 19.2 16.8 15.5 13.8
SA (4) 32.2 34.4 27.9 30.1 27.1
SA (8) 60.8 65.7 60.5 60.3 53.8
TAF (1) 738 5.7 5.1 3.4 4
IAF (2) 5.9 6.4 5.6 3.7 5.1
IAF (4) 6.2 7.0 6.3 4.7 5.7
IAF (8) 7.7 8.2 7.6 5.7 7.7
RME (2) 47 54 49 32 2
RME (3) 4.9 5.5 5.1 3.6 4.1
RME (4) 4.6 53 5.1 3.5 4.2
RME (5) 4.8 5.6 5.1 3.3 4.8

8 Experimental Results

The test log-likelihood scores are summarized in Tab. 11 (MNIST)®, Tab. 12 (OMNIGLOT), Tab. 13
(CIFAR10), Tab. 14 (SVHN), and Tab. 15 (CelebA). We also report the performance of the entropy
regularization schemes introduced in the previous Boosted VI (BVI) approaches. To this end, in our
RME, we replace our bounded KL (BKL) loss with the entropy regularization. More specifically,
we consider two entropy regularization schemes — BVI-ER1: [21]’s regularization of the negative
entropy of ¢(z|x) whose impact decreases \/tlﬁ as a function of training iteration ¢, as suggested.

BVI-ER2: [8]’s Gaussian entropy based regularization (i.e., penalizing small log det 3 where 3
is the (diagonal) covariance matrix of the new component ¢(z|x) to be optimized. Overall the
results indicate that our recursive mixture encoder (RME) outperforms the competing approaches
consistently for all datasets.

8.1 Test Inference Time

Another key advantage of our recursive mixture model is the computational efficiency of test-time
inference, comparable to that of VAE. Unlike the semi-amortized approaches, where one performs
the SVI gradient adaptation at test time, the inference in our RME is merely a single feed forward
pass through our mixture encoder network. That is, once training is done, our mixture inference
model remains fixed, with no adaptation required.

To verify this, we measure the actual inference time for competing approaches. The per-batch
inference times (batch size 128) on all benchmark datasets are shown in Tab. 8. To report the results,
for each method and each dataset, we run the inference over the entire test set batches, measure
the running time, then take the per-batch average. We repeat the procedure five times and report
the average. All models are run on the same machine with a single GPU (RTX 2080 Ti), Core i7
3.50GHz CPU, and 128 GB RAM. We only report test times for the latent dimension dim(z) = 50 as
the impact of the latent dimension appears to be less significant.

As expected, the semi-amortized approach (SA) suffers from the computational overhead of test
time gradient updates, with the inference time significantly increased as the number of the updates
increases. Our RME is comparable to the VAE, and faster than the IAF (with more than a single flow),
which verifies our claim. Interestingly, increasing the mixture order in our model rarely affects the
inference time, due to intrinsic parallelization of the feed forward pass through the multiple mixture
components networks, leading to inference times as fast as those of the single component model
(VAE).

8For the MNIST results, the test log-likelihood scores of the competing methods mismatch those reported in
the related work (e.g., [32]). Significantly higher scores. This is because we adopt the Gaussian decoder models,
not the binary decoders, for all competing methods.

13

Table 9: (Fully connected vs. convolutional decoder networks) Test log-likelihood scores (unit in nat).
The figures without parentheses are the scores using the fully connected networks, whereas figures in
the parentheses are the scores using the convolutional decoder networks. Both architectures have
roughly equal number of the weight parameters. The number of linearization steps in the VLAE is
chosen from {1, 2, 4,8}.

MNIST OMNIGLOT

DIM(z) = 10 DIM(z) = 50 DIM(z) = 10 DIM(z) = 50
VAE 563.6 (685.1) 872.6 (1185.7) | 296.8 (347.0) 519.4 (801.6)
SA (1) 565.1(688.1) 865.8(1172.1) | 297.6 (344.1) 489.0 (792.7)
SA (2) 565.3(682.2) 868.2(1176.3) | 295.3 (349.5) 534.1(793.1)
SA (4) 565.9 (683.5) 852.9(1171.3) | 294.8(342.1) 497.8 (794.4)
SA (8) 564.9 (684.6) 870.9 (1183.2) | 299.0 (344.8) 500.0 (799.4)
VLAE (1) 590.0 922.2 307.4 644.0
VLAE (2) 595.1 908.8 307.6 621.4
VLAE (4) 605.2 841.4 318.0 597.7
VLAE (8) 605.7 779.9 316.6 553.1
RME (2) 570.9 (697.2) 888.1(1201.7) | 298.4 (349.3) 524.7 (821.0)
RME (3) 571.9 (698.2) 888.2(1202.4) | 298.6(349.9) 524.8 (820.4)
RME (4) 571.4(699.0) 888.1(1203.1) | 298.8 (350.7) 525.3 (819.9)
RME (5) 572.2(699.4) 888.0(1203.7) | 298.8 (351.1) 526.9 (819.9)

9 Comparison with Fully-Connected Decoder Networks

In the main paper we used the convolutional networks for both encoder and decoder models. This
is a reasonable architectural choice considering that all the datasets are images. Also it is widely
believed that convolutional networks outperform fully connected networks for many tasks in the
image domain [16, 30, 28]. However, one can alternatively consider fully connected networks
for either the encoder or the decoder, or both. Nevertheless, being equal in the number of model
parameters, using both convolutional encoder and decoder networks always outperformed the fully
connected counterparts. In this section we empirically verify this by comparing the test likelihood
performance between the two architectures. We particularly focus on comparing the two architectures
(convolutional vs. fully connected) for the decoder model alone, while retaining the convolutional
network encoder for both cases.

Using the fully connected decoder network allows us to test the recent Laplacian approximation
approach [27] (denoted by VLAE), which we excluded from the main paper. They employ a
first-order approximation solver to find the mode of the true posterior (i.e., linearizing the decoder
function), and compute the Hessian of the log-posterior at the mode to define the (full) covariance
matrix. This procedure is computationally feasible only for a fully connected decoder model. We
conduct experiments on MNIST and OMNIGLOT datasets where the fully connected decoder network
consists of two hidden layers and the hidden layer dimensions are chosen to set the total number of
weight parameters roughly equal to the convolutional decoder network used in the main paper.

Tab. 9 summarizes the results. Among the fully connected networks, the VLAE achieves the highest
performance. Instead of doing SVI gradient updates as in the SAVI method (SA), the VLAE aims to
directly solve for the mode of the true posterior by decoder linearization, leading to more accurate
posterior refinement without suffering from the step size issue. Our recursive mixture, with the fully
connected decoder networks, still improves the VAE’s scores, but the improvement is often less than
that of the VLAE. However, when compared to the convnet decoder cases, even the conventional
VAE significantly outperforms the VLAE. The best VLAE’s scores are significantly lower than VAE’s
using convolutional decoders. Restricted network architecture of the VLAE is its main drawback.

We also compare the test inference times of our recursive mixture model and the VLAE using the fully
connected decoder networks. Note that VLAE is a semi-amortized approach, which needs to solve the
Laplace approximation at test time. Thus another drawback of VLAE is the computational overhead
of inference, which can be demanding as the number of linearization steps increases. The per-batch
inference times (batch size 128) are shown in Tab. 10. For the moderate or large linearization steps
(e.g., 4 or 8), the inference takes significantly longer than that of our RME (amortized method).

14

Table 10: (Fully connected networks as decoders) Per-batch inference time (unit in milliseconds)
with batch size 128. The figures without parentheses are the times using the fully connected networks,
whereas figures in the parentheses are the times using the convolutional decoder networks.

MNIST OMNIGLOT
DIM(z) = 10 DIM(z) = 50 DIM(z) = 10 DIM(z) = 50
VLAE (1) 10.1 12.9 11.2 12.1
VLAE (2) 11.2 13.4 13.2 16.9
VLAE (4) 14.8 17.8 15.4 18.7
VLAE (8) 20.7 30.8 22.1 26.4
RME (2) 5.0 (5.0) 5.0 (4.7) 5.4 (6.0) 5.6 (5.4)
RME (3) 4.9 (5.1) 4.9 (4.9) 5.9(5.7) 5.4(5.5)
RME (4) 4.9 (5.0) 4.9 (4.6) 6.1(5.9) 5.9 (5.3)
RME (5) 5.0 (5.1) 4.7 (4.8) 5.8 (6.1) 5.4 (5.6)

10 Pseudo Codes

The following is the pseudocode for the proposed model. The real full Python/PyTorch code is
available in https://github.com/minyoungkim21/recmixvae.

#it## Hyperparameters ####

batch_size = 128

n_epochs = 2000

x_dim = (C=1 x H=28 x W=28)
z_dim = 50

learning_rate = le-6

input batch size for training
number of epochs to train

input dimension

latent space dimension

learning rate for ADAM optimizer

HOoH H B H

num_comps = 5
eps_regr_nhl = 1
eps_regr_dim = 10
eps_min = 0.001
eps_max = 0.1

k1l _max = 500.0

number of mixture components for encoder

number of hidden layers for epsilon regressor
hidden layer dim for epsilon regressor

minimum epsilon

maximum epsilon

maximum k1(q_k||Q_{k-1}) allowed in the objective

H H HHHEH

Main class
import torch.nn as nn
class RecMixVAE(nn.Module) :

self.M = num_comps-1 # components: 0,1,...,M (the number of comps = M+1)
self.decoder = ConvDecoder(z_dim, x_dim) # decoder
self .prior = DiagonalGaussian(mu=zeros, logvar=zeros) # prior

components of encoder (q_0, q_1, ..., q_M)

self.comps = nn.ModuleList([ConvEncoder(z_dim, x_dim) for _ in range(num_comps)])

regressors for impacts of components (eps_O, eps_1, ..., eps_M); note: eps_0 = 1 (const)
self.eps_regrs = nn.ModuleList([Const(1.0)] +
[BaseBoundedRegressor(x_dim, eps_min, eps_max, eps_regr_nhl, eps_regr_dim)
for _ in range(num_comps-1)])

def encoder_upto_kth(self, x, k):
2930
Mixture with components q_0(.|x), gq_1(.|x), ..., gq_k(.|x) is formed.
More specifically, eg, for k=2,
Q_{k=2}(.|x) = alpha_0(x) * q_0(.|x) + alpha_1(x) * q_1(.|x) + alpha_2(x) * q_2(.[x)
where
alpha_2(x) eps_2(x)
alpha_1(x) = eps_1(x) * (l-eps_2(x))
alpha_0(x) = eps_0(x) * (l-eps_1(x)) * (l-eps_2(x))

15

https://github.com/minyoungkim21/recmixvae

inputs:
k = component index (0 <= k <= self.M)
returns:

n mixtures for Q_k(.|x) (with k+1 components)
20

def encoder_kth_comp(self, x, k):
293
Just return k-th component g_k(.|[x)
inputs:
k = component index (0 <= k <= self.M)
returns:
n distributions (eg, DiagonalGaussian’s) q_k(.|x)
293

return self.comps [k] (x) [0]

def eval_elbo_for_mixture(self, x, mixture):
23
Evaluate elbo (recon error and kl) for a mixture encoder
inputs:
mixture = n mixture distributions from QC(.|x)
returns:
ell = E_{Q(zIx)}[log p(xlz)]
k1l = KL(Q(zlx) || p(=2))
29
let K = mixture order
alphas = mixture.logalphas.exp()
z = samples from gq_m(z|x) for m=1...K
(decoder) evaluate log p(xlz) for z ~ gq_m(z|x) for m=1...K
(prior) evaluate log p(z) for z ~ q_m(zlx) for m=1...K
evaluate log Q(z|x) for z ~ g_m(z|x) for m=1...K
return ell = E_{Q(z|x)}[log p(xlz)] and k1 = KL(Q(zlx) || p(z))

def forward(self, x, k, loss_type):
29
compute objectives for recursive mixture VAE
inputs:
k = component index (0 <= k <= self.M)
loss_type = either of
’new_comp’: compute elbo(q_k) and k1(q_k||Q_{k-1}) (the latter None if k=0)
‘mixture’: compute elbo(Q_k)

returns:
loss_type == ’new_comp’: elbo(q_k), k1(q_kl||Q_{k-1}) (averaged over batch x)
loss_type == ’mixture’: elbo(Q_k) (averaged over batch x)
23
if loss_type == ’new_comp’:

g_z_x = self.encoder_kth_comp(x, k) # gq_k
Q_z_x = self.encoder_upto_kth(x, k-1) if k>0 else None # Q_{k-1}
evaluate elbo(q_k) and k1l(q_k||Q_{k-1})
elif loss_type == ’mixture’:
Q_z_x = self.encoder_upto_kth(x, k) # Q_k
ell, k1 = self.eval_elbo_for_mixture(x, Q_z_x)
elbo = (ell - k1).mean()

def enable_grad(self, params):
20

Disable the autograd for all parameters except for "params"
293

Main algorithm
model = RecMixVAE(Q)

while epoch <= n_epochs:

16

for batch sampled from the training data:

update q_0

model.enable_grad(model.comps[0])

elbo, _ = model(batch, 0, loss_type=’new_comp’)
update model by backprop with loss = -elbo

update (q_m, eps_regr_m) for m=1,...,M
for m in range(1,model.M+1):

update q_m

model.enable_grad(model. comps [m])

elbo, k1 = model(batch, m, loss_type=’new_comp’)

update model by backprop with loss = -elbo + (kl_max - k1).relu()

update eps_regr_m
model.enable_grad(model.eps_regrs[m])

elbo = model(batch, m, loss_type=’mixture’)
update model by backprop with loss = -elbo

update decoder

model.enable_grad(model.decoder)

elbo = model(batch, model.M, loss_type=’mixture’)
update model by backprop with loss = -elbo

17

Table 11: (MNIST) Test log-likelihood scores (unit in nat) estimated by the importance weighted
sampling [1]. The figures in the parentheses next to model names indicate: the number of SVI
steps in SA, the number of flows in IAF and HF, and the number of mixture components in ME
and RME. The superscripts are the standard deviations. The best (on average) results are boldfaced
in red. In each column, the statistical significance of the difference between the best model (red)
and each competing model, is depicted as color: anything non-colored indicates p < 0.01 (strongly
distinguished), p € (0.01, 0.05] as
(little evidence of difference) by the Wilcoxon signed rank test. Best viewed in color.

,p € (0.05,0.1] as

,p > 0.1 as red orange

dim(z) 10 20 50 100
VAE 685.11'% 930.73° 1185.7%9 1225.4%2
sA® 688.1%7 921.22% 1172.1'% 1196.9%3
SA® 682.28° 932.02* 1176.3%* 1216.7%°
SA® 683.5° 925526 1171.3>%> 1217.7%°
SA® 684.6"° 928.13° 1183.2%* 1211.7%°
IAF®D 687.351 934.0°% 1180.6>7 1213.4%°
IAF® 677756 931.4%7 1190.1'° 1224.4%2
IAF® 685.01° 926.32% 1178.1'% 1216.4%°
IAF® 689.7% 934.12% 1150.0*>2 1190.9%°
HF® 682.554 917.226 1204.3*" 1203.3%°
HF® 677.6%22 92391 11915198 1213.6%°
HF® 683.326 927.32% 1197.2'% 1226.0%°
HF® 679.61° 928531 1184.1%% 1220.0%°
ME® 685.7%2 926.7%0 1152.8"7 1191.4%°
ME® 678.5%° 933.1%1 1162.8%7 1216.9%!
ME® 680.0%Y 914.7%% 1205.1>% 1214.9%*
ME®) 682.0%7 920.6'° 1198.5%° 1181.7%7
RME® 697.211

RME® 698.21 945.116

RME® 699.0'° 945.2'% 1203.1'°

RME®) 699.4%' 945.0%7 1203.7"° 1242.0%%
BVI-ER1® 6945 0939.7>% 1196.2%% 1236.3%°
BVI-ER1® 6945 939.5%° 1191.6%° 1233.93°
BVI-ER1Y 692.28% 0937.8%° 1191.6>% 1227.6%°
BVI-ER1® 692.0° 931.2%° 1183.12° 1229.0%!
BVI-ER2® 6945 939.7>1 1189.6%2 1236.2%°
BVI-ER2® 6945 939.4>! 1192.1%3 1233.6%°
BVI-ER2(Y 692.2%° 937.6>! 1191.5%2 1227.43°
BVI-ER2®) 692.4%° 931.7%2 1181.7*>2 1228.93°

18

Table 12: (OMNIGLOT) Test log-likelihood scores (unit in nat). The same interpretation as Tab. 11.

dim(z) 10 20 50 100
VAE 347.0%7 501.6%% 801.6*° 917.5%!
sA 344.1%% 499.3%5 792779 905.8%2
SA® 349.5"* 501.0>7 793.1*% 920.0*°
SA® 342110 488.2'% 794.4'° 914.6%F
SA® 344.8"1 490.3%% 799.4%7

IAF® 489.91° 788.8%1 937.472
IAF® 344286 494.9%* 795727 934.673
IAF® 347.9%° 496.02° 775.1%2 920.9*!
IAF® 343.9%% 498.8%3 774.7%° 885.7%%
HF® 335502 488.62° 795.9%3 917.0%*
HF® 340.6'% 49598 784.5%8 929437
HF® 343.3%2 487.0*7 799.7%2 87757
HE® 343.3%% 488.3%% 794.6*° 889.2%7
ME® 344215 491744 793.4%% 880.3%
ME® 350.3%% 491.2%2' 807.5*° 875.9%C
ME® 337741 491.3%% 732.0%! 939.8%¢
ME® 343.00% 478.0*% 805.7%% 861.97°
RME® 349.31° 508.2'2 821.0%' 941.5'7
RME® 349.9¢ 50751 820.4°° 944.6°!
RME® 350.7%7 509.0%2 819.9%° 944.4%7
RME® 351.1"7 509.1%* 819.9%° 944.0'¢
BVI-ER1(® 937.9%1
BVI-ER1® 936.2°1
BVI-ER1® 350.7"° 507.8%° 935.6%8
BVI-ER1® 351.1'° 508.2%% 935.73-8
BVI-ER2(® 937.6°1
BVI-ER2(®

BVI-ER2(® 350.7'° 507.8%2 935.6%%
BVI-ER2®) 351.0'° 508.1%2 935.73:8

19

Table 13: (CIFAR10) Test log-likelihood scores (unit in nat). The same interpretation as Tab. 11.

dim(z) 10 20 50 100
VAE 1645.74+°% 2089.7°% 2769.97! 3381.0**7
sAD 1645.0°% 2086.0%2 2765.07' 3378.7104
SA® 1648.6*% 2088.2%¢ 2764.177 3377.8%%
SA® 1648.5°2 2083.9%* 2766.75° 3380.27°
SA® 1642.1%% 2086.0%! 2766.67° 3376.60C
IAF 1646.0*° 2081.1°>* 2762.67% 3383.77!
IAF® 1642.0*° 2084.6°¢ 2763.0*% 3373.3'%2
IAF® 1646.0>1 2083.2%' 2760.67° 3371.1%!
IAF® 1643.6*% 2087.1*¢ 2761.8°° 3364.0°°
HFW 1644.5%* 2079.1°>° 2757.9**% 3393.4%7
HF® 1636.7%° 2086.0°° 2764.7** 3384.8%7
HF® 1642.14° 2082.373 2763.4** 3385.5%
HE®) 1639.9°* 2084.7%' 2765.572 3382.5%3
ME® 1643.6°1 2086.6°% 2767.9%% 3378.5%!
ME®) 1638.6°% 2079.8>° 2770.27% 3388.177
ME® 1641.8%% 2084.7° 2763.5%3 3384.6'%3
ME® 1641.7°% 2080.2°° 2766.153 3351.3'1°
RME® 2779.6%6 3403.05
RME® 1654.2%° 2099.172 2783.0%' 3404.268
RME® 1655.0%* 2781.166 3403.26
RME® 1654.5%% 2098.45% 2782.9%* 3404.6%7
BVI-ER1® 3393.16-8
BVI-ER1® 3393.855
BVI-ER1¥ 3394.26:6
BVI-ER1® 3394.277
BVI-ER2(? 3393.16-¢
BVI-ER2(® 3393.8%-°
BVI-ER2(¥ 3394.26-2
BVI-ER2(® 3394.15!

20

Table 14: (SVHN) Test log-likelihood scores (unit in nat). The same interpretation as Tab. 11.

dim(z) 10 20 50 100
VAE 3360.2°-! 4054.5% 5363.7%1* 6703.0%%4
sA 3358789 4031.5'99 5362.1%7 6707.6%%%
SA® 3356.0%% 4041.5'%% 5377.0%%? 6697.0%°°
SA® 3327.8%2 4051.9%22 5391.7%9* 6645.11°8
SA®) 3352.8'1% 4041.6%° 5370.818° 6674.5299
IAF™ 4050.0%4 5368.311° 6650.31%7
IAF® 3362.3%° 4054.6'%° 5360.0'°° 6671.5'6-8
IAF® 3346.1%7 4048.6%7 5338.11%-2 6630.0%7-2
IAF® 4042.0°° 5341.8'1%-1 6602.010-8
HFD 4028.8%7 5372.010-1 6678.8%8
HF® 3342.4%3 4030.7%° 5376.6'%2 6672.0%6
HF® 4038.4%°7 5371.8°% 6655.2%9°
HF® 3343.8%2 4035.9%° 5351.1'1 6642.416°
ME® 3352.3%:° 4037.21%9 5343.2131 6670.246-°
ME®) 3335.2109 4053.8'¢1 5367.7'%% 6605.6°*
ME® 3358.219 4061.3'2° 5191.9'%° 6605.7°2
ME® 3360.67° 4057.5'22 5209.2'%% 6604.0'66
RME® 3390.0%" 4085.3%7 6784.7°°°
RME® 3392.0'*° 4085.9”° 5405.110-4

RME® 3388.6%° 4080.7%° 7

RME® 3391.9%2 4086.9'%° 5405.5%°

BVI-ER1®® 3379.9%2 5388.2102 753.5100
BVI-ER1® 3380.9%! 5384.210% 750.319-6
BVI-ER1® 3384451 5371.1104 §748.91%3
BVI-ER1® 3382254 5378.1101 6733.61%3
BVI-ER2(? 3379.8%! 5388.310-1 §753.210-1
BVI-ER2(® 3380.9%* 5383.910-2 §749.710-7
BVI-ER2Y 3384.3%2 5371.3104 6749.11%1
BVI-ER2(®) 3382.1% 5377.710-2 §733.81%:0

21

Table 15: (CelebA) Test log-likelihood scores (unit in nat). The same interpretation as Tab. 11.

dim(z) 10 20 50 100
VAE 9767.75¢0 12116.4%°% 15251.9%%7 17395.5%24
SAM 9735.2214 12091.1%2'% 15285.8%9*% 17432.4%04
SA® 9754.220% 12087.12'% 15252.7%90 17434.0%%8
SAM® 9769.120¢ 12116.320-> 15187.3%"° 17360.5%%°
SA® 9744.814 12100.6%2® 15096.5°72 17409.7%8:0
IAF™) 9750.327% 12098.02°° 15271.2286 17446.4%03
IAF® 9794.4%33 12104.5%18 15262.227-8 174495318
IAF® 9764.7%%° 12094.6%%6 15261.0%%1 17416.8%9-8
IAF® 9764.0%1° 12109.3%22° 15241.5%7°% 17452.539°
HFW 9748.3%9°° 12077.23'% 15240.5%7¢ 17461.6%°°
HF®) 9765.82%6 12093.0%°¢ 15258.2%03 17479.8300
HF@® 9754.3%8 12082.0%7° 15266.5%°° 17532.730:6
HF®) 9737.5%45 12087.3%°% 15248.7%%7 17663.4%%7
ME® 9825.3%07 12072.7%%3% 15290.5%*3 17419.3%%7
ME®) 9797.6%2% 12100.3%''7 15294.6%%3 17395.3%8°
ME® 9834.9%°% 12092.2226 15270.7%%6 17458.5%6-8
ME® 9717.0%2% 12095.3%°! 15268.8%75 17406.8%!8
RME® 0837.9%46 12193.1%%° 15363.03'7 17873.5%%8
RME® 9838.5%%:0 12192.3%35 15365.6°%% 17874.4%'2
RME® 9849.5'21 12192.6%%* 15364.3%'° 17875.1'42
RME® 0843.5%°0 12194.2'° 15366.2'27 17874.3%%°

BVI-ER1® 9801.6%¢1 12133.5%%' 15206.4%2 17716.97%3

BVI-EERI® 9805.6%7 12146.5** 15249.5%%1 17558.620:
BVI-ERI® 9805.2%93 12127.7%*3 15085.8%%% 17256.1%%39
BVI-EERI® 9810.13%7 12092.3%23 15052.5%%° 17069.9%°1-8
BVI-ER2® 9801.5%°% 12133.6%%7 15207.3°2% 17716.6°%!

BVI-ER2® 9805.72%° 12146.6%°° 15249.6%*% 17560.7'09:2
BVI-ER2® 9805.1263 12128.7%%*0 15084.9%>% 17260.6%2%6
BVI-ER2® 9810.4%7% 12087.5*%° 15051.7%3% 17077.1%%76

22

References

(1]
(2]
(3]

(4]
(5]
(6]
(7]
(8]
(91
(10]
(11]

(12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders, 2016. In
Proceedings of the Second International Conference on Learning Representations, ICLR.

Trevor Campbell and Xinglong Li. Universal boosting variational inference, 2019. In Advances in Neural
Information Processing Systems.

Casey Chu, Jose Blanchet, and Peter Glynn. Probability functional descent: A unifying perspective on
GANS, variational inference, and reinforcement learning, 2019. International Conference on Machine
Learning.

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational autoencoders. In
International Conference on Machine Learning, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, 2017.

J. Friedman. Greedy function approximation: A gradient boosting machine, 1999. Technical Report, Dept.
of Statistics, Stanford University.

L. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets, 2014. In Advances in Neural Information Processing Systems.

Fangjian Guo, Xiangyu Wang, Kai Fan, Tamara Broderick, and David B Dunson. Boosting variational
inference. In arXiv preprint, 2016.

Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 13:1303-1347, 2013.

Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization, 2013. International
Conference on Machine Learning.

Y. Kim, S. Wiseman, A. C. Millter, D. Sontag, and A. M. Rush. Semi-amortized variational autoencoders.
In International Conference on Machine Learning, 2018.

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proving variational inference with inverse autoregressive flow, 2016. In Advances in Neural Information
Processing Systems.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes, 2014. In Proceedings of the
Second International Conference on Learning Representations, ICLR.

R. G. Krishnan, D. Liang, and M. D. Hoffman. On the challenges of learning with inference networks on
sparse high-dimensional data. In Artificial Intelligence and Statistics, 2018.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images, 2009. Technical
report, Computer Science Department, University of Toronto.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks, 2012. In Advances in Neural Information Processing Systems.

Anna Kuzina, Evgenii Egorov, and Evgeny Burnaev. Boovae: A scalable framework for continual VAE
learning under boosting approach. In arXiv preprint, 2019.

B. M. Lake, R. R. Salakhutdinov, and J. Tenenbaum. One-shot learning by inverting a compositional causal
process, 2013. In Advances in Neural Information Processing Systems.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278-2324, 1998.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), 2015.

Francesco Locatello, Gideon Dresdner, Rajiv Khanna, Isabel Valera, and Gunnar Ritsch. Boosting black
box variational inference, 2018. In Advances in Neural Information Processing Systems.

Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, and Gunnar Rétsch. Boosting variational inference:
an optimization perspective, 2018. Al and Statistics (AISTATS).

J. Marino, Y. Yisong, and S. Mandt. Iterative amortized inference. In International Conference on Machine
Learning, 2018.

L. Mason, J. Baxter, P. Bartlett, and M. Frean. Functional gradient techniques for combining hypotheses.
In Advances in Large Margin Classifiers, MIT Press, 1999.

Andrew C. Miller, Nicholas J. Foti, and Ryan P. Adams. Variational boosting: Iteratively refining posterior
approximations, 2017. International Conference on Machine Learning.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits
in natural images with unsupervised feature learning. 2011.

Yookoon Park, Chris Kim, and Gunhee Kim. Variational Laplace autoencoders. In International Conference
on Machine Learning, 2019.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In arXiv preprint, 2015.

DJ. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in
deep generative models, 2014. International Conference on Machine Learning.

23

[30] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. In arXiv preprint, 2013.

[31] J. M. Tomczak and M. Welling. Improving variational autoencoders using Householder flow, 2016. In
Advances in Neural Information Processing Systems, Workshop on Bayesian Deep Learning.

[32] Jakub M. Tomczak and Max Welling. VAE with a VampPrior, 2018. Artificial Intelligence and Statistics.

[33] Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference, 2018. International Conference
on Machine Learning.

[34] O. Zobay. Variational bayesian inference with gaussian-mixture approximations. Electron. J. Statist.,
8(1):335-389, 2014.

24

	1 Introduction
	2 Background
	3 Recursive Mixture Inference Model (Proposed Method)
	3.1 Optimization Strategy

	4 Related Work
	5 Evaluations
	5.1 Results
	5.2 Test Inference Time
	5.3 Comparison with Boosted VI's Entropy Regularization

	6 Conclusion
	7 Detailed Experimental Setups
	7.1 Competing Approaches
	7.2 Datasets
	7.3 Network Architectures
	7.4 Experimental Setups

	8 Experimental Results
	8.1 Test Inference Time

	9 Comparison with Fully-Connected Decoder Networks
	10 Pseudo Codes

