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Fig. 1. A GIS Visualization of the American Electric
Power System.

As climate change takes hold in the 21st century, it places
an impetus to decarbonize the American electric power system
with renewable energy resources. There is a broad technical
consensus1–3 that these renewable energy resources can not be
integrated alone but rather require a whole host of profound
changes in the electric grid’s architecture; including meshed
distribution lines, and energy storage solutions. One question
that arises is whether these three types of mitigation measures
required by decarbonization will also serve as adaptation
measures when the climate changes and extreme weather phenomena become more prevalent. Consequently,
this paper presents a structural resilience analysis of the American electric power system that incrementally
incorporates these architectural changes in the future. Building upon a preliminary study4, the analysis
draws on an emerging hetero-functional graph theory

5 based upon the inter-connectedness of a system’s
capabilities. The hetero-functional graph analysis confirms our formal graph understandings from network
science6–8 in terms of cumulative degree distributions and traditional attack vulnerability measures. The
paper goes on to show that hetero-functional graphs relative to formal graphs more precisely describe the
changes in functionality associated with the addition of distributed generation and energy storage as the
grid evolves to a decarbonized architecture. Finally, it demonstrates that the addition of all three types of
mitigation measures enhance the grid’s structural resilience; even in the presence of disruptive random and
targeted attacks. The paper concludes that there is no structural trade-off between grid sustainability and
resilience enhancements and that these strategic goals can be pursued simultaneously.

While renewable energy can be integrated centrally at a utility-scale, one of its primary benefits is that it can
empower end-consumers with distributed generation (DG) in the form of rooftop solar photovoltaics (PV), small-
scale wind turbines, and even run-of-river hydro power. The potential for power back-flow in an electric distribution
system designed for one-way outward flow requires a migration from a radial to a meshed topology. In the meantime,
these DG resources are intermittent and often require complementing energy storage solutions. These three additions
represent fundamental changes to the system architecture of the American Electric Power System (AEPS).

Such architectural changes can have a profound impact on the system’s resilience in terms of its own ability to
withstand disruptions; be they natural, artificial, or intentionally nefarious6–8. To address such questions quantita-
tively, the network science community has used graphs to mathematically represent the form of a system9. The
graph’s nodes are made to correspond to the grid’s power plants, substations, and consumers while the graph’s
edges are made to correspond to the grid’s power lines. For clarity, we refer to such a mathematical model as a
formal graph (FG)9. Consequently, system resilience can be quantitatively studied in terms of successive node or
edge failures. While such a simple graph model can address the resilience improvements caused by a migration
towards meshed distribution networks, and the addition of new nodes that represent solar PV and energy storage
solutions, it is ill-equipped to address the integration of such distributed energy resources on existing nodes as in
the case of solar panels on rooftops and batteries at homes, substations, and centralized generators. In effect, such
additions (as shown later) do not numerically change the formal graph, and consequently, have no effect on the
value of the associated resilience measure.

In contrast, the model-based systems engineering (MBSE) community recognizes that a formal graph representing
system form is merely a subset of system architecture and that a more comprehensive description of architecture must
also describe: 1.) a set of functions that the system performs and 2.) the allocation of those functions to the elements
of form9;10. While the MBSE literature normally describes system architecture using graphical models (e.g. UML &
SysML)10, hetero-functional graph theory has developed to translate these models into their quantitative equivalents5.
Consequently, hetero-functional graphs are able to explicitly and quantitatively describe the incorporation of new
functionality onto existing formal nodes as in the case of rooftop solar and home batteries.
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Legend: Nodes: {n1-Water Treatment Facility, n2-Solar PV, n3-House with Rooftop Solar,  n4-Work Location}  Edges: {e1-Water Pipeline, e2-Power Line 1, 

e3-Power Line 2, e4-Road}  System Capabilities: {�1-water treatment facility treats water, �2-solar PV generates electricity, �3-house generates electricity, �4-

house consumes water, �5-house charges EV, �6-house parks EV, �7-work location parks EV, �8-water pipeline transports water from water treatment facility to 

house, �9-power line 1 transports electricity from solar PV to water treatment facility, �10-power line 2  transports electricity from solar PV to house, �11-road 

discharges EV from house to work location, �12-road discharges EV from work location to house}
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Fig. 2. A Visual Comparison of a Formal Graph (FG) and a Hetero-functional Graph (HFG) Model of the Same Hypothetical System.

The simple example in Fig. 2 illustrates the differences between a formal graph and a hetero-functional graph
(HFG). The formal graph (in Fig 2a.) shows a system composed of four nodes: a water treatment facility, a solar
PV panel, a house with rooftop solar, and a work location. These are connected by four edges: a water pipeline, two
power lines and two roads. Fig 2b. shows the associated hetero-functional graph following the methods described in
the methods section. Instead of four nodes that represent point-like facilities, the hetero-functional graph now has
12 nodes that represent system capabilities. The water treatment facility, solar PV panel, and work location appear
unchanged between the two graphs because they each have only one capability. In contrast, the house with rooftop
solar provides four capabilities in the HFG. This multiplicity of capabilities assigned to a single facility forms the
basis upon which to investigate the effect of DG on electric power system resilience. Thirdly, the edges in the
formal graph now appear as transportation capabilities (nodes) in the HFG. Finally, the directed edges in the HFG
indicate the logical sequences of these capabilities such that if one were to follow them a “story” of capabilities
would emerge. (i.e. The water treatment facility treats water ( 1) and then the water pipeline transports the water
from the water treatment facility to the house ( 8)). It is important to recognize that because the FG and HFG
have different quantities of nodes and edges, the associated values of graph measures also differ.

Fig. 3. The formal and hetero-functional
graphs of the AEPS have an exponential-
tail cumulative degree distribution indicat-
ing a single-scale small-world network.

Despite these apparent differences, FGs and HFGs, when studied in the
context of the AEPS, demonstrate remarkable similarities in their degree
distributions. The Platts Map Data Pro data set11 was used to conduct the
analysis. As shown in Fig. 1, it consists of a GIS layer with 13,568 power
plants, 34,649 generation units, 78,880 substations, and 104,329 transmission
lines. A FG graph adjacency matrix is readily extracted from this GIS data
and the methods section describes the construction of the associated HFG.
Both the FG and HFG, as shown in Fig. 3, confirm the network science
result8;7 of a cumulative degree distribution with exponential decay law
P (k  K)ce�↵k. They have exponential coefficients of ↵FG = 0.44 and
↵HFG = 0.27 respectively. This result suggests that the underlying single-scale
small-world socio-technical dynamic of preferential attachment of transmission
lines appears in both network models. The larger exponential coefficient in the HFG arises because it always has
more nodes and edges than its FG counterpart. Nevertheless, the presence of small-world structure in both graphs
indicates similar behavior with respect to resilience and attack vulnerability.

In order to verify this hypothesis, the FG and HFG models of the AEPS were subjected to nodal attacks and then
assessed with respect to their average degree centrality, size of largest cluster, and average size of isolated cluster.
(See Supp. Materials for details). Fig. 4a shows the random attack vulnerability of the FG and HFG with respect to
in-degree and out-degree centrality measures. The parity of in-degree and out-degree centrality in the case of the FG
is caused by its undirected nature, while in the case of the HFG, it is caused by the two transportation capabilities
assigned to each power line combined with the single capability assigned to power plants and substations. Both
the FG and HFG show that the average degree centrality degrades linearly with the fraction of randomly removed
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Fig. 4. The FG and the HFG of the AEPS demonstrate similar behavior in: a their average degree centrality when subjected to successive
random attacks, b the size of their largest cluster and average size of their isolated clusters when subjected to random attacks, and c the size
of their largest cluster and average size of their isolated clusters when subjected to targeted attacks.

nodes. The slopes of their best-fit lines are -0.026 and -0.032 respectively, and their regression coefficients are
-0.9999 and -0.9991 respectively. This intuitive phenomena occurs because random attacks do not discriminate on
the basis of the nodal-degree. Consequently, the successive removal of two sets of nodes do not change the average
number of edges lost. Fig. 4b confirms the network science result6 that the size of the largest cluster of the FG
of an electric power system degrades quadratically under random attacks before reaching an inflection point (at
x=42% in this case). Fig. 4b also confirms that the average size of isolated clusters first grows to a relative peak
(at x=38% in this case) before sharply falling again. These two behaviors also appear in the associated HFG with a
largest cluster inflection point of x=46% and a peak average size of isolated cluster at x=38%. Fig. 4c also shows
that the FG and HFG confirm the results of the published literature6 regarding the structural response to targeted
attacks. This time, the size of the largest cluster reaches an inflection point at 5% and 40% for the FG and HFG
respectively. Also, the peak average size of the isolated cluster occurs at 5% and 40% respectively. In short, all four
of these structural responses to nodal attacks in the FG are matched closely in the associated HFG. The differences
in the labelled critical points stem from the larger number of nodes and edges in the HFG. Collectively, the results
in Fig. 4 show that the FG and HFG can be used interchangeably to study traditional attack vulnerability measures.

a b c

Fig. 5. The FG a and the HFG b of the AEPS demonstrate differing behavior in: their average degree centrality when subjected to successively
adding architectural and functional improvements. The FG a is only able to capture the improvement of adding meshed power lines while
the HFG b measure improvements from the additions of distributed generation and storage as well. The Latent Engineering Resilience of
the HFGc measures the potential improvements from adding all three forms of additions to the AEPS.

Such a conclusion serves as the foundation upon which to investigate the AEPS as it migrates towards a
decarbonized system architecture. More specifically, and as detailed in the methods section, the AEPS was subjected
to incremental additions of distributed generation, energy storage resources, and meshed power distribution lines.
While the last of these is clearly a change in the AEPS formal topology, the first two represent fundamental changes
in the AEPS’ functionality without a commensurate change in formal topology. Indeed, from the perspective of
an electric power utility or grid operator, the FG does not change when end-users add rooftop solar and batteries
to their buildings. Fig. 5a shows the effect of adding these resources on the average degree centrality of the FG.
As expected, the addition of new meshed power distribution lines increases the average degree centrality linearly
with a slope of 0.026 and a regression coefficient of 1. In contrast, the addition of distributed generation and
energy storage resources has no effect on the average degree centrality of the FG because the underlying adjacency
matrix remains entirely unchanged. Such a result calls into question either the adequacy of the FG as a model or
the adequacy of degree centrality as a resilience measure. After all, an end-user with newly installed distributed
generation or energy storage would continue to have some form of electric power service even if they were entirely
disconnected from the rest of the grid.
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In contrast, Fig. 5b shows that the degree centrality of the HFG responds as the AEPS migrates towards a
decarbonized system architecture. Again, as expected, the addition of new meshed power distribution lines increases
the average degree centrality linearly with a slope of 0.019 and a regression coefficient of one. Furthermore, the
introduction of energy storage and distributed generation resources now increases the average degree centrality
linearly with a slope of 0.009 and 0.001 respectively and a regression coefficient of one and 0.996 respectively.
Although, the topology of the underlying formal graph experiences no change during the addition of these two
types of resources, the HFG incorporates both new capability nodes as well as connecting edges. More specifically,
each new distributed generation resource adds a new capability node and a new edge. In the meantime, each storage
resource adds a new capability node but adds at least four new edges. These results show that the HFG is more
adequate than the FG as a model when system architecture is changing its functionality and not just its formal
topology.

The results of Fig. 5b, however, understate the “resilience value” of distributed generation. Again, from a practical
perspective, an end-user would not differentiate between electricity supplied from the grid or that supplied from
distributed generation. In contrast, a degree centrality measure only values the resilience that comes comes from
greater grid connectivity. As an alternative, Fig. 5c calculates “latent engineering resilience” (LER)12 measure as the
AEPS responds to the same architectural changes found in Fig. 5b. As explained in the methods section, the LER
measures was specifically developed to calculate the number of viable service paths in hetero-functional graphs.
As expected, Fig. 5c shows that the LER grows exponentially (with a coefficient of ↵ = 0.306 and regression
coefficient of 0.989) as meshed distribution lines are added. Such lines will exponentially increase the number
of available service paths. In the meantime, the LER grows linearly with addition of DG with a slope of 0.401
and a regression coefficient of 0.987. Each new DG resource makes use of the network topology to introduce a
relatively large but proportional number of service paths. Finally, the LER grows linearly with a slope of 0.034
and a regression coefficient of 0.997 as energy storage resources are added. Unlike DG, energy storage resources
still require generation resources in order to contribute a service path and so their resilience enhancing effect is
contingent upon generation and distribution capabilities. The results in Fig. 5 show that the HFG relative to a FG
more precisely describes the future evolution of the AEPS’ architecture. Furthermore, the quantification of these
resilience improvements is more accurately measured using a LER measure based upon service paths than simply
a network centrality measure. Finally, and most importantly, the addition of DG and energy storage resources in
combination with meshed distribution lines enhance the AEPS’ transition to a highly resilient and decarbonized
system architecture. In other words, from an architectural perspective, there is no trade-off between grid sustainability
and resilience enhancements and that these strategic goals can be pursued simultaneously.

a b

Fig. 6. Eight increasingly sustainable grid architectures are studied in terms of their resilience to random and targeted attacks. These include
all combinations of 33% of generators with additional storage (S), 30% of substations with additional distributed generation (DG), and 20%
additional meshed distribution lines (M). a shows the response to random attacks. b shows the response to targeted attacks based upon
highest degree centrality.

This conclusion is further investigated in Fig. 6. More specifically, the LER of eight increasingly decarbonized
architectures of the AEPS is studied in presence of random and targeted attacks. As detailed in the methods section,
the eight investigated architectures include all combinations of: 30% of substations with additional distributed
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generation (DG), 33% of generators with additional storage (S), and 20% additional meshed distribution lines (M).
Irrespective of the choice of decarbonized architecture, these systems respond differently to random and targeted
attacks. In the case of random attacks (Fig. 6a), the LER / (100� x)2 ⇤ e�↵(100�x) while in the case of targeted
attacks (Fig. 6b), the LER more closely follows e(�↵x). Targeted attacks on the basis of highest degree centrality
remove an exponentially decreasing number of edges as can be inferred from Fig. 3. Each of these edges, in turn,
contribute to an exponential number of paths; resulting in an overall exponential effect. In contrast, the random
attacks combine the exponential loss of paths with the parabolicly decreasing size of the largest cluster (shown in
Fig. 4b). Consequently, and as expected, successive targeted attacks more effectively diminish the grid’s LER than
random attacks do. In both cases, the LER measure is able to precisely differentiate between all three types of
architectural changes. In agreement with the results from Fig. 5c, the architectures with meshed distribution lines,
as a group, exhibit the greatest resilience. This group is followed by the architectures with distributed generation
which is in turn followed by the architectures with energy storage. All of these cases report higher resilience values
than the baseline system representing the AEPS in its present form. In other words, these results confirm that the
evolution of the AEPS’ to a decarbonized architecture composed of distributed generation, energy storage, and
meshed distribution lines will simultaneously enhance its resilience.

This paper has presented a structural resilience analysis of the American electric power system as it evolves
towards a decarbonized architecture consisting of distributed generation, energy storage, and meshed distribution
lines. To conduct the analysis, it relied on hetero-functional graphs which were shown to confirm our formal
graph understandings from network science6–8 in terms of cumulative degree distributions and traditional attack
vulnerability measures. Such hetero-functional graphs more precisely describe the changes in functionality associated
with the addition of distributed generation and energy storage as the grid evolves to a decarbonized architecture.
Finally, it demonstrates that the addition of all three types of mitigation measures enhance the grid’s structural
resilience; even in the presence of disruptive random and targeted attacks. Consequently, there is no structural
trade-off between grid sustainability and resilience enhancements and that these strategic goals can be pursued
simultaneously.
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I. METHODS

A. Constructing A Hetero-functional Graph

A hetero-functional graph, like any other graph, is constructed by identifying a set of nodes and connecting them
with edges. This is a two step process that we describe simply here and illustrate using the example provided in
Fig. 2. The interested reader is referred to the hetero-functional graph theory text5 for a more elaborate exposition.

Unlike formal graphs where the nodes represent elements of form like power plants, substations, and consumers,
the nodes in a hetero-functional graph are system capabilities. A capability is the feasible allocation of a given
system process (or function) to a given system resource as an element of form. The system processes P describe the
functionality of the system in terms of a transitive verb followed by an operand (e.g. “generate + electric power”).
These processes are often classified as (in-place) transformation processes Pµ and transportation processes P⌘. The
system resources R describe the formal composition of the system in terms of nouns. For example, in Fig. 2, the
set of system resources R = {Water Treatment Facility, Solar PV, House with Rooftop Solar, Work Location, Water
Pipeline, Power Line 1, Power Line 2, Road}. (Note that R = V [ E where V and E are the nodes and edges
of a formal graph.) In the meantime, the system processes P = {treat water, generate electricity, consume water,
charge EV, store EV, transport water from water treatment facility to house, transport power from solar PV to water
treatment facility, transport power from solar PV to house, discharge EV from house to work location, discharge
EV from work location to house}. The feasible allocation of system process to system form is captured in a system

knowledge base JS .

Definition 1. System knowledge base: A binary matrix JS of size �(P )⇥�(R) whose element JS(w, v) 2 {0, 1}
is equal to one when ewv 2 E (in the SysML sense) exists as a system process pw 2 P being executed by a resource
rv 2 R. The �() operator returns the size of a set.

Water Treatment Facility
Solar PV

House
Work Location
Water Pipeline
Power Line 1
Power Line 2

Road

Treat Water

Generate Electricity

Consume Water

Charge EV

Store EV

Transport Water from Water Treatment Facility to House

Transport Electricity from Solar PV to Water Treatment Facility

Transport Electricity from Solar PV to House

Discharge EV from House to Work Location

Discharge EV from Work Location to House

Fig. 7. The hetero functional system Knowledge Base for System Depicted in Fig. 2.

Note that the system knowledge base itself constructs a bipartite graph between P and R. The system knowledge
base associated with the system depicted in Fig. 2 is shown in Fig. 7 as a monochrome image. The capabilities
of a given resources are explicitly reflected in the associated column of JS . Consequently, the set of capabilities
E = {1.) water treatment facility treats water, 2.) solar PV generates electricity, 3.) house consumes water, 4.) house
generates electricity, 5.) house charges EV, 6.) house stores EV, 7.) work location stores EV, 8.) water pipeline 1
transports water from water treatment facility to house, 9.) power line 1 transports electricity from solar PV to
water treatment facility, 10.) power line 2 transports electricity from solar PV to house, 11.) road “discharges” EV
from house to work location, 12.) road “discharge” EV from work location to house}. These capabilities make up
the nodes of the hetero-functional graph.

Once the capabilities of the system have been identified as the nodes of a hetero-functional graph, they can be
connected with edges so as to form a hetero-functional adjacency matrix A⇢.

A⇢ = (JS  KS)
V (JS  KS)

V T ) K⇢ (1)
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where ()V is shorthand for vec(),  denotes Boolean subtraction of matrices, KS is the system constraints matrix,
and K⇢ is the system sequence constraints matrix. KS = 0 when all capabilities are functional.

Definition 2. System sequence constraints matrix: a square binary constraints matrix K⇢ of size �(R)�(P ) ⇥
�(R)�(P ) whose elements K(�1,�2) 2 {0, 1} are equal to one when string z�1�2 = ew1v1ew2v2 2 Z is eliminated.

K⇢ is calculated by identifying constraints that impede the logical sequence z�1�2 between an ordered pair of
capabilities ew1v1ew2v2 . Five types of constraints are possible on ew1v1ew2v2 :

1) When w1 and w2 indicate transformation processes but v1 6= v2.
2) When w1 indicates a transformation process and w2 indicates a transportation process but v1 is not the origin

of w2 as a transportation process.
3) When w1 indicates a transportation process and w2 indicates a transformation process but v2 is not the

destination of w1 as a transportation process.
4) When w1 and w2 indicate transportation processes but the destination of the former is not equivalent to the

origin of the later.
5) When w1 and w2 are not permitted by the functional reference architecture of the system. For example, in

electric power systems, the generation of electric power systems is followed by any number of transportation
processes which is followed by the consumption of electric power.

Finally, it is often useful to use a projection operator P to eliminate the empty rows and columns in A⇢.

Ã⇢ = PA⇢PT (2)

From these steps, the hetero-functional adjacency matrix Ã⇢ corresponding to Fig. 2 is shown in Fig. 8a below. It
is contrasted with the associated formal graph in Fig. 8b.

Fig. 8. The (Projected) Hetero-functional Graph Adjacency Matrix (a) of the System Depicted in Fig. 2. The Formal Adjacency Matrix (b)
of the System Depicted in Fig. 2.

B. Constructing a Hetero-functional Graph of the American Electric Power System

The Platts Map Data Pro data was used to create the hetero-functional graph of the American electric power
system in three steps:

1) The Platts Map Data Pro data was converted into a corresponding KML file.
2) The KML file was processed into an XML file compatible with the hetero-functional graph theory toolbox13.
3) The hetero-functional graph theory toolbox provides the functionality to automatically calculate the hetero-

functional adjacency matrix Ã⇢.
The Platts Map Data Pro is a proprietary Geographic Information Systems (GIS) database that contains 38

different GIS data sets of North American energy infrastructure and its associated markets. This paper focuses on
the transmission system and thus uses four GIS layers to create the hetero-functional graph: the 1.) Power plants,
2.) Generation units (i.e. individual generation facilities within power plants), 3.) Substations, and 4.) Transmission
Lines. Each of these North American layers were cropped to return elements from the United States’ electric grid.
This GIS data can be straightforwardly exported as a KML file using the in-built functionality of a capable GIS
editor (e.g. QGIS as an open-source solution, and ArcGIS as a leading commercial software).

The KML files extracted from the Platts Map Data Pro require several steps of data processing to produce a
single XML file that is compatible with the hetero-functional graph-theory toolbox13.
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1) First, any resources marked as canceled, retired, or shutdown are removed from the KML file.
2) Second, any resources with duplicate GPS locations are merged such that only one resource exists per GPS

location. The meta-data for this resource is adopted from one of the other resources giving preference to
power plants, then generation units and then substations as a last option.

3) Third, the remaining individual generation units are classified as power plants. These three steps yield a
consistent set of formal nodes.

4) Fourth, any transmission lines without a well-defined origin or destination formal node are removed.
5) Fifth, the remaining resources are organized into a formal graph14. All isolated and sub-component nodes

and edges not part of the largest connected component are identified. These isolated nodes and clusters are
removed from the system.

6) Sixth, the system process for each type of resource is inferred. Power plants “generate electric power”, substa-
tions “consume electric power”, and transmission lines “transport electric power from origin to destination”
and “transport electric power from destination to origin.” Fig. 9b shows the knowledge base of an electric
power system where the four types of system capabilities mentioned above are instantiated only once. Fig.
9a shows the associated SysML activity diagram9.

7) Lastly, the electric power system functional reference architecture shown in Fig. 9a is encoded in the XML
file as three valid pairs of system processes; 1.) transmission follows generation, 2.) transmission follows
transmission, and 3.) consumption follows transmission. Any other pairs of system processes are invalid and
impose constraints in the system sequence constraints matrix K⇢. Fig. 9c shows the hetero-functional graph.

Fig. 9. The example electric power system functional reference architecture a with a single instantiation of each system process pairing.
b gives the system knowledge base of the example system. c gives the hetero-functional adjacency matrix of the example electric power
system.

The hetero-functional graph theory toolbox13 is then used to produce the formal and hetero-functional graphs
from the XML file described above. The resulting formal graph is composed of 69, 386 formal nodes (i.e. power
plants and substations) and 105, 826 formal edges (i.e. transmission lines). As stated in Section A of the methods,
these nodes and edges constitute the 175, 212 resources in the system knowledge base while the system processes
are defined as shown in Fig. 9b. The resulting system knowledge base JS has a size of 4, 814, 416, 999⇥ 175, 212.
Once JS is formed, the hetero-functional adjacency matrix is formed using Equation (1). K⇢ is formed in a
pairwise fashion observing the five types of constraints identified in Section A of the methods. The first four types
of constraints are checked numerically, while the last is drawn from the functional pairs in Step 6 above. The
resulting hetero-functional adjacency matrix A⇢ has a size of (8.435⇥ 1014)⇥ (8.435⇥ 1014). Equation (1) is then
used to eliminate empty rows and columns. The projected hetero-functional adjacency matrix Ã⇢ of the American
electric grid has a size 370, 220⇥ 370, 220 with 1, 709, 691 capabilities as filled elements. From this point, it was
straightforward to calculate the cumulative degree distribution of AEPS’ hetero-functional and formal graphs.
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C. Comparing the Attack Vulnerability of Scale-free Formal and Hetero-functional Graphs

This paper used nodal attacks to compare the attack vulnerability of formal graphs and hetero-functional graphs.
In nodal attacks, a set of nodes are identified either at random or by a targeting heuristic such as greatest degree
centrality. These nodes are subsequently removed from their respective graphs. In addition to the identified nodes
being removed, all edges connected to the removed nodes are also removed15. The same physical intuition was
maintained between the hetero-functional graph and formal graph during attacks. Rather than attacking a given
system capability (as a node in a hetero-functional graph), an entire system resource (as a node in a formal graph)
was attacked. All of the associated system capabilities (i.e. the filled elements in the associated column of the
knowledge base) were removed. Because the formal edges had been removed in the case of the formal graph, their
system capabilities were also removed. For example, if node n3 in Fig. 2 is attacked, then edges e1, e3, and e4 are
removed as well. In the hetero-functional graph, first capabilities  3 �  6 would be removed to reflect the loss of
n3 and then capabilities  8, 10, 11, 12 would all be removed to reflect the loss of edges e1, e3, and e4.

The nodal attacks were applied as both random and targeted attacks. Rather attacking a single node at a time,
for computational simplicity, each attack iteration removed one percent of the initial node count. In the case of a
random attack, the one percent of formal graph nodes were randomly selected and then removed. The corresponding
capabilities in the hetero-functional graph were then removed as well. In the case of a targeted attack, the greatest
degree centrality heuristic was used to identify the targeted nodes. This one percent of nodes were then removed
from the formal graph and the corresponding capabilities were then removed from the hetero-functional graph; thus
maintaining the same physical intuition. The most central nodes were then reevaluated and attacked again.

Fig 4a was developed using a random attack and measuring the average degree distribution15 of each graph at
each attack iteration. Fig. 4b was developed using a random attack and measuring the component sizes of each
graph at each attack iteration. The largest weakly connected component size15 was measured and divided by the
total remaining nodes in each graph for the largest cluster relative size. The sizes of the remaining connected
component (excluding the largest connected component) were then averaged together to get the isolated cluster
average size at each attack iteration. Fig 4c utilizes the same measures as Fig 4b. However, a targeted attack based
upon greatest degree centrality heuristic was applied to target central nodes.

D. Predicting the Structural Resilience of the AEPS’ Migration to a Decarbonized System Architecture

In Fig 5, the resilience effects of adding the architectural improvements of distributed generation, meshed
transmission, and storage were measured. Distributed generation was added randomly to 30% of all the substations;
which amounted to 19, 828 substations gaining such capabilities. When adding meshed distribution lines, each node
with only a single connection to another node was connected to the nearest node to which it was not already
connected. An additional 20% of transmission lines were thus added to the AEPS; which amounted to 16, 953
additional transmission lines. Storage was added to every buffer that had the potential for generating electricity.
These nodes include power plants and substations that were designated to receive distributed generation capabilities.
Storage was thus added to 33% of all buffers which amounted to 23, 088 additional energy storage resources.

Each type of improvement was added to the AEPS over a series of 100 iterations. The additions of distributed
generation, meshed transmission, and storage were analyzed individually. Fig. 5a and Fig. 5b measure the average
degree centrality15 of the formal graph and hetero-functional graph respectively. After each iteration of adding an
architectural improvement to the formal graph and the corresponding capabilities to the hetero-functional graph,
the average degree centrality was measured for both graphs. It is notable that since both distributed generation and
storage are functional additions, the formal graph sees no structural change. Therefore, it sees no measurable change
in resilience from distributed generation or storage4. However, because the nodes in the hetero-functional graph are
system capabilities, there is a measurable structural change in the average degree centrality of the hetero-functional
graph as distributed generation and storage are added. Fig. 5c follows the same architectural improvements as
Fig. 5a and 5b while measuring the hetero-functional graph’s Latent Engineering Resilience (LER)12. The LER
was normalized by the original base case AEPS with no architectural improvements. The addition of distributed
generation and storage report linear increases in the LER while the addition of meshed transmission lines results
in an exponential increase in the LER. Intuitively, as lines are added to the AEPS each step of a service delivery
path has increasingly more path options; thus exponentially growing the number of deliverable service paths.
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E. Assessing the Resilient Response of Several Decarbonized System Architectures of the AEPS to Random and

Targeted Attacks

Fig 6a and Fig 6b measure the LER of the AEPS with different architectural improvements under random and
targeted attacks respectfully. Just as previous figures maintained an equivalent physical intuition when attacking
hetero-functional and formal graphs that intuition was maintained in Fig 6. Physical buffer resources (i.e. formal
nodes) in corresponding formal graphs were selected for random or targeted attacks and all of the associated
capabilities of the buffer and its connected edges were removed from the hetero-functional graph. Attacks were
applied to one percent of the formal graph nodes at a time in both random and targeted attacks. By maintaining the
same physical intuition, removing one percent of nodes being from a formal graph could result in removing more
that one percent of the hetero-functional graph nodes. This phenomena is especially noticeable in Fig. 6b as the
initial targeted attack results in removing over five percent of the nodes from the hetero-functional graphs. When
applying targeted attacks in Fig. 6b, the greatest degree centrality heuristic was used to identify the targeted formal
nodes.

After each attack iteration, the LER of the remaining hetero-functional graph was re-evaluated. In all cases, the
LER was normalized by the initial unimproved base case AEPS. Thus, the base case takes an initial value of 1 while
the architecturally improved AEPSs measure an initial LER value greater than 1. Under random attacks the LER
gradually decreases following the regression LER = ↵(100� x)2e�(100�x). However, the targeted attack causes a
large initial drop paired with a faster decrease in the LER following the regression LER = ↵e�x. The initial LER
drop is caused because the attack of one percent of attacked formal nodes removes over five percent of the nodes
in the hetero-functional graph. Using degree centrality as the targeting method, buffers with the most transmission
lines are removed first. The first attack therefore removes power plants, substations, and the largest number of
transmission lines in a single attack. As buffers connected to the most transmission lines are targeted, there are
increasingly fewer path options for services to be delivered. Thus, similar to the addition of meshed transmission
lines in Fig. 5c which yields an exponential increase in the LER, targeting buffers by degree centrality yields an
exponential decay in the LER.

F. Data Availability

The data that support the findings of this study are commercially available from Platts but restrictions apply to
the available dataset, which were used under license for the current study, and are not publicly available. Data are
however available from the authors upon reasonable request with express written consent of Platts.
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