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Abstract

We deal with the problem of learning the underlying disentangled latent factors that are shared between the paired bi-modal
data in cross-modal retrieval. Our assumption is that the data in both modalities are complex, structured, and high dimensional
(e.g., image and text), for which the conventional deep auto-encoding latent variable models such as the Variational Autoen-
coder (VAE) often suffer from difficulty of accurate decoder training or realistic synthesis. A suboptimally trained decoder
can potentially harm the model’s capability of identifying the true factors. In this paper we propose a novel idea of the implicit
decoder, which completely removes the ambient data decoding module from a latent variable model, via implicit encoder
inversion that is achieved by Jacobian regularization of the low-dimensional embedding function. Motivated from the recent
Identifiable-VAE (IVAE) model, we modify it to incorporate the query modality data as conditioning auxiliary input, which
allows us to prove that the true parameters of the model can be identifiable under some regularity conditions. Tested on various
datasets where the true factors are fully/partially available, our model is shown to identify the factors accurately, significantly
outperforming conventional encoder-decoder latent variable models. We also test our model on the Recipe1M, the large-scale
food image/recipe dataset, where the learned factors by our approach highly coincide with the most pronounced food factors
including savoriness, wateriness, and greenness.

1 Introduction
Accurately learning the underlying factors that explain the source of variability in the complex structured data (e.g., images),
is one of the core problems in representation learning in computer vision. Whereas there has been considerable research work
and significant success in the unsupervised scenario recently [9, 22, 11, 3, 19, 15, 8, 16], there remains fundamental difficulty
in identifying the true factors due to some known challenges [21, 24]. Having the factor labels can significantly boost the
performance, but it is inherently difficult and costly to annotate data with true factors. As a remedy for this, we deal with the
paired bi-modal data setup as means of partial supervision. Formally, we consider paired data (x1,x2), where the goal is to
learn latent factors that are shared between the two. Collecting paired data requires least amount of supervision, and can often
be automated (e.g., web scrapping to pair image (x1) and the text (x2) that reside in the same web page) [28, 23].

While the CCA and its recent deep nonlinear extension, Deep CCA [1, 35], are the most popular models to extract shared
features (subspace) for such paired data, the dependency of CCA’s cross-covariance matrix on the entire embedded data
features hinders the mini-batch stochastic gradient methods from being applied in a principled manner. Moreover, applying
the latent variable generative models like the Variational Autoencoder (VAE) [18] and its bi-modal extension (Bi-VAE) [36],
requires the latent-to-data synthesis/decoder modules, and learning the decoders for the complex high-dim ambient data is
often very difficult. A suboptimally trained decoder can potentially harm the model’s capability of identifying the true factors.

In the retrieval setup, where we let w.l.o.g., x1 be the query and x2 the search item, it is well known that the simple idea of
aligning the pairs in the low-dim embedded space via cosine similarity, dubbed Cos-Sim, is shown to yield very good retrieval
performance [28, 23]. Despite this success, Cos-Sim has no capability of identifying latent variables that can be controlled
explicitly by users. Although the model can be extended to incorporate an extra bottleneck auto-encoding model on top of the
embedded space, there is no theoretical underpinning that such extension can help discovering the true factors.
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Our main goal in this paper is to learn the latent factors from paired data in the retrieval setup. More specifically, we
would like to identify all the factors, each as a single latent variable in the model, and it would be ideal if the learned latent
variables are disentangled (i.e., avoid a single latent variable impacting on the variation of two or more factors at the same
time), and complete or minimally redundant (i.e., each of the underlying true factors has to be explained by only one of the
latent variables, not by multiple ones).

To accomplish these desiderata and address the issues of the existing approaches, we introduce two strategies. First,
we adopt the recent Identifiable-VAE (IVAE) model [14] that can provably identify the true model parameters by having
additional auxiliary input on which the latent variables are conditioned. We modify IVAE by incorporating the query data
x1 as conditioning auxiliary input, which enhances the model identifiability under some regularity conditions. Secondly, to
remove the difficult-to-learn ambient data decoding module, we propose a novel idea of the implicit decoder. The modified
IVAE model is built on the embedded space, and the relevance score required in the retrieval is defined by implicit inversion
of the embedding function, which is accomplished by the Jacobian-based regularization of the embedding function.

Tested on various datasets where the true factors are fully/partially available, our model is shown to identify the factors
accurately, significantly outperforming conventional encoder-decoder latent variable models. We also test our model on the
Recipe1M, the large-scale food image/recipe dataset, where the learned factors by our approach highly coincide with the most
pronounced food factors including savoriness, wateriness, and greenness.

Notations and background on embedding. Many approaches in cross-modal retrieval [4, 13, 37, 31, 33, 27, 6, 5, 28, 23,
38], including our model, adopt the so called shared space embedding strategy, introducing mappings from ambient data to
the shared space V . More specifically, vi = ei(xi) for i = 1, 2, are the low-dim embeddings induced by the deep nonlinear
(neural net) functions ei(·). The Cos-Sim model, for instance, learns the embedding functions by enforcing the embedded
vectors of the paired data to be aligned well, with the cosine-angle of two embeddings cos(v1,v2) as the alignment score. Its
latent variable model extension discussed previously, introduces additional bottleneck encoding/decoding layers, v1 → z and
z → v′1, where the relevance score is measured by cos(v′1,v2). Then the latent variables z can be controlled directly (e.g.,
latent traversal). Instead of this ad-hoc model, in the next section we build the identifiable probabilistic latent variable model
(IVAE) on the embedded space, while we avoid the ambient data synthesis module via Jacobian-based regularization of the
embedding function.

2 Implicit Identifiable Retrieval VAE
Our model is motivated from the recent work of the Identifiable VAE (IVAE for short) [14], in which the true model can be
provably identified by having a latent variable model with an auxiliary inputs on which the latent variables are conditioned. We
modify this model to circumvent difficult synthesis model learning in the cross-modal retrieval setup (dubbed Retrieval IVAE
or RIVAE for short). Considering that our goal is to learn the underlying disentangled latent representation that explains the
sources of data variability, the provable model identifiability allows us to recover true disentangled latent factors accurately,
provided that the data generating process admits disentangled factors.

Unlike conventional VAE models, the IVAE adopts the so-called auxiliary input u on which the latent z is conditioned a
priori, i.e., Pλ(z|u). In our retrieval setup, we regard the query v1 as the auxiliary input, and treat the target embedding v2 as
the observed data. There are several modeling assumptions to make the IVAE model fully identifiable from the augmented data
{(v1,v2)}. Among others, the most important are: 1) the conditional prior Pλ(z|v1) needs to be a (conditionally) factorized
exponential family distribution with natural parameters λ, and 2) the output decoding process Pθ(v2|z) is homo-scedastic
(i.e., v2 = f(z) + ξ where f(z) = E[v2|z] and ξ is 0-mean random and independent of z). Then we define the following
components to meet the IVAE’s modeling assumptions:

Pλ(z|v1) = N (µ(v1),Diag(σ(v1))) (1)

Pθ(v2|z) = N (f(z), η2I) (2)
Qφ(z|v1,v2) = N (m(v1,v2),Diag(s(v1,v2))) (3)

where µ(·), σ(·), f(·), m(·, ·), and s(·, ·) are all deep neural networks (whose parameters are denoted by λ, θ, φ, resp.)
and η2 is small fixed noise variance (e.g., η = 10−3). Hence, if the query embedding (auxiliary input) v1 retains all salient
information about the underlying shared factors1, then the true process of v2|v1, presumably following the model structure of
(1–3), can be identified accurately (due to the Theorem 1 in [14]), and so are the true factors z.

To train the RIVAE, we first consider the lower bound (ELBO or LLB) of the data likelihood logP (v2|v1), where

LLB = KL(Q(z|v1,v2)||P (z|v1))− EQ[logP (v2|z)] (4)

1This will be achieved by the cross-modal retrieval loss (10).
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Although we maximize the ELBO wrt the IVAE parameters Λ := (λ, θ, φ), it cannot be used to optimize the embedding
networks. This is because the embedding networks can determine the auxiliary input v1 and the target observed v2 in an
arbitrary way just to make the IVAE model fit to (v1,v2) very well. As an extreme case, the constant mappings e1(·) =
e2(·) = vconst, can lead to a perfect-fit model that is degenerate. To learn the embedders, we introduce another learning
criterion related to cross-modal prediction.

Let (x1,x2) be a matching pair from the training data, while (x1,x
′
2) a mismatch one. It is desired for the model to score

them as:
logP (x2|x1)� logP (x′2|x1). (5)

To avoid difficult synthesis modeling for ambient data x2 in (5), we utilize the rule of the change of random variables.
Assuming that the embedding function e2(·) is injective2,

logP (x2|x1) = logP (e−12 (v2)|x1) (6)
= logP (v2|x1) + log vol∇e2(x2) (7)
≈ logP (v2|x1) + const. (8)

To establish (8), we will enforce the Jacobian volume, vol∇e2(x2) to be constant over different points x2 as regularization
(See below for details). Using

P (v2|x1) = P (v2|v1) = EP (z|v1)[P (v2|z)], (9)

the desiderata (5) can be encoded as the following loss:

LRetr =
(
1 + EQ[logP (v′2|z)− logP (v2|z)]

)
+

(10)

where v′2 = e2(x′2) is the embedding of the mismatch sample x′2, and (a)+ = max(0, a). That is, we implicitly invert the
embedding function without a synthesis model for x2.

Regularizing the embedding network. Derivation (8) is valid only if vol∇e2(x2) remains (approximately) constant
across all plausible data samples x2. Directly regularizing this by minimizing a loss like (vol∇e2(x2)−c)2 for some constant
c, is computationally prohibitive. However, since the Jacobian volume essentially measures the change in the function output
due to small perturbations in the input, we can attain similar effect by enforcing the change originating from a random input
perturbation3 to remain constant regardless of the input point. Specifically, we impose the following regularization for e2(·):

LReg = Ex2,ε

[(
||e2(x2)− e2(x2 + ε)|| − c

)2]
(11)

where ε ∼ P (ε) is a random sample from a noise distribution P (ε) with small magnitude (e.g., ||ε|| = 0.001). We can also
optimize c.

Summary. The full training can be written as the following optimization (λRetr and λReg are the trade-off parameters).
Note that the arguments in each loss L(·) indicates which parameters should be updated regarding the loss.

min LLB(Λ) + λRetrLRetr(Λ,W) + λRegLReg(W) (12)

Cross-modal Retrieval. Basically we need to solve: arg maxx2∈D2 logP (x2|x1), where x1 is the query data point, and
D2 is the search database. Using the derivation of (7–8), logP (x2|x1) can be approximated as logP (v2|z) with z ∼ P (z|v1),
which results in the following three-step algorithm:

1. Embed the query point: v1 = e1(x1).
2. Sample z ∼ P (z|v1).
3. Solve: arg maxx2∈D2

logP (e2(x2)|z).

Latent Traversal. While varying the value of one particular latent dimension with the rest being fixed, we inspect the
change in the retrieved data. This helps us understand what type of aspect each latent dimension corresponds to, that is, the
source of variability. We retrieve the output for each traversed point z, namely the mode of P (x2|z). We regard the conditional
distribution P (v2|z) as a proxy of P (x2|z) using the derivation similar to (7–8) with the regularized embedding networks.
The latent traversal algorithm is summarized as follows:

2Formally, e2(x2) 6= e2(x̂2) if x2 6= x̂2. It allows the inverse e−1
2 (·) to be defined. It is a reasonable assumption that is also considered in [14].

3The input space perturbation can be done pixel-wisely for images, and on the word vectors for text data.
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1. Traverse z along the j-th dim (j = 1, . . . , d).
2. Prepare the conditional distribution: P (v2|z).
3. Solve: arg maxx2∈D2

logP (e2(x2)|z).

Comparison to Conditional VAE [30]. The idea of conditioning the latent variables z is similar to the Conditional VAE
(CVAE) [30]. However, there are two main differences: i) The conditioning variables in the CVAE are typically class labels,
and its main goal is to enrich the representational capacity of VAE to cover different regions/clusters of the data domain
indexed by the class label. ii) CVAE explicitly models dependency between the observed and the conditioning variables.
On the other hand, in our RIVAE, there is no direct link between the output v2 and the auxiliary v1, thus enforcing core
information from v1 to v2 to flow through the bottleneck z. This allows the latents to learn the salient factors more effectively.

3 Experimental Results
We test our Retrieval-IVAE model on both controlled datasets where the ground-truth factors are fully/partially available
for quantitative comparison, and the large-scale Recipe1M dataset [28, 23] in the context of food image to recipe retrieval.
We especially focus on demonstrating our model’s capability of identifying the underlying true factors with high degree of
disentanglement, compared to the existing approaches and baselines (See Sec. 3.1).

For the cross-modal retrieval at test time, we construct the search database D2, of size |D2| = 1000 or 2000, randomly
selected from the test dataset. We repeat this procedure randomly 10 times, and run the models to report average performance.
For the retrieval metrics, we consider the median rank (Med-R) and the recall-at-K (R@K) with K = 1, 5, 10, where R@K
stands for the fraction (out of |D2| queries) where the true item is found by the model in its top-K scored items. Although
these retrieval scores are indicative of how well the models extract shared information, the main focus in this paper is to judge
the goodness of the learned latent factors. For this purpose, see the quantitative metrics in Sec. 3.2.

3.1 Competing Methods and Datasets
Our RIVAE is compared with the following methods:

• Cos-Sim-LVM: As described previously, we extend the Cos-Sim embedded space alignment method to identify/control
the latent variables. That is, this extended model has encoder (v1 → z) and decoder (z → v′1), both of which roughly
correspond to P (z|v1) and P (v2|z) in our RIVAE, respectively, and we use neural nets with similar architectures for
fair comparison.

• Bi-VAE: This is the bi-modal extension of the VAE via the product-of-experts approximation [36]. It requires difficult
synthesis (decoder) model learning for the ambient data (i.e., z→ x1 and z→ x2).

• Bi-VAE-on-V: As a reasonable workaround to circumvent the difficult synthesis model learning in Bi-VAE, we can
think of building the bi-modal VAEon the embedded space (V) instead. That is, the embedding networks are fixed (e.g.,
simply borrowed from the trained Cos-Sim model). The intuition is to regard the embeddings v1/2 as proxy for ambient
data x1/2, and a similar idea was previously explored in [29].

• DCCA4: The Deep CCA model [1] that learns the nonlinear mapping from inputs to the embedding vectors.

• RBi-VAE: We consider a joint model P (v1,v2, z) in place of the conditional P (v2, z|v1) in our RIVAE. (Supplement
for details) Dubbed Retrieval-Bi-VAE (or RBi-VAE for short), we adopt the same Jacobian embedder regularization for
the implicit embedder inversion, and it is compared to RIVAE to see how effective the identifiable model learning in
RIVAE.

For fair comparison, we make the experimental setup as equal as possible for all competing methods. E.g., the number of
latent variables adopted in the competing models is set to be the same. The details of the model architectures and optimization
strategies are described in the Supplement.

And we test the above models on four datasets:

• Synth (Sec. 3.3): The synthetic data generated from a nonlinear function with disentangled latent variables partitioned
into shared and private factors.

• Sprites (Sec. 3.4): Binary images of sprites. The shape is regarded as modality, where the locations and size of the
sprite are considered as shared factors.

4Other variants including DCCAE (DCCA with the auto-encoding loss) [35], are often on a par with DCCA, and not considered here.
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Table 1: (Synth) Retrieval performance with 1000 test samples as the search set. (averaged over 10 random runs).
Method R@1 ↑ R@5 ↑ R@10 ↑ Med-R ↓

Cos-Sim-LVM 0.02 0.14 0.27 24.00
Bi-VAE [36] 0.01 0.05 0.10 101.00
Bi-VAE on V 0.20 0.58 0.76 4.00

DCCA [1] 0.29 0.62 0.81 3.00
RBi-VAE 0.33 0.81 0.92 2.00
RIVAE 0.35 0.80 0.92 2.00

• Split-MNIST (Sec. 3.5): The bi-modal data created from the MNIST dataset by splitting images into left (modality-1)
and right (modality-2) halves.

• Recipe1M (Sec. 3.6): The large scale food dataset [28, 23] that consists of pairs of food image and recipe text including
title, ingredient list, and instructions.

3.2 Metrics for Goodness of Learned Latents
We define metrics for the goodness of the learned latents, including the degree of disentanglement and completeness. Our
quantitative measures are similar to the D/C/I metrics [10], but whereas in [10] they assume an offline data pool for which all
factor labels are available, but in our case, not all factor labels are available for entire data instances for some datasets. To this
end, we modify the original metrics, adapted to the latent traversal results as follows.

For each reference/query xRef
1 , we embed/encode it to obtain the latent vector zRef. Then from this anchor point zRef,

we traverse along the zj axis for each latent dimension j = 1, . . . , d, i.e., varying the value of zj while freezing the rest
dimensions. We then collect a set of retrieved items x2, each of which corresponds to each of the traversed points along zj
axis. And for each retrieved item, its true factor values [f1, . . . , fK ] are looked up. This way, we collect the paired (zj , fk) data,
and estimate the Pearson’s correlation coefficient. In particular, we deal with cjk = |Corr(zj , fk)|, the absolute correlation
score, where the larger cjk implies that the latent variable zj is more related to the true factor fk. We repeat this procedure for
many reference/query points, and take the average scores cjk, which helps marginalizing out the instance-specific impact on
the correlations between latents and true factors.

Then with the (d×K) correlation table c (whose (j, k)-entry is cjk), we measure the three metrics similarly as [10]. First,
the Disentanglement metric (D) measures the degree of dedication of each latent variable zj in predicting fk against others
f−k. Intuitively, we have perfect disentanglement if each latent variable zj is correlated with only a single true factor fk. On
the other hand, if zj is correlated with multiple true factors at the same time, it is deemed entangled. To capture this idea, each
j-th row of the table c is normalized to a probability distribution, specifically,

pjk =
ρ(cjk)∑d

k′=1 ρ(cjk′)
, (13)

where ρ() is positive monotonic increasing (e.g., ρ(c) = eαc for some α > 0). Then we compute the normalized ([0, 1]-scaled)
entropy, Hj = −(1/logK)

∑
k pjk log pjk, and we define D = 1 − (1/d)

∑d
j=1Hj (the higher, the better disentangled).

The Completeness metric (C) captures the degree of exclusive contribution of zj in predicting fk against others z−j . As
it essentially aims for minimal redundancy, we would achieve perfect completeness if variability of each true factor fk is
explained by only a single latent variable zj , instead of multiple latents. The metric C can be computed similarly as D, by
replacing all row-wise operations with column-wise. Likewise, the higher C is, the better. Lastly, the Informativeness metric
(I) measures how informative each latent variable is in predicting a true factor. To this end, for each fk, we find the best
predictor zj (i.e., c∗k = max1≤j≤d cjk), and define I as the average of c∗k over k = 1, . . . ,K.

3.3 Synthetic Data (Synth)
To demonstrate our model’s capability of identifying the shared latent factors from bi-modal data, we devise a synthetic data
setup as follows. First we generate 4-dim factors, f = [fS , f1, f2] which are all iid samples from N (0, 1) with dim(fS) = 2
and dim(f1) = dim(f2) = 1. The ambient data points are then generated by the nonlinear functions, x1 = G1(fS , f1) and
x2 = G2(fS , f2) where G1(·) and G2(·) are two-layer neural networks that output 50-dim vectors. So our intention is that
fS serves as the shared factors that govern the data variability in the two modalities, while f1 and f2 are the private factors
that only affect individual modalities, being independent on the other. Additionally, it would be desirable if the model can
further disentangle the two individual factors in fS .

For the embedding networks e1/2(·), we use two-layer neural networks, and the embedding dimension is set as dim(v1/2) =
3. We set dim(z) = 2 for the latent spaces, which matches the number of true shared factors. The retrieval performance of
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(a) RIVAE (b) RBi-VAE (c) DCCA

Figure 1: (Synth) True factors vs. latent variables. Each column shows traversal of one latent zj with the other fixed. The Y
axes are true factors obtained from retrieved items x2. Red boxes indicate significant changes in the true shared factors, i.e.,
high correlation.

Table 2: (Synth) Goodness of the learned latents.
Disent. ↑ Comple. ↑ Inform. ↑

Cos-Sim-LVM 0.6169 0.7613 0.5486
Bi-VAE 0.4429 0.6822 0.6902

Bi-VAE on V 0.0520 0.8725 0.5630
DCCA 0.0017 0.2766 0.1371

RBi-VAE 0.0063 0.6900 0.3923
RIVAE 0.9186 0.8782 0.8995

the competing models is summarized in Table 1. Our RIVAE outperforms Cos-Sim-LVM and DCCA. The poor performance
of the Bi-VAE model implies that suboptimally trained decoders for high-dimensional noisy ambient data can degrade the
retrieval performance significantly. Even the Bi-VAE-on-V trained on the fixed embedded space exhibits performance com-
parable to Cos-Sim-LVM, although it still underperforms our model.

Next we inspect the learned latent representations. We are especially interested in the correspondence between the learned
latent variables z and the true shared factors fS . A desirable result would be exclusive one-to-one correspondence, where a
single latent variable zj affects only one shared factor, independent from the other. To this end, we perform latent traversal.
For the retrieved item x2, we look up its true factor values, (fS1 , f

S
2 , f

2), and plot each against zj . The results are shown in
Fig. 1. Notably for our RIVAE, each latent variable corresponds to only one true shared factor exclusively, implying that the
disentangled factors are accurately identified. RBi-VAE partially identifies fS1 in z1, but both shared factors are entangled in
z2. We also run the latent traversal with the DCCA, which is done by converting the learned CCA model to the dual-view
latent variable linear Gaussian model following [2]. However, as this maximum-likelihood estimated model only fits well to
the data, we see that each of the learned latent variables retain both factors entangled in it. Finally, the quantitative D/C/I
metrics in Table 2 show that our RIVAE yields significantly better latent representations than competing models.

3.4 Sprites
Using the benchmark dSprites dataset [25], we devise an experimental setup for the bi-modal retrieval task. First, we assume
that the shape of sprites induces the modalities, specifically, x1 is square, and x2 oval. We then consider only the X, Y
positions and the scale of the sprite as the underlying shared factors, with the other factors being fixed. There are 32 variations
in each of the X, Y positions and 6 variations in scale, which are independent from one another, resulting in 6144 samples.
Image size is (64× 64) pixels. The dimension of the embedded space V is set to 10, and the latent space dim(z) = 3, which
matches ground-truth.

The retrieval results on 1000 randomly selected search set are summarized in Table 3. Most approaches yield near perfect
performance except for the decoder training models (Bi-VAE and Bi-VAE-on-V), while our RIVAE performs marginally the
best. The plots of the ground-truth factors of the retrieved images due to the latent space traversal, similar to Fig. 1, can
be found in the Supplement, where our RIVAE shows near one-to-one correspondence between the true and learned factors,
while other models exhibit considerable entanglement. We also visualize the retrieved images obtained by latent traversal in
Fig. 2. The result again verifies the high quality of disentanglement in the learned factors, very close to the true latent factors.
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(a) RIVAE (b) RBi-VAE (c) DCCA

Figure 2: (Sprites) Retrieved images from latent traversal. The top left image is the query image that determines the reference
point zRef (the same for all models). For each model, each of the three columns depicts the retrieved images due to z1, z2, and
z3 changes (progresses vertically). Visually, it is clear that with RIVAE, varying z1 alone results in change in the Y -pos with
the scale and X-pos intact, z2 exclusively affects the X-pos, and z3 only affects the scale. Such interpretation is not clear for
other models.

Table 3: (Sprites) Retrieval performance among a 1000 randomly selected search set (averaged over 10 random runs).
Method R@1 ↑ R@5 ↑ R@10 ↑ Med-R ↓

Cos-Sim-LVM 0.13 0.46 0.67 6.00
Bi-VAE [36] 0.02 0.07 0.10 127.75
Bi-VAE on V 0.69 0.97 0.99 1.00

DCCA [1] 0.96 1.00 1.00 1.00
RBi-VAE 0.99 1.00 1.00 1.00
RIVAE 1.00 1.00 1.00 1.00

Table 4: (Sprites) Goodness of the learned latents.
Disent. ↑ Comple. ↑ Inform. ↑

Cos-Sim-LVM 0.6664 0.5634 0.8417
Bi-VAE 0.6821 0.0779 0.1259

Bi-VAE on V 0.1367 0.6812 0.3119
DCCA 0.4163 0.1178 0.1432

RBi-VAE 0.5814 0.4863 0.7234
RIVAE 0.8280 0.9133 0.8476

The D/C/I scores in Table 4 also support this claim quantitatively.

3.5 Split-MNIST
Following the setup in [1], we form a retrieval setup from the MNIST dataset [20] by taking the left half of each image as
modality-1 and the right half as modality-2. So, each view contains images of size (H = 28×W = 14) pixels. Note that the
shared factors for both modalities would be the digit class and the writing style, which are deemed independent (disentangled)
from each other. We followed the standard data splits, where 2000 images are randomly sampled from the test set to serve as
the retrieval search set.

We set dim(V) = 50 and dim(z) = 10. The retrieval scores are reported in Table. 5. Consistent with previous experiments,
our RIVAE attains the best scores. To see how the two underlying factors, writing style and digit class, are disentangled in the
learned latent variables for our RIVAE, we show the latent traversal results visually in Fig. 3. Refer to the caption of the figure
for details.

3.5.1 Quantitative Analysis for Split-MNIST

Although we know that the shared factors between the left and right halves deem to be partitioned to those related to digit
class and those non-digit related (e.g., writing style), there are only digit labels (0 ∼ 9) available, and it is not even clear how
the writing style can be formally described or specified. Hence, we devise some reasonable quantitative measures that can
reflect how the underlying variability in digit transitions is captured in the model’s latent variables.
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Table 5: (Split-MNIST) Retrieval performance with 2000 randomly selected test images as the search set.
Method R@1 ↑ R@5 ↑ R@10 ↑ Med-R ↓

Cos-Sim-LVM 0.19 0.46 0.61 6.35
Bi-VAE [36] 0.01 0.03 0.05 524.80

Bi-VAE on V [36] 0.21 0.51 0.66 5.30
DCCA [1] 0.47 0.79 0.87 2.00
RBi-VAE 0.43 0.81 0.91 2.00
RIVAE 0.52 0.89 0.96 1.00

Figure 3: (Split-MNIST) For three query references, latent traversal along four latent variables (z2, z4, z7, z9) in RIVAE.
Visually, z2, z5 = digit class, z7, z9 = writing style. See Supplement for other query references.

Let’s say that we traverse along the axis zj in the latent space, while fixing the rest dimensions of z. After retrieving the
data items, we record the number of unique digit transitions (e.g., 0 → 2 or 3 → 8) in the retrieved images in the traversal.
The results, over all dimensions, can be summarized into a (d× 45) table, where d = dim(z) and 45 (= 10C2) is the number
of direction-free transitions (e.g., 0 → 2 and 2 → 0 are regarded identical). Note that discarding the directions makes sense
considering traversal in the reverse direction. More concretely, if the digit classes of the retrieved items for the traversal z5
are: 2→ 2→ 2→ 3→ 8→ 8→ 9→ 3→ 2→ 2→ 2, then the fifth row of the table has value 1 at four columns, 2→ 3,
3 → 8, 8 → 9, 3 → 9, with all the other entries 0. There will be one such table for each reference query (xRef

1 ). And we will
collect many (e.g., 1000) such tables/queries, and take the average to get the global statistics.

The key idea is that this (averaged) digit transition table can tell us possible digit transition types specific to each latent
dimension. For instance, z0 has large entries in the table for the transitions among digits (1, 4, 7), while z1 covers the clique
(2, 3, 5, 8), and so on. And we expect that if latent factors are well trained, the transition cliques for different dimensions tend
to be less overlapped, and overall the union of the cliques has good coverage of all 45 possible transitions. The former is related
to disentanglement of the latent variables, and the latter being thoroughness or coverage, how many different transitions the
learned latent variables can capture.

To formalize, let’s sayD = (d×45) be the table of averaged digit transitions. We normalize each row ofD as a probability
distribution. Then we measure the overlap between two rows i and j, e.g., overlap(i, j) = 1

45

∑45
k=1 min(D[i, k], D[j, k]),

similarly as the histogram intersection. Then we measure the average overlap over all i 6= j. The smaller the overlap is, the
better. And, for the coverage, we take the union of the rows, e.g., simply the average of the rows in D. Then we compute the
entropy of the union. The larger the entropy is, the union covers more digit transitions. The results are summarized in Table 6,
and we see that the learned latent variables in our RIVAE exhibit low overlap and the highest coverage among others.

Table 6: (Split-MNIST) Goodness of the learned latents. Two quantitative measures regarding the variability in digit transi-
tions. Interpretation: overlap is related to disentanglement (the lower, the better), and coverage to thoroughness (the higher,
the better). The differences in the last column.

Overlap ↓ Coverage ↑ C −O ↑
Cos-Sim-LVM 0.0168 0.8881 0.8713

Bi-VAE 0.0091 0.4863 0.4772
Bi-VAE on V 0.0181 0.6418 0.6237

DCCA 0.0191 0.6377 0.6186
RBi-VAE 0.0189 0.8932 0.8743
RIVAE 0.0121 0.9675 0.9554
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Table 7: (Recipe1M) Retrieval performance with size 1000 random search set (averaged over 10 random runs).
Method R@1 ↑ R@5 ↑ R@10 ↑ Med-R ↓

Cos-Sim-LVM 0.45 0.74 0.82 2.00
Bi-VAE [36] Failed Failed Failed Failed

Bi-VAE on V [36] 0.22 0.45 0.55 7.70
DCCA [1] Failed Failed Failed Failed
RBi-VAE 0.29 0.56 0.66 4.00
RIVAE 0.39 0.70 0.79 2.00

Table 8: (R1M) Goodness of the learned latents.
Disent. ↑ Comple. ↑ Inform. ↑

Cos-Sim-LVM 0.6203 0.6027 0.5983
Bi-VAE Failed Failed Failed

Bi-VAE on V 0.5128 0.5423 0.5670
DCCA Failed Failed Failed

RBi-VAE 0.4954 0.6079 0.5664
RIVAE 0.8569 0.8500 0.8615

3.6 Food Image to Recipe Retrieval (Recipe1M)
Recipe1M [28] is the dataset comprised of about 1M cooking recipes (titles, instructions, ingredients) and images. In this
work, a subset of about 0.4M recipes containing at least one image, no more than 20 ingredients or instructions, and at
least one ingredient and instruction was used. Data is split into 70%/15%/15% train/validation/test sets. The underlying
embedding networks used in this experiments combines architectural and training strategies from [28, 34, 7], and the related
Cos-Sim model performs comparable to the state-of-the-arts. The embedded space has dim(V) = 1024, and the latent
variables dim(z) = 30. Table 7 shows retrieval performance. The Cos-Sim-LVM attains the best retrieval performance even
with the introduced bottleneck layers, where our RIVAE performs nearly comparably to it. Note that both DCCA [1] and
Bi-VAE [36] completely failed to converge.

3.6.1 Quantitative Analysis for Recipe1M

In the Recipe1M dataset, there are no labels available for the ground-truth factors, those that commonly govern the variability
of recipes and food images, deemed to be food factors. To measure the goodness of the learned latent variables of the
competing methods, we aim to select a small subset of food factors that look the most pronounced and capturing the shared
variability in recipes and images. To this end, we re-crape all the recipes in the Recipe1M that are associated with the Internet
domain food.com, and parse their keywords and categories. Then we form the recipe tags as the unique terms union between
keywords and categories. This subset represents about 50% of the whole dataset.

Then we manually group the tags that are related to one another, and among the tag groups, we choose 8 factors the most
dependent on the latent variables by visually inspecting the latent traversal results for the competing methods. They are:
1) wateriness, 2) greenness, 3) stickiness, 4) oven-baked-or-not, 5) food container longishness (e.g., bottle/cup or plate), 6)
grains, 7) savory-or-dessert, and 8) fruit-or-no-fruit. They are intuitively very appealing. For the association between the tags
and these 8 factors, refer to the Supplement. All these factors that consider in this analysis are ordinal, and we consider 5
scales/levels for each factor (e.g., wateriness= 1 means very dry food, while wateriness= 5 implies containing lots of water).

We sample about 20 random reference/query images (xRef
1 ) in the traversal/retrieval. For the 100 traversal points along

each latent dimension, we collect retrieved items (x2), and manually label the values of the 8 food factors. Then we select
10 latent dimensions that have the highest correlations with the 8 factors, and form a (10 × 8) correlation table. The D/C/I
measures are summarized in Table 8. As shown, our RIVAE attains the highest scores among the competing models by large
margin.

3.6.2 Qualitative (Visual) Analysis for Recipe1M

Next we qualitatively assess the discovered hidden factors through visual inspection of the retrieved items from latent traversal.
We also generate the word cloud images using the ingredients in the retrieved recipes. For the four latent variables that have
the highest correlation with the factors: wateriness, greenness, savoriness, and fruit-or-no-fruit, Fig. 4 shows traversal results
for top-3 retrieved items, which are visually very coherent to the corresponding true factors.

In Fig. 5, we show the ingredient word clouds generated from the top-10 retrieved items from 20 query data points
for the latent variable corresponding to the savoriness. We see that the word cloud on the left end contains ingredients
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Figure 4: Retrieved images from latent traversal. Top left latent variable for wateriness, top right fruit-no-fruit, bottom left
savoriness, and bottom right greenness. For each panel, the query image is shown on the leftmost, and each column has
top-3 retrieved items at each traversal point. Larger images, more examples, and other discovered factors can be found in
Supplement.

Figure 5: Ingredient word clouds for the latent variable savoriness, obtained from top-10 retrieved items over 20 queries.
Ingredient color indicates typical use; red = savory and pink = non-savory (sweet).

mostly associated with savory dishes, the middle contains both savory and sweet ingredients, while the right end has typical
dessert ingredients. This highlights the main advantage of our model where it accurately identifies true factors, and allows
us to directly control the latent variables to generate (retrieve) desired data items. This feature can also be easily extended
to manipulation of multiple factors. Fig. 6 shows top-5 retrieved examples when we control two or three latent variables
corresponding to savoriness, wateriness, and greenness, simultaneously.

3.7 Ablation Study: Embedder Regularization
In our Retrieval-IVAE model, we employed the embedder regularization loss, specifically (11). To verify the impact of this
regularization term, we run our RIVAE model without this loss term, and the retrieval results are summarized in Table 9,
in conjunction with the results with the embedder regularization. The result demonstrates that without embedding network
regularization, either the performance becomes considerably degraded or simply fails.

Table 9: RIVAE with/without embedder regularization.
Dataset Reg. R@1 ↑ R@5 ↑ R@10 ↑ Med-R ↓

Synth
Yes 0.35 0.80 0.92 2.00
No 0.29 0.73 0.90 3.00

Sprites
Yes 1.00 1.00 1.00 1.00
No 0.01 0.03 0.06 144.40

Split- Yes 0.52 0.89 0.96 1.00
MNIST No 0.35 0.75 0.88 2.00
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Figure 6: Left: Retrieved images from activation of multiple latent variables. Middle: indicates which combinations of latent
variables are activated. Right: Ingredient word clouds of the retrieved recipes.

4 Conclusion
We have proposed a novel Retrieval-IVAE model, extension of the identifiable VAE for cross-modal retrieval, where it com-
pletely removes the ambient data decoding module via implicit encoder inversion that is achieved by Jacobian regularization
of the low-dimensional embedding function. The model is shown to have the capability of learning disentangled and complete
latent representations that can explain the variability of the bi-modal data, on both controlled and the large-scale Recipe1M
datasets. As our future work, we plan to apply our approaches to retrieval tasks with more complex structured data in multiple
modalities greater than two, including video, text, and audio data.
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Figure 7: (Recipe1M) Diagram of the embedding networks.

Supplementary Material
This supplement consists of the following materials:

• Experimental details (Sec. A).

• Additional experimental results (Sec. B).

– Sprites: Plots of true factors vs. latent variables (Sec. B.1)

– Split-MNIST: Visual results of latent traversal (Sec. B.2)

– Receipe1M: Visual results of latent traversal (Sec. B.3)

• Recipe1M: Association between food factors and tags from food.com (Sec. C).

• Details of the joint model, Retrieval-Bi-VAE (RBi-VAE) (Sec. D).

A Experimental Details

A.1 Network Architectures
A.1.1 Embedding networks

For all competing models that employ the embedding networks e1(·) and e2(·), we use the same network architectures. They
are Cos-Sim-LVM, Bi-VAE-on-V , DCCA, RBi-VAE, and our RIVAE. The learned embedding network parameters of the
Cos-Sim-LVM are used as initial parameters for the rest models. Detailed embedding network architectures for different
benchmark datasets are defined as follows:

• Synth: A fully connected network with one hidden layer of 25 hidden units. The tanh() nonlinear link is used.

• Sprites: Four 2D convolutional layers (filter size (4 × 4) pixels) with the number of channels 32, 32, 64, 64, followed
by two fully connected layers with output dimensions 128 and dim(V) = 10. The rectified linear unit (ReLU) is used
as nonlinear components.

• Split-MNIST: Four fully connected layers of hidden dimension 1024 are applied with the ReLU nonlinearity.

• Recipe1M: Our model combines architectural and training strategies from [28, 34, 7], mainly, hard-example mining, a
modality-shared fully connected layer, and full RNN text encoder. Word embeddings used by our model are initialized
from a recipe1M pre-trained word2vec 300 dimensional model, fine-tuned during training. RNN layers are all bi-
directional and have a 300-dimensional hidden state, with forward and backward states concatenated into a single
600-dimensional vector. Additionally, similar to other works, our image embedding module is based on ResNet50 pre-
trained on ImageNet, however, we have introduced an attention module at the 28x28 level. This attention module helps
the image encoder focus on the parts of the image that are related to the dish of food as described by the text recipe.
Fig. 7 gives an schematic of the general architecture of the embedding modules.

As usual practice, we also apply the L2 normalization to the final outputs of the embedding networks to make the embedded
vectors v unit norm.
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A.1.2 Model-Specific Network Architectures
For each competing model, we employ the following network architectures (and strategies):

• RIVAE: For the two conditional models P (z|v1) and P (v2|z), we use fully connected networks with two hidden layers
of 10 hidden units, and the leaky-ReLU with slope 0.2 is used for nonlinearity. For the Recipe1M, we used a single
hidden layer with 100 hidden units, and the same leaky-ReLU nonlinearity as before.

• RBi-VAE: (See Sec. D for the details.) For the bi-modal VAE model on the embedded spaces V , we run several
different model architectures, either linear or nonlinear, ranging from simpler to more complex architectures for the
latter, and we report the ones with the highest performance on the validation sets. For the nonlinear networks, in both
encoder and decoder we use one or three fully connected hidden layers. Note that when we adopt a linear (Gaussian)
model in the place of the VAE, all inferences can be done analytically without introducing variational densities. For all
datasets, the linear Gaussian models perform better than the nonlinear VAE models. For the discriminator networks,
used for estimating the total correlation loss via the density ratio trick, we adopted 6 fully connected layers with hidden
dimension 300. For the Recipe1M, we also used 6 fully connected layers, however, with only 100 hidden dimensions.

• Bi-VAE: We need to model the ambient encoder P (z|xi) and decoder networks P (xi|z) for i = 1, 2. Similarly as
RBi-VAE, we run different (linear/nonlinear and simple/complex) network architectures, and select the best performing
one. The nonlinear network architectures include: the convolutional and transposed-convolutional networks of similar
structures as the embedding networks above, and the fully connected networks with one or three hidden layers.

• Bi-VAE-on-V: This model fixes the embedding networks and learns only the bi-modal VAE model built on the embed-
ded spaces. Hence, the overall model architectures are identical to the RBi-VAE.

• DCCA: Instead of building the nonlinear feature extraction networks z = φ(x) from the scratch, we compose the
embedding networks v = e(x) with the additional nonlinear mappings z = g(v) to form φ (i.e., φ = g ◦ e). The
network g is defined as fully connected networks with three hidden layers with hidden dimension 10, hence fairly
comparable to RBi-VAE. For the Recipe1M, similarly to our RIVAE, we used a single hidden layer with 100 hidden
units as the network g.

A.2 Optimization Strategies
We use the Adam optimizer [17] for training of all models. The batch size is 64 and the maximum number of epochs is 2000.
For our RIVAE, at the first stage we train the IVAE module alone with the embedding networks fixed, then at the second stage
we jointly train the entire networks. The joint training starts at epoch 100 except for the Split-MNIST dataset (epoch 5). The
learning rates are: 0.005 (Synth), 0.001 (Sprites), and 0.0001 (Split-MNIST). We also decay the learning rates by roughly half
at epoch 200 and 1000 (at epoch 20 and 50 for the Split-MNIST). The trade-off parameter λ for the embedding regularization
Reg(e2) is fixed as 0.1 throughout the experiments. For the Recipe1M the first stage (IVAE only) was trained for 20 epochs
using a learning rate of 0.001. The second stage (joint embedding and IVAE) observes annealing of the learning by a factor
of 0.1 at epochs 30 and 60.

B Additional Experimental Results

B.1 Sprites: Plots of true factors vs. latent variables
Recall that we assumed that the shape from sprites induces the modalities, specifically, x1 is a square image, and x2 an oval,
and considered only the X, Y positions and the scale of the sprite as the underlying shared factors, with the other varying
source rotation being fixed. The plots of the ground-truth factors of the retrieved images due to the latent space traversal are
shown in Fig. 8. Our RIVAE shows near one-to-one correspondence between the true and learned factors, while other models
exhibit considerable entanglement. More specifically, for RIVAE, we see that z1 exclusively corresponds to f3 (highlighted
by red box), z2 = f2 and z3 = f1, signifying that our model learns the disentangled latent representation very accurately. On
the other hand, for the DCCA, there is no exclusive correspondence, but significant entanglement. E.g., change in z1 results
in considerable changes in both f1 and f2, indicating that the scale and X-pos factors are entangled in the latent variable z1.

B.2 Split-MNIST: Visual results of latent traversal
For this dataset, we formed a bi-modal setup by taking the left half of each image as modality-1 and the right half as modality-
2. The shared factors for both modalities would be the digit class and the writing style, which are independent (disentangled)
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(a) RIVAE (b) RBi-VAE (c) DCCA

Figure 8: (Sprites) True factors (f1 = scale, f2 = X-pos, and f3 = Y-pos) of the retrieved images vs. latent traversed points.
Each column shows traversal of one latent zj with the other fixed. The Y axes are true factors obtained from retrieved items
x2. Red boxes indicate significant changes in the true factors, due to latent traversal, i.e., high correlation.

Figure 9: (Split-MNIST) Latent traversal in our RIVAE model. Among dim(z) = 10 latent variables, we highlight four (z2, z5,
z7, z9); for each we perform traversal by varying the latent values while fixing the rest variables. We depict 10 cases (panels),
where each panel consists of: i) xRef = the anchor/reference input whose latent vector z is inferred using its left half x1, ii)
each column (zj) contains the retrieved images (the completed images are shown by merging the retrieved right half images
x2 with their corresponding ground-truth left halves) obtained by varying zj while the rest variables being fixed. Visually, it is
clear varying z2/z5 leads to dominant changes in digit class with writing style roughly remaining intact. Traversal along z7/z9
produces large variation in style with digit classes remaining mostly unchanged. This result shows that our RIVAE accurately
disentangles the two main factors, writing style and digit class, in the learned latent representation.

from each other. To see how the two underlying factors, writing style and digit class, are disentangled in the learned latent
variables for our RIVAE, we show the latent traversal results in Fig. 9. For the four highlight latent variables (z2, z5, z7, z9),
we can see that the first two explain the digit class variation, while the other two correspond to the writing style. Refer to the
caption of the figure for details.

B.3 Receipe1M: Visual results of latent traversal
The qualitative latent traversal results for our RIVAE are depicted in Figs. 12, 13, 14, and 15, each of which shows food images
of the retrieved recipes in the latent traversal along the latent variables corresponding to: wateriness, savoriness, greenness,
and fruit-no-fruit, respectively. Fig. 10 also displays the word clouds of the food ingredients, which are generated from the
retrieved top 10 nearest neighbors (NN) from 20 query data points, where each latent variable takes three different values
(two extrema and the mean, namely µi − 10σi, µi, and µi + 10σi). Hence, they corresponding to weak, mild, and strong
impact of each factor. The size of each ingredient word in the word clouds corresponds to its relative frequency in the top
10 NN (from each of the 20 queries) set. Interpretation: For instance, in Fig. 10a, traversal along z23 (fruit-no-fruit), we see
that the ingredients are mostly associated with fruits on the left panel, while on the right panel no fruit related ingredients are
found. Also, in Fig. 10b, traversal along z2 (savoriness), the ingredients are mostly associated with savory dishes on the left
panel, while typical dessert ingredients on the right, and a mixture of these on the middle panel. In Fig. 10c, traversal along
z0 (wateriness, there is an inclination of more liquid ingredients on the right side. In particular, it is noticeable that the word
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(a) z23 (fruit-no-fruit): fruit ingredients as purple – non-fruit ingredients as orange.

(b) z2 (savoriness): savory ingredients as red – non-savory as pink.

(c) z0 (wateriness): watery ingredients as blue – non-watery ingredients as gray.

(d) z3 (greenness): green ingredients as green – non-green ingredients as gray.

Figure 10: (Recipe1M) Ingredient word clouds obtained from latent traversal (at three values, low/medium/high, in
left/middle/right columns) along each of four latent variables. For each row, ingredients are colored differently according
to the relevance/irrelevance to the governing factor (best seen in color). Below each word cloud image, we also place four
retrieved food images corresponding to it. For instance, in (b), the factor of savoriness, we manually color the savory ingredi-
ents as red, while typical dessert (non-savory) ingredients are shown as pink. The light grey color is reserved for ingredients
with no particular association to the factor in question.

water increases in frequency (word size) from left to right. Similarly, in Fig. 10d, z3 (greenness), the left side contains more
green ingredients than the right.
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Figure 11: (Recipe1M) Association between tags (shown as orange) extracted from food.com recipes (a subset of
Recipe1M) and our 8 food factors (red). The sizes of the nodes are proportional to their frequencies.

C Recipe1M: Association between food factors and food.com tags
Recall that we selected a small subset of food factors by re-craping all the recipes in the Recipe1M that are associated with
the Internet domain food.com, and parsing their keywords and categories. We then formed the recipe tags as the unique
terms union between keywords and categories, and manually grouped the tags that are related to one another. Among the tag
groups, we chose 8 factors the most dependent on the latent variables by visually inspecting the latent traversal results for the
competing methods. They are: 1) wateriness, 2) greenness, 3) stickiness, 4) oven-baked-or-not, 5) food container longishness
(e.g., bottle/cup or plate), 6) grains, 7) savory-or-dessert, and 8) fruit-or-no-fruit. Fig. 11 shows the association between the
tags and these 8 factors.
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D Details of the joint model, Retrieval-Bi-VAE (RBi-VAE)
In this section we describe the details of the joint model RBi-VAE that served as one of the competing approaches in the
empirical study. Note that unlike our proposed RIVAE, the model has no model identifiability property, which leads to inferior
performance to our RIVAE in the experimental results.

This model builds a latent variable generative model (e.g., VAE) on top of the shared embedding space V . To this end, the
embedded vectors v’s are regarded as the observed data for the VAE. That is, the RBi-VAE model is defined as:

P (z) = N (0, I), P (vi|z) = N (vi;µi(z),Diag(σi(z))) for i = 1, 2, (14)
v1 = e1(x1), v2 = e2(x2). (15)

The latent variables z ∈ Rd represent the underlying factors, and µ1/2(·) and σ1/2(·) are the deep networks whose outputs
determine means and variances of P (v1/2|z).

Similarly as RIVAE, we train RBi-VAE with two goals: maximizing the cross-modal prediction performance and maxi-
mizing the (embedded) data likelihood. Given the embedding networks, with v1 and v2 fixed, learning the Bi-VAE model can
be done by maximizing the variational evidence lower bound (ELBO),

ELBO := EQ(z|v1,v2)[logP (v1,v2|z)]− KL(Q(z|v1,v2)||P (z)) (16)

where the variational density Q(z|v1,v2) is defined as a product of the single-modal inference networks [12], Q(z|v1,v2) ∝
Q(z|v1) ·Q(z|v2), where

Q(z|vi) := N (z; mi(vi),Diag(si(vi))) for i = 1, 2. (17)

Furthermore, to encourage the model to learn disentangled latent variables, we adopt the total correlation (TC) loss [15, 8],
TC = KL

(
Q(z)‖

∏
j Q(zj))

)
where Q(z) = E(x1,x2)∼Data[Q(z|v1,v2)]. Estimating the TC loss can be done by the density

ratio estimation proxy [26, 32] followed by adversarial training [15], or the weighted sampling strategy [8]. Combining the
two leads to the following objective function for the Bi-VAE model:

LBi-VAE(ΘBi-VAE) = −ELBO + γ · TC, (18)

where ΘBi-VAE in (18) refers to all parameters of the Bi-VAE model (i.e., parameters of µ1/2(·), σ1/2(·), m1/2(·), s1/2(·)),
and γ trades off the TC loss against the ELBO. We use γ = 10.0 for all datasets except γ = 100.0 for Recipe1M.

The cross-modal retrieval loss, similar to our RIVAE, is also adopted to train both embedding networks and the Bi-VAE
model. The related loss is:

LRetrieval(ΘBi-VAE,ΘEmb) =
(

1 + EQ(z|v1)

[
logP (v′2|z)− logP (v2|z)

])
+

(19)

where v′2 = e2(x′2) is the embedding of the mismatch sample x′2, ΘEmb indicates the parameters of the embedding networks
e1(·) and e2(·), and (a)+ = max(0, a). Finally, we impose the embedding regularization loss for e2(·), similar to RIVAE:

LReg(ΘEmb) = Ex2,ε

[(
||e2(x2)− e2(x2 + ε)|| − c

)2]
(20)

where ε ∼ P (ε) is a random sample from a noise distribution P (ε) with small magnitude (e.g., ||ε|| = 0.001). Then the
training of the RBi-VAE can be written as the following optimization:

min LBi-VAE(ΘBi-VAE) + λRetrievalLRetrieval(ΘBi-VAE,ΘEmb) + λRegLReg(ΘEmb). (21)

Note that the arguments in each loss L(·) indicates which parameters should be updated regarding the loss.
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Figure 12: Images of the retrieved recipes from latent traversal along the latent variable z0 (wateriness). Image grids: the
leftmost are the query images, and each column contains top-3 retrieved items at a point in traversal. Among the traversed
points, we only show those that have change in the top-1 retrieved recipes from the previous traversed/retrieved ones. Note
that the images on the left end of the traversal are less watery, while those on the right are more watery.
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Figure 13: Images of the retrieved recipes from latent traversal along z2 (savoriness). Image grids: the leftmost are the query
images, and each column contains top-3 retrieved items at a point in traversal. Among the traversed points, we only show
those that have change in the top-1 retrieved recipes from the previous traversed/retrieved ones. Note that the images on the
left end of the traversal are more savory, while those on the right are less savory or sweet.
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Figure 14: Images of the retrieved recipes from latent traversal along z3 (greenness). Image grids: the leftmost are the query
images, and each column contains top-3 retrieved items at a point in traversal. Among the traversed points, we only show
those that have change in the top-1 retrieved recipes from the previous traversed/retrieved ones. Note that the images on the
left end of the traversal are more greenish, while those on the right are less greenish.
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Figure 15: Images of the retrieved recipes from latent traversal along z23 (fruit-no-fruit). Image grids: the leftmost are the
query images, and each column contains top-3 retrieved items at a point in traversal. Among the traversed points, we only
show those that have change in the top-1 retrieved recipes from the previous traversed/retrieved ones. Note that the images on
the left end of the traversal contain fruits, while those on the right have less or no fruits.

22


