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Abstract—The American Multimodal Energy System (AMES)

is a system-of-systems comprised of four separate but interde-

pendent infrastructure systems: the electric grid, the natural gas

system, the oil system, and the coal system. Their interdependence

creates the need to better understand the underlying architecture

in order to pursue a more sustainable, resilient and accessible

energy system. Collectively, these requirements necessitate a

sustainable energy transition that constitute a change in the

AMES instantiated architecture; although it leaves its reference

architecture largely unchanged. Consequently, from a model-

based systems engineering perspective, identifying the underlying

reference architecture becomes a high priority. This paper defines

a reference architecture for the AMES and its four component

energy infrastructures in a single SysML model. The architecture

includes (allocated) block definition and activity diagrams for

each infrastructure. The reference architecture was developed

from the S&P Global Platts (GIS) Map Data Pro data set

and the EIA Annual Energy Outlook dataset. This reference

architecture serves as the foundation from which to accurately

and consistently create mathematical model of the AMES.

Index Terms—American multi-modal energy system, Model-

Based Systems Engineering, Reference Architecture, SysML,

Energy Systems

I. INTRODUCTION

T
HE American Multimodal Energy System (AMES) is a
system-of-systems comprised of four separate but interde-

pendent infrastructure systems. The electric grid, natural gas
system, oil system, and coal system comprise the essential
infrastructure that meet the energy demands of the 21st
century in America. While each of these individual systems
constitute a value chain in their own right, they also enable
and support the value chains in the other energy systems.
This interdependence creates the need to better understand the
underlying architecture in order to pursue a more sustainable,
resilient and accessible energy system. Each of these three
general requirements are discussed in turn.

From a sustainability perspective, the decarbonization of the
AMES to meet a global target of not more than a 2�C rise by
2050 is paramount [1]–[10]. Graphically, the Sankey diagram
developed by the Lawrence Livermore National Laboratory
and shown in Fig. 1 depicts the AMES flow of energy from
primary fuels to four energy consuming sectors [11]. It reveals
that the three carbon-intensive fuels of natural gas, petroleum,
and coal account for 80% of the AMES supply side. In
the meantime, 37% of American energy supply and more
importantly 100% of renewable energy supply flows through
electric generation facilities where they are then routed to the
residential, commercial, industrial and transportation sectors.

On the demand side, 67% of all energy consumed is lost as
rejected energy. The transportation sector, in particular, rejects
80% of its energy and is consequently the lead producer
of greenhouse gas (GHG) emissions [12]. To significantly
reduce the GHG emissions produced from fossil fuels, three
architectural changes are simultaneously required [2]. First,
carbon-neutral renewable energy sources such as solar, wind,
nuclear, geothermal and nuclear generation must be increas-
ingly integrated into the grid and ultimately displace fossil-
fuel fired generation plants; especially as they are retired at
the end of their useful life [10], [13]–[17]. Second, energy
consumption technologies, like transportation and heating, that
rely heavily on fossil-fuel combustion must switch fuels to
electricity where they have opportunity to be powered by
an increasingly decarbonized electric power. Lastly, energy-
intensive technologies throughout the AMES must be system-
atically replaced with their more energy-efficient counterparts
[18]–[23].

Together, these three architectural changes minimize the
demand on the coal, oil, and natural gas systems. In the
meantime, such a systemic shift towards the use of electricity
requires a commensurate expansion of the electric grid. Such
a sustainable energy transition is arguably the largest single
engineering system transformation in human history. Given
the environmental consequences, the energy transition must
be undertaken in a manner that not just meets the evolving
requirements of its stakeholders, but also remains opera-
tional. Fortunately, from a Model-Based Systems Engineering
(MBSE) perspective [24], [25], the three architectural changes
described above constitute a change in the AMES instanti-
ated architecture but leaves the AMES reference architecture
largely unchanged. In order to deploy an MBSE-methodology
to the sustainable energy transition, identifying the underlying
reference architecture of the AMES becomes a high priority in
meeting the paramount requirement of energy sustainability.

Definition 1. - Instantiated Architecture [25], [26] A case
specific architecture, which represents a real-world scenario,
or an example test case. At this level, the physical architecture
consists of a set of instantiated resources, and the functional
architecture consists of a set of instantiated system processes.
The mapping defines which resources perform what processes.

Definition 2. - Reference Architecture [26] “The reference
architecture captures the essence of existing architectures, and
the vision of future needs and evolution to provide guidance
to assist in developing new instantiated system architectures.
...Such reference architecture facilitates a shared understand-

ar
X

iv
:2

01
2.

14
48

6v
2 

 [p
hy

si
cs

.so
c-

ph
]  

24
 M

ay
 2

02
1



IEEE SYSTEMS JOURNAL (SUBMITTED), VOL. XX, NO. X, DECEMBER 2020 2

ing across multiple products, organizations, or disciplines
about the current architecture and the vision on the future
direction. A reference architecture is based on concepts proven
in practice. Most often preceding architectures are mined
for these proven concepts. For architecture renovation and
innovation validation and proof can be based on reference
implementations and prototyping. In conclusion, the reference
architecture generalizes instantiated system architectures to
define an architecture that is generally applicable in a disci-
pline. The reference architecture does however not generalize
beyond its discipline.”

The primary benefit of a reference architecture is that it
clearly identifies the system boundary, the components of the
system form, the activities of the system behavior, and the
interfaces and interactions between them. This identification is
of critical importance when the chosen system is particularly
complex and heterogeneous; as in the case of the AMES. In
the electric power system (alone), there is a rich history of
reference architecture development in the so-called “Common
Information Model” [27], [28] that has culminated in IEC
Standards 61970, 61968, and 62325 [29]–[31]. Furthermore,
it is important to recognize that a reference architecture, by
design, can admit a wide variety of mathematical models of
system behavior. For example, once the relevant classes of an
electric power system have been identified in a reference ar-
chitecture, depending on the need, one can still develop an AC
or DC power flow analysis model, an AC or DC optimal power
flow model, or a small signal or transient stability model.
Naturally, the choice of mathematical modeling elements that
are being superimposed on the reference architecture greatly
affects the computational intensity of the mathematical model
as a whole. Additionally, the chosen mathematical model may
be implemented as a computational (simulation) model that is
either centralized (on one processor) or distributed (on many).
Furthermore, depending on the causal dependencies in the
reference architecture, a distributed computational model may
invoke fully parallel processing, or sequential co-simulation
techniques [32], [33]. This work leaves these mathematical
modeling and computational implementation as choices out-
side the scope of this paper, but ultimately recognizes that the
development of a reference architecture is a necessary first
step.

From a resilience and reliability perspective, each of the
AMES component systems must not just deliver their respec-
tive type of energy independently [1], [34]–[37] but must also
support the other AMES infrastructures [38]. For example,
and as shown in Fig. 1, if a natural gas pipeline fails in the
natural gas system it could take a natural gas power plant
offline in the electric grid. Such a lack of electric generation
capacity could then result in the temporary shut down of a
natural gas processing plant; further reducing natural gas and
electricity capacity. The New England electric power grid, in
particular, remains susceptible to natural gas shortages during
long cold spells when the fuel is used heavily for both space
heating as well as electric generation [39]. Alternatively, the
oil and natural gas systems rely on electricity to process
their respective fuels and compress them during storage and

transportation. Even the coal system requires electricity in safe
and efficient mining.

As the AMES architecture evolves through the sustainable
energy transition, it must do so in a manner that is reliable
and resilient to natural, economic and malicious disruptions.
By modeling and understanding the instantiated architecture of
the AMES at each stage of this sustainable energy transition,
system-wide vulnerabilities can be systematically identified
and mitigated in a way that is more comprehensive than if
each infrastructure were studied independently. For example,
global climate change and severe weather events may place
coastal energy facilities particularly at risk [40]. Additionally,
economic shocks can affect the import and export energy
resources and disrupt their relative balance in the AMES [41].
Finally, malicious cyber-attacks can propagate failures not just
within a given AMES infrastructure but across them as well.

Finally, from an energy access perspective, the AMES
must continue to cost-effectively and equitably provide readily
available energy to the broader public [42]. Relative to many
other nations, this requirement has been largely addressed in
the United States. Nevertheless, certain issues remain. For
example, in northern New England, people rely on carbon-
intensive oil and propane for heating since heat pumps have
limited performance in especially cold climates. Finally, solar
and wind potential is often plentiful away from urban load
centers and so may not be effectively tapped without additional
electric transmission capacity [43]–[50]. Many of these energy
access concerns are particularly poignant in Alaska and other
arctic regions.

The three general requirements of energy sustainability,
resilience, and access impose constraints on the evolution of
the AMES architecture. And yet, the AMES architecture re-
mains relatively poorly understood from a holistic perspective
[51]–[54]. The Sankey Diagram in Fig. 1, to our knowledge,
presents the only graphical depiction of the AMES in its
entirety. While this data visualization effectively conveys infor-
mation concerning relative energy flows, from a model-based
systems engineering [24] perspective, its highly simplified
nature was not intended for architectural analysis and design.
In addition to the Sankey model, the EIA has developed
the National Energy Modeling System (NEMS) software to
produce the yearly annual energy outlook [12]. Nevertheless,
this software-based tool remains less than transparent and the
EIA website itself states: “[The] NEMS is only used by a
few organizations outside of the EIA. Most people who have
requested NEMS in the past have found out that it was too
difficult or rigid to use [55]”.

A. Original Contribution

In order to deploy an MBSE-methodology to the sustainable
energy transition, this paper uses a data-driven approach to
define a reference architecture in a single invariant SysML
model describing the four main systems that comprise the
unified AMES. By defining the reference architecture, this
paper provides the foundation from which to consistently build
an instantiated architecture for future mathematical modeling.
The top level block diagram in Fig. 2 presents the four
subsystems of the AMES and the flow of operands between
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Fig. 1. A Sankey Diagram of U.S. Energy Consumption in 2019. The Lawrence Livermore National Laboratory has produced this visualization based primary
data sources from the DOE and EIA [11].

Fig. 2. The top level internal block diagram of the AMES. The domestic supply sources, the energy imports, natural environment, domestic consumption,
energy exports, and water treatment are external to the AMES four subsystems of coal, natural gas, oil, and electric grid.

them and those entities defined as outside of the system
boundary. Each of the four subsystems: electric grid, natural
gas system, oil system, and coal system are in turn defined
using class and activity diagrams with (allocation) swim-lanes.
Integrating each of the sub-reference architecture class and
activity diagrams as described in the AMES block diagram
defines the entirety of the AMES reference architecture. This
work assumes a working knowledge of the SysML (the
Systems Modeling Language) which is otherwise gained from
several excellent texts [24], [25], [56].

B. Paper Outline

Section II starts with a description of the background
literature and the datasets used to develop the reference archi-
tecture. The paper then presents the electric power system’s
architecture in Section III-A. The natural gas architecture is
then presented in Section III-B. The oil system and coal system
architectures are then defined in Section III-C and Section
III-D respectively. A discussion of dependencies between each
of the subsystems is presented in Section IV. The paper then
presents future work of the AMES reference architecture. This
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includes simulation development for integrated planning and
operations management. Finally, the paper is brought to a
conclusion in Section V.

II. BACKGROUND

Normally, each of the four systems of the AMES are studied
independently and each have their own extensive literature
[57]–[60]. Increasingly, however, sustainability, resilience, and
accessibility drivers have brought about greater attention to
how these individual infrastructures depend on each other
[61]–[67]. One dependence that has received considerable
attention is the dependence of the electric grid on the natural
gas system [39], [68]–[74]. These works are motivated by the
increasing role of natural gas-fired electricity generation rela-
tive to coal-fired facilities [75], and the importance of natural
gas power plants in providing “flexible” operating reserves
against variable renewable energy resources [76]. Similarly,
some works have addressed the dependence of the electric grid
on the oil [59], [77] and coal systems [60], [65], [78]. Moving
beyond the specific scope of the AMES, a related but extensive
literature has developed on the co-dependence of the electric
grid and water resources in the form of the Energy Water
Nexus (EWN) [16], [79]–[97]. Together, these works provide
an insight into the structural and behavioral complexity of
the AMES. Furthermore, they also demonstrate the potential
benefits of analyzing and optimizing the AMES as a single
system-of-systems rather than each system independently [98].
Other works have sought to model multi-energy systems [99]–
[112] making use of energy hubs to facilitate and track the
flows of energy often focusing on the interactions of electricity,
natural gas, distributed heating, and renewable sources. These
approaches lack a SysML approach to explicitly define each
component with their allocated functions and associations
within the defined architecture.

It is worth mentioning that much of these works focus
on a single interaction between two energy systems and
consequently, to our knowledge, this is the first work to
address the architecture of the AMES as a whole modeling
electric, natural gas, oil, and coal systems in a single invariant
SysML model. Furthermore, because the focus is usually on a
single interaction, there has been little effort [80], [113], [114]
to deploy a model-based systems engineering methodology
where a system boundary is rigorously defined and then
later elaborated in terms of physical interfaces and functional
interactions. Ultimately, a complete architectural description
is necessary to ensure that 1.) energy and mass conservation
laws are respected, 2.) all environmental aspects are identified
in environmental impact assessments [115], and 3.) the greatest
potential for synergistic outcomes are found. Finally, the use of
model-based systems engineering modeling conventions (such
as SysML) maximizes the potential for cross-disciplinary
communication and coordination.

This paper takes a data-driven approach and uses the S&P
Global Platts (GIS) Map Data Pro data set [116] and the EIA
Annual Energy Outlook dataset [12] to deduce the AMES
reference architecture. The S&P Global Platts (GIS) Map Data
Pro data set [116] is a proprietary data set available through
the S&P Global Platts website. It is labeled with metadata

that correspond to classes and attributes in the AMES form.
The classes and their associated behaviors are shown here,
but their attributes have been suppressed for brevity. The
interested reader is referred to original references for attribute
metadata. Next, each GIS layer of the Platts dataset includes
descriptions of facility types and their associated products.
This data can be used to deduce the associated function(s) of
these facilities. Finally, the process technologies for all of the
AMES constituent energy facilities are well known. Therefore,
this work relies on engineering textbook knowledge of these
facilities to supplement the Platts and EIA datasets with low-
level knowledge of input-output interfaces.

While the choice of a data-driven approach leads straight-
forwardly to a well-validated reference architecture model, it
is not without its limitations. First, the scope of this work is
limited to only the energy systems themselves and not the end-
use sectors outside of the AMES. Second, because Platts and
EIA datasets only include bulk, wholesale, and transmission
level assets, distribution-level and retail-level assets are outside
the scope of the work. Finally, any assets outside of the
conventional electric grid, natural gas system, oil system, and
coal system are naturally out of scope as well. This includes
non-conventional energy technologies and carriers (e.g. bio-
energy, hydrogen, ammonia, etc) which have yet to make a
sizable impact on American energy infrastructure.

III. MODELING

This paper uses the Systems Modeling Language (SysML)
[24], [25], [56], [117]–[120] to define the AMES reference ar-
chitecture. More specifically, the metadata of the input datasets
are conserved, reorganized and drawn within SySML block
definition and activity diagrams. This data-driven approach
produces a SysML reference architecture that includes: 1.)
the different facilities that comprise the AMES form and 2.)
their processes that comprise the AMES functionality and
allocated architecture. Fig. 2 shows the system boundary of
the AMES around its four constituent energy systems of
electricity, oil, natural gas and coal. The high level flows of
matter and energy between these four energy systems and
across the system boundary are also defined. The matter and
energy flows in Fig. 2 also restrict the set of operands in the
AMES. While the Platts dataset does specify a much larger
number of energy products, this analysis, for tractability, has
classified all flows of matter and energy into the following
set of operands: coal, raw natural gas, processed natural gas,
crude oil, processed oil, syngas, liquid biomass feedstock,
solid biomass feedstock, solar irradiance, wind energy, ura-
nium, water energy (for cooling), electric power, withdrawn
water, mine effluent, processing effluent, and thermal effluent.
Therefore, Fig. 2 shows the input flow of these quantities of
matter/energy operands from the domestic supply sources, the
energy imports, and the natural environment across the system
boundary and the output flow of these quantities to domestic
consumption, energy exports, water treatment facilities, and
the natural environment. In all cases, these input/output flows
are specified in mass flow rates (e.g. Kg/time) or power (W)
or both where the associated matter has an intrinsic energy
content (e.g. heating value of natural gas).
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Fig. 3. AMES block definition diagram showing its four component systems.

From a form perspective, Fig. 3 presents a class diagram of
the AMES and its four constituent energy systems as classes.
For graphical simplicity, each of these energy system classes
adopt attributes to represent their component infrastructure
facilities and resources. Furthermore, association links are
removed for graphical clarity and may be otherwise deduced
from the associated activity diagram. The following subsec-
tions elaborate the form and function of these systems.

A. Electric Power System
The Electric Power System is comprised of resources for the

generation, transmission, and routing of electric power. Power
plants comprise a majority of the different types of resources
within the electric grid. Each power plant type is designated
by the primary fuel category used to generate electric power.
There are nine different types of power plants present: coal,
natural gas, syngas, oil, biomass, nuclear, solar, hydro, and
wind. These power plants are connected to the electric grid
by transmission lines (to the distribution system). The last
component of the electric grid that realizes the end of the
electric grid value chain is substations where the electric power
leaves the transmission system. Fig. 4 presents the formal
decomposition of the AMES electric grid architecture.

Fig. 4. Electric grid block definition diagram showing its component physical
resources.

Each of the individual resources within the electric power
system have their respective processes. Fig. 5 presents the
electric grid activity diagram that shows these processes allo-
cated onto their respective form in swim-lanes and follows the
flows of matter and energy between the processes. Each power
plant has their respective generate electric power process from
their designated fuel source. The thermal generation processes
Generate Electricity from Coal, Generate Electricity from

Processed NG, Generate Electricity from Syngas, Generate
Electricity from Processed Oil, Generate Electricity from
Liquid Biomass, Generate Electricity from Solid Biomass, and
Generate Electricity from Uranium each take their respective
fuel source and withdrawn water as inputs and result in electric
power, thermal losses, power plant thermal effluent, and power
plant thermal evaporation. Aside from electric power, all of
the remaining outputs immediately leave the system boundary.
In contrast, the electric power is then transported by the
transmission lines. The electric grid value chain is completed
at the substation which routes the electric power to the other
AMES energy systems or to the electric distribution system
outside the scope of this reference architecture.

B. Natural Gas System

The natural gas system is comprised of resources for the
import, export, processing and delivery of natural gas. The
receipt delivery and Liquefied Natural Gas (LNG) terminals
are responsible for importing and exporting natural gas into
and out of the natural gas system. These resources take both
international and domestic imports into the United States’
natural gas pipeline infrastructure. Pipelines and compressors
are present for facilitating the transportation of natural gas.
Additionally, processing plants are present for processing raw
natural gas. Finally, storage facilities store syngas as well as
raw and processed natural gas. Fig. 6 presents the formal
decomposition of the AMES natural gas system architecture.

Each of the individual resources within the natural gas
system have their respective processes. Fig. 7 presents the
natural gas activity diagram. It shows natural gas processes
allocated onto their respective form in swim-lanes and follows
their flow of matter and energy. The Receipt Delivery facility
can import and store syngas, raw natural gas, and processed
natural gas as well as export the processed natural gas out
of the system boundary. The LNG Terminal can import, store
and export natural gas. Once inside the natural gas system,
pipelines transport each of the operands, syngas, raw natural
gas and processed natural gas, through the United States. This
includes pipelines that transport directly to natural gas electric
power plants in the electric grid. With the inputs of raw natural
gas, electric power and withdrawn water, processing plants
process raw natural gas to produce processed natural gas and
processing effluent. Compressors stimulate the transportation
of the different types of natural gas by adjusting the associated
pressure. Finally, storage facilities store syngas as well as raw
and processed natural gas.

C. Oil System

The oil system is comprised of resources for the import,
export, and delivery of oil. The oil port and oil terminal
are responsible for importing and exporting oil into and out
of the oil system. These resources take both international
and domestic imports into the United States’ oil pipeline
infrastructure. Crude and processed oil pipelines are present
for facilitating the transportation of oil and liquid biomass. Oil
refineries allow for the processing of crude oil into processed
oil, and oil buffers allow for storage within the oil system
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Fig. 5. Electric grid activity diagram with allocated swim-lanes.

Fig. 6. Natural Gas system block definition diagram showing its component
physical resources.

infrastructure. Fig. 8 presents the formal decomposition of the
AMES oil system architecture.

Each of the individual resources within the oil system have
their respective processes. Fig. 10 presents the oil activity
diagram. It shows the oil system’s processes allocated onto
their respective form in swim-lanes and follows their flows
of matter and energy. The Oil Terminal facility can import
and export crude oil, processed oil and liquid biomass to
and from outside the system boundary. The Oil Port can
also import and export crude and processed oil. Once inside
the oil system, the crude oil pipeline can transport crude oil
from an oil port or terminal to an oil refinery where the
crude oil is processed into processed oil. This process requires
the input of crude oil, electricity and withdrawn water to
produce processed oil, syngas [121] and processing effluent.
The processed oil can then be transported by the processed oil
pipelines. These processed oil pipelines transport processed oil
and liquid biomass within the oil system and directly to oil
and liquid biomass electric power plants in the electric grid.
Additionally, all three operands, crude oil, processed oil, and

syngas can be stored within the oil system by oil buffers.

D. Coal System
The coal system is comprised of resources for the import,

export, and delivery of coal. The coal sources are responsible
for mining domestic sources of coal and introducing coal into
the United States coal system. Coal docks are also responsible
for the import and export of coal. Railroads are responsible for
transporting coal across the United States and to coal electric
power plants in the electric grid. Finally, coal buffers allow
for the storage of coal within the system boundary. Fig. 9
presents the formal decomposition of the AMES coal system
architecture.

Each of the individual resources within the coal system
have their respective processes. Fig. 11 presents the coal
activity diagram. It shows these processes allocated onto their
respective form in swim-lanes and follows their flow of matter
and energy. With the input of electric power and withdrawn
water, the coal source can mine coal to produce coal and mine
effluent. Alternatively, the coal docks can import coal into the
coal system which can then be transported by the railroads.
The coal can then be stored within a coal buffer or exported
out of the coal system boundary by a coal dock.

IV. DISCUSSION

The activity diagrams in Figs. 5, 7, 10, 11 each show the
individual energy systems that when integrated together form
the AMES shown in Fig. 2. When following the flows of
matter and energy through the AMES, it becomes apparent that
every subsystem is connected to the other. The coal system
produces and imports coal that is delivered to the electric
grid for electric power generation. The oil system is able to
produce and deliver syngas to the natural gas system as well
as deliver processed oil and liquid biomass to the electric grid
for electric power generation. The natural gas system is able
to deliver syngas and processed natural gas to the electric grid
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Fig. 7. Natural gas system activity diagram with allocated swim-lanes.

Fig. 8. Oil system block definition diagram showing its component physical
resources.

Fig. 9. Coal system block definition diagram showing its component physical
resources.

for electric power generation. Finally, the electric grid is able
to deliver electric power to the coal system for mining, the
oil system for processing crude oil, and to the natural gas
system for processing raw natural gas and gas compression.
Each of these connections allow the electric grid to produce
electric power from the other energy systems’ fuel sources and
subsequently deliver power to the United States. Additionally,
the electric power allows for the production and processing of
operands in the coal, oil, and natural gas systems so that they
may provide fuel sources back to the electric grid and the rest
of the United States’ fuel demands.

Understanding the nature of such interdependencies within
the AMES reference architecture facilitates changes to the
AMES as it is currently instantiated [122]–[124]. This knowl-
edge becomes particularly important in avoiding cross-sectoral
cascading failures [35], [62], [125]. For example, if a natural

gas pipeline fails, there is not only a loss of natural gas being
delivered for heating, but for electric power generation as
well. Unavailable electric power plants not only diminishes the
grid’s ability to meet residential, commercial, and industrial
demand, but also the load demanded by the other energy
systems.

These interdependencies in the AMES reference archi-
tecture often exaggerate “infrastructure lock-in” effects that
impede the forward-motion of the sustainable energy transi-
tion [126]–[129]. As coal power plants are decommissioned,
natural gas power plants are often installed in their place with
commensurate reductions in greenhouse gas emissions. These
benefits, however, are not realized until sufficient natural gas
pipeline capacity is secured; either on existing or potentially
new pipelines. Similarly, electric power transmission capacity
often impedes the full utilization of remote solar and wind
generation resources. Alternatively, the presence of excess
processing and transmission capacity for coal, oil, and natural
gas makes it very easy and economical to rely on these sources
in the electric power sector. For example, the electric power
grid is likely to retain its reliance on the natural gas system for
a long time because so much of the country relies on natural
gas for heating. In short, an effective “deep” decarbonization
strategy requires the coordination of all four energy sectors
and not just one alone.

A. Integrated Planning and Operations and Model Develop-
ment

By planning future infrastructure developments with an
integrated view of the whole AMES, developments with the
greatest impact can be planned and installed. This allows
for a holistic planning effort that incentivizes simultaneous
developments in multiple energy systems such that they com-
pliment, rather than impede, each other. For example, if a
coal mine is decommissioned in the coal system, then a coal
power plant in the electric grid could be replaced with a
less carbon-intensive power plant. The EWN literature has
already demonstrated similar benefits [88]–[91], [130], [131].
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Fig. 10. Oil system activity diagram with allocated swim-lanes.

Fig. 11. Coal system activity diagram with allocated swim-lanes.

For example, the straightforward installation of water storage
capacity has been shown to alleviate power balance constraints
in the electric power grid where the installation of battery
energy storage is at a premium. Similarly, the natural gas-
electricity literature has shown pairing natural gas electric
power plants with variable energy resources (VER) such
as wind turbines provides a smaller carbon footprint with
renewable wind energy and natural gas replacing coal [70],
[132], [133]. Additionally, the fast ramping capacity of natural
gas power plants provides reliability in maintaining a stable
grid in the presence of VERs. In all of these cases, one or
more layers of planning and operations management decision-
making are superimposed on the underlying interdependent
infrastructure system’s instantiated mathematical model.

B. Dynamic Simulation Model Development

The development of the AMES reference architecture facili-
tates the subsequent development of instantiated mathematical
models and simulations of system behavior. As a relevant
precedent, the energy-water nexus reference architecture [80],
[113] led to the development of holistic mathematical models
[79], [81], [83], [86], [134] which were later implemented as
numerical simulations. To this end, the reference architecture
provides the starting point for a transparent objected-oriented
software design grounded in “digital twin” principles. Much
like the National Energy Modeling System (NEMS) [135], the

AMES reference architecture can be used to model and sim-
ulate the effect of potential policies and future infrastructure
developments. By using the reference architecture’s defined
components, one can instantiate an existing or simulated
architecture. For example, using the Platts Map Data Pro [116]
to guide the installation of resources and their subsequent
associations, a SysML-compliant model of the AMES can be
created. By then varying the ratios of instantiated technologies
belonging to the instantiated model variant, different scenarios
can be analyzed to further advance the AMES development.

Just as the AMES reference architecture allows for the
simulation and analysis of differing policies across the entirety
of the AMES, it also allows for integrated operations manage-
ment and power flow analysis. As seen in past energy-water
nexus works, the mathematical models were later used to con-
duct sensitivity analyses and identify input/output trade-offs
[81], [85], [87], [91], [114]. Such an approach of translating a
reference architecture into a dynamic simulation/optimization
model has been further generalized using hetero-functional
graph theory [136]. As demonstrated in previous work [137],
the use of continuous, timed, and arc-constant colored Petri
nets facilitate the transition of a reference architecture into
a (generic) hetero-functional minimum cost flow optimization
problem. By introducing a device model for each capability
independently, the modeler can control the relevant time
scale, and thereby eliminate fast dynamics with steady state
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approximations. This allows for each device model to be
integrated into the model with the same choice of relevant
temporal resolution. Applying these device models can be
viewed as a generalization of a similar procedure that has been
demonstrated for electric power system modeling and simu-
lation [138]. As each individual capability receives their own
device model, the energy flows of differing types throughout
the system can all be optimized together towards a well defined
objective.
C. Structural Analysis Model Development

Additionally, recent theoretical works [36], [136], [139]
have shown that SysML-based reference architectures of in-
terdependent infrastructure systems can be translated, with-
out loss, into mathematical structural models called hetero-
functional graphs (HFG). These HFGs can then be used to
study the AMES structural resilience under varying scenarios
[36], [139]. By allocating function onto instantiated individ-
ual resources, capabilities are formed which can be chained
together to complete a value chain and define deliverable
services. Through tracking the number of deliverable services
present in the instantiated model, the structural resilience can
be analyzed [139]. By changing the ratios of these instanti-
ated technologies from the reference architecture, the number
of deliverable services will also vary; thereby changing the
associated structural resilience. Alternatively, the instantiated
model could be placed under attack, which would dictate the
gradual removal of capabilities, and decrease the structural
resilience as the instantiated model degrades. Using the AMES
reference architecture to guide the instantiation of various sce-
narios, future AMES technology compositions can be analyzed
to guide the energy transition.

D. Pathways to a Sustainable Energy Transition
Returning to the original motivation of the paper, the AMES

reference architecture serves as a critical step in a Model-
Based Systems Engineering methodology to the sustainable
energy transition. In that regard, the AMES reference archi-
tecture remains invariant while the instantiated architecture un-
dergoes three architectural changes. The well-received United
States Deep Decarbonization Pathways report [7] identifies
these three changes as: 1.) the increased penetration of re-
newable energy technologies into the electric power system
2.) the increased penetration of energy-efficient (consumption)
technologies of all types, and 3.) a systematic electrification
of energy consuming technologies. Furthermore, it identified
four viable scenarios that mix the relative importance of these
three architectural changes. Because all of these architectural
changes are reflected already in the S&P Global Platts (GIS)
Map Data Pro data set, the AMES reference architecture can
be instantiated straightforwardly to model these four viable
scenarios. In that regard, the implicit assumption of stationarity
in the dataset does not impede modeling and analysis of the
AMES instantiated architecture despite the profound changes
required by the sustainable energy transition.

V. CONCLUSION

The American Multi-modal Energy System reference archi-
tecture is an invariant reference architecture that describes the

electric grid, oil system, natural gas system, and coal system as
well as their inter-dependencies. As American energy demands
in the 21st evolve to meet new requirements for energy
sustainability, resilience, and access, the AMES instantiated
architecture will also evolve, but the AMES reference archi-
tecture will remain largely unchanged. Instead, the ratios of
instantiated elements will change resulting in more carbon-
intense resources being instantiated less and carbon-lite or
carbon-free resources being instantiated more. This AMES
reference architecture provides the basis from which to run
simulations on new policies and the associated changes of
instantiated architecture. Furthermore, the AMES reference
architecture facilitates the formulation of new optimal planning
and operations management decisions. As previously demon-
strated in the NG-Electricity nexus literature and the energy-
water nexus literature, these decisions can identify synergistic
strategies that simultaneously enhance infrastructure cost, reli-
ability and sustainability. Such synergistic strategies are often
able to overcome typical “infrastructure lock-in” scenarios
and the ensuing “trilemma” debates on energy sustainability,
resilience, and access. In short, holistic AMES models present
new possibilities for energy infrastructure coordination that
may have been otherwise overlooked when addressing each
energy infrastructure independently. Through future work ex-
ploring the static and dynamic simulations of the AMES, this
reference architecture provides the first step towards guiding
the energy transition.
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