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Abstract

Deep transformer models have pushed perfor-
mance on NLP tasks to new limits, suggesting
sophisticated treatment of complex linguistic
inputs, such as phrases. However, we have lim-
ited understanding of how these models han-
dle representation of phrases, and whether this
reflects sophisticated composition of phrase
meaning like that done by humans. In this pa-
per, we present systematic analysis of phrasal
representations in state-of-the-art pre-trained
transformers. We use tests leveraging human
judgments of phrase similarity and meaning
shift, and compare results before and after con-
trol of word overlap, to tease apart lexical ef-
fects versus composition effects. We find that
phrase representation in these models relies
heavily on word content, with little evidence
of nuanced composition. We also identify vari-
ations in phrase representation quality across
models, layers, and representation types, and
make corresponding recommendations for us-
age of representations from these models.

1 Introduction

A fundamental component of language understand-
ing is the capacity to combine meaning units into
larger units—a phenomenon known as composi-
tion—and to do so in a way that reflects the nuances
of meaning as understood by humans. Transform-
ers (Vaswani et al., 2017) have shown impressive
performance in NLP, particularly transformers us-
ing pre-training, like BERT (Devlin et al., 2019)
and GPT (Radford et al., 2018, 2019), suggesting
that these models may be succeeding at composi-
tion of complex meanings. However, because trans-
formers (like other contextual embedding models)
typically maintain representations for every token,
it is unclear how and at what points they might
be combining word meanings into phrase mean-
ings. This contrasts with models that incorporate
explicit phrasal composition into their architecture,
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e.g. RNNG (Dyer et al., 2016; Kim et al., 2019),
recursive models for semantic composition (Socher
et al., 2013), or transformers with attention-based
composition modules (Yin et al., 2020).

In this paper we take steps to clarify the nature
of phrasal representation in transformers. We fo-
cus on representation of two-word phrases, and we
prioritize identifying and teasing apart two impor-
tant but distinct notions: how faithfully the mod-
els are representing information about the words
that make up the phrase, and how faithfully the
models are representing the nuances of the com-
posed phrase meaning itself, over and above a sim-
ple account of the component words. To do this,
we begin with existing methods for testing how
well representations align with human judgments
of meaning similarity: similarity correlations and
paraphrase classification. We then introduce con-
trolled variants of these datasets, removing cues
of word overlap, in order to distinguish effects of
word content from effects of more sophisticated
composition. We complement these phrase simi-
larity analyses with classic sense selection tests of
phrasal composition (Kintsch, 2001).

We apply these tests for systematic analysis of
several state-of-the-art transformers: BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019b),
DistilBERT (Sanh et al., 2019), XLNet (Yang et al.,
2019b) and XLM-RoBERTa (Conneau et al., 2019).
We run the tests in layerwise fashion, to estab-
lish the evolution of phrase information as lay-
ers progress, and we test various tokens and to-
ken combinations as phrase representations. We
find that when word overlap is not controlled, mod-
els show strong correspondence with human judg-
ments, with noteworthy patterns of variation across
models, layers, and representation types. However,
we find that correspondence drops substantially
once word overlap is controlled, suggesting that
although these transformers contain faithful repre-
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sentations of the lexical content of phrases, there
is little evidence that these representations capture
sophisticated details of meaning composition be-
yond word content. Based on the observed repre-
sentation patterns, we make recommendations for
selection of representations from these models. All
code and controlled datesets are made available for
replication and application to additional models.!

2 Related work

This paper contributes to a growing body of work
on analysis of neural network models. Much work
has studied recurrent neural network language mod-
els (Linzen et al., 2016; Wilcox et al., 2018; Chowd-
hury and Zamparelli, 2018; Gulordava et al., 2018;
Futrell et al., 2019) and sentence encoders (Adi
et al., 2016; Conneau et al., 2018; Ettinger et al.,
2016). Our work builds in particular on analysis of
information encoded in contextualized token repre-
sentations (Bacon and Regier, 2019; Tenney et al.,
2019b; Peters et al., 2018; Hewitt and Manning,
2019; Klafka and Ettinger, 2020) and in different
layers of transformers (Tenney et al., 2019a; Jawa-
har et al., 2019). The BERT model has been a
particular focus of analysis work since its intro-
duction. Previous work has focused on analyzing
the attention mechanism (Vig and Belinkov, 2019;
Clark et al., 2019), parameters (Roberts et al., 2020;
Radford et al., 2019; Raffel et al., 2020) and embed-
dings (Shwartz and Dagan, 2019; Liu et al., 2019a).
We build on this work with a particular, controlled
focus on the evolution of phrasal representation in
a variety of state-of-the-art transformers.
Composition has been a topic of frequent in-
terest when examining neural networks and their
representations. One common practice relies on
analysis of internal representations via downstream
tasks (Baan et al., 2019; Ettinger et al., 2018; Con-
neau et al., 2019; Nandakumar et al., 2019; McCoy
et al., 2019). One line of work analyzes word in-
teractions in neural networks’ internal gates as the
composition signal (Saphra and Lopez, 2020; Mur-
doch et al., 2018), extending the Contextual De-
composition algorithm proposed by Jumelet et al.
(2019). Another notable branch of work constructs
synthetic datasets of small size to investigate com-
positionality in neural networks (Liska et al., 2018;
Hupkes et al., 2018; Baan et al., 2019). Some work

"Datasets and code available at
https://github.com/yulang/

phrasal-composition—-in-transformers

controls for word content, as we do, to study com-
position at the sentence level (Ettinger et al., 2018;
Dasgupta et al., 2018). We complement this work
with a targeted and systematic study of phrase-level
representations in transformers, with a focus on
teasing apart lexical properties versus reflections
of accurate compositional phrase meaning.

Our work relates closely to classic work on
two-word phrases, which have used methods like
landmark tests (Kintsch, 2001; Mitchell and Lap-
ata, 2008, 2010), or compared against distribution-
based phrase representations (Baroni and Zampar-
elli, 2010; Fyshe et al., 2015). Our work also
draws on work using correlation with similarity
judgments (Finkelstein et al., 2001; Gerz et al.,
2016; Hill et al., 2015; Conneau and Kiela, 2018)
and paraphrase classification (Ganitkevitch et al.,
2013; Wang et al., 2018; Zhang et al., 2019; Yang
et al., 2019a) to assess quality of models and rep-
resentations. We build on this work by combining
these methods together, applying them to a system-
atic analysis of transformers and their components,
and introducing controlled variants of existing tasks
to isolate accurate composition of phrase meaning
from capturing of lexical information.

3 Testing phrase meaning similarity

Our methods begin with familiar approaches for as-
sessing representations via meaning similarity: cor-
relation with human phrase similarity judgments,
and ability to identify paraphrases. The goal is to
gauge the extent to which models arrive at represen-
tations reflecting the nuances of composed phrase
meaning understood by humans. We draw on ex-
isting datasets, and begin by testing models on the
original versions of these datasets—then we tease
apart effects of word content from effects of more
sophisticated meaning composition by introducing
controlled variants of the datasets. The reasoning
is that strong correlations with human similarity
judgments, or strong paraphrase classification per-
formance, could be influenced by artifacts that are
not reflective of accurate phrase meaning composi-
tion per se. In particular, we may see strong perfor-
mance simply on the basis of the amount of overlap
in word content between phrases. To address this
possibility, we create controlled datasets in which
word overlap is no longer a cue to similarity.

As a starting point we focus on two-word
phrases, as these are the smallest phrasal unit and
the most conducive to these types of lexical con-

4897


https://github.com/yulang/phrasal-composition-in-transformers
https://github.com/yulang/phrasal-composition-in-transformers

Normal Examples
Source Phrase  Target Phrase & Score
ordinary citizen (0.724)
person average (0.518)
country (0.255)
AB-BA Examples
Source Phrase  Target Phrase & Score
law school school law (0.382)
adult female female adult (0.812)
arms control control arms (0.473)

average person

Table 1: Examples of correlation items. Numbers in
parentheses are similarity scores between target phrase
and source phrase. Upper half shows normal examples,
and lower half shows controlled items.

trols, and because this allows us to leverage larger
amounts of annotated phrase similarity data.

3.1 Phrase similarity correlation

We first evaluate phrase representations by as-
sessing their alignment with human judgments of
phrase meaning similarity. For testing this corre-
spondence, we use the BiRD (Asaadi et al., 2019)
dataset. BiRD is a bigram relatedness dataset de-
signed to evaluate composition, consisting of 3,345
bigram pairs (examples in Table 1), with source
phrases paired with numerous target phrases, and
human-rated similarity scores ranging from 0 to 1.
In addition to testing on the full dataset, we de-
sign a controlled experiment to remove effects of
word overlap, by filtering the dataset to pairs in
which the two phrases consist of the same words.
We refer to these pairs as “AB-BA” pairs (following
terminology of the authors of the BiRD dataset),
and show examples in the lower half of Table 1.
We run similarity tests as follows: given a
model M with layers L, for ith layer [; € L and
a source-target phrase pair, we compute repre-
sentations of source phrase piep(src) and target
phrase pj.,(trg), where rep is a representation
type from Section 4, and we compute their co-
sine cos(pL.., (src), pl., (trg)). Pearson correlation
r; of layer [; is then computed between cosine and
human-rated score for all source-target pairs.

3.2 Paraphrase classification

We further investigate the nature of phrase represen-
tations by testing their capacity to support binary
paraphrase classification. This test allows us to
explore whether we will see better alignment with
human judgments of meaning similarity if we use

more complicated operations than cosine similar-
ity comparison. For the classification tasks, we
draw on PPDB 2.0 (Pavlick et al., 2015), a widely-
used database consisting of paraphrases with scores
generated by a regression model. To formulate
our binary classification task, after filtering out
low-quality paraphrases (discussed in Section 5),
we use phrase pairs (source phrase, target phrase)
from PPDB as positive pairs, and randomly sample
phrases from the complete PPDB dataset to form
negative pairs (source phrase, random phrase).
Because word overlap is also a likely cue for
paraphrase classification, we filter to a controlled
version of this dataset as well, as illustrated in Ta-
ble 2. We formulate the controlled experiment here
as holding word overlap between source phrase and
target phrase to be exactly 50% for both positive
and negative samples. Our choice of 50% word
overlap in this case is necessary for construction of
a sufficiently large, balanced classification dataset
(AB-BA pairs in PPDB are too few to support clas-
sifier training, and AB-BA pairs are more likely
to be non-paraphrases). Note, however, that by
controlling word overlap to be exactly 50% for all
phrase pairs, we still hold constant the amount of
word overlap between phrases, which is the cue
that we wish to remove. As an additional control,
each source phrase is paired with an equal number
of paraphrases and non-paraphrases, to avoid the
classifier inferring labels based on phrase identity.
Formally, for each model layer /; and representa-
tion type rep, we train
CLF:

rep

= MLP([pairt,,))

rep

where pairy., represents embedding concatena-

tions of each source phrase and target phrase:
PAiT ep = [Prep(87TC); Prep(trg)]

The classifier is trained on binary classification of

whether concatenated inputs represent paraphrases.

4 Representation types

A variety of approaches have been taken for repre-
senting sentences and phrases when all tokens out-
put contextualized representations, as in our tested
transformers. To clarify the phrasal information
present in different forms of phrase representation,
we experiment with a number of different combina-
tions of token embeddings as representation types.

Formally, let [Tp, - - - , T}] be an input sequence
of length k£ + 1, with corresponding embeddings
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Normal Examples

Source Phrase

Target Phrase

is absolutely vital (pos)

was a matter of concern (neg)

are crucial

is an essential part (pos)

are exacerbating (neg)

Controlled Examples

Source Phrase

Target Phrase

communication infrastructure

telecommunications infrastructure (pos)

data infrastructure (neg)

Table 2: Examples of classification items. Classification labels between target phrase and source phrase are in
parentheses. Upper half shows normal examples, and lower half shows controlled items.

Context Available

Avg Phrase
Avg All
[CLSJ [TokJ [Tokzj [ e J['f,;‘;?je}[ Tok, J[SEPJ
1 2
Phrase Only
Avg Phrase
[ Avg Al

Phrase Phrase i
[ Word, ] { Word, } [ SEP } i

[CLS]

Figure 1: Example input sequences (BERT format).
CLS is a special token at beginning of sequence. To-
kens in yellow correspond to Head-Word. Avg-Phrase
contains element-wise average of phrase word embed-
dings. Avg-All averages embeddings of all tokens.

at sth layer [66, ceey e}'c]. Assume the phrase spans
the sequence [a, b], where 0 < a < b < k. Be-
cause two-word phrases are atypical inputs for
these models, we experiment both with inputs of
the two-word phrases alone (“phrase-only’), as
well as inputs with the phrases embedded in sen-
tences (“context-available™). This is illustrated in
Figure 1 along with phrase representation types.
We test the following forms of phrase representa-
tion, drawn from each model and layer separately:

CLS Depending on specific models, this special
token can be the first or last token of the input
sequence (i.e. eg or e};). In many applications, this
token is used to represent the full input sequence.

Head-Word In each phrase, the head word is the
semantic center the phrase. For instance, in the
phrase “public service”, “service” is the head word,
expressing the central meaning of the phrase, while
“public” is a modifier. Because phrase heads are
not annotated in our datasets, we approximate the
head by taking the embedding of the final word

of the phrase. This representation is proposed as

a potential representation of the whole phrase, if
information is being composed into a central word:

Phw = €
Avg-Phrase For this representation type we av-
erage the embeddings of the tokens in the target
phrase (dashed box in Figure 1). This type of aver-

aging of token embeddings is a common means of
aggregate representation (Wieting et al., 2015).

b
. 1 .
. 7
Hw—b—a+1Z;%

Avg-All Expanding beyond the tokens in “Avg-
Phrase”, this representation averages embeddings
from the full input sequence.

pi = 1 Zk o
aa T
k+1 =

SEP With some variation between models, the
SEP token is typically a separator for distinguishing
input sentences, and is often the last token (efc) or
second to last token (e}'c_l) of a sequence.

5 Experimental setup

Embeddings of each token are obtained by feed-
ing input sequences through pre-trained contex-
tual encoders. We investigate the “base” version
of five transformers: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b), DistilBERT (Sanh
etal., 2019), XLNet (Yang et al., 2019b) and XLM-
RoBERTa (Conneau et al., 2019). For the models
analyzed in this paper, we are using the implemen-
tation of Wolf et al. (2019),% which is based on
PyTorch (Paszke et al., 2019).

*https://github.com/huggingface/transformers
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Figure 2: Correlation on BiRD dataset, phrase-only input setting. First row shows results on full dataset, and

second row on controlled AB-BA pairs. Layer O corresponds to input embeddings passing to the model.

For correlation analysis, we first use the com-
plete BiRD dataset, consisting of 3,345 phrase
pairs.’ We then test with our controlled subset of
the data, consisting of 410 AB-BA pairs. For clas-
sification tasks, we first do preprocessing on PPDB
2.0,* filtering out pairs containing hyperlinks, non-
alphabetical symbols, and trivial paraphrases based
on abbreviation or tense change. For our initial clas-
sification test, we use 13,050 source-target phrase
pairs (of varying word overlap) from this prepro-
cessed dataset. We then test with our controlled
dataset, consisting of 11,770 source-target phrase
pairs (each with precisely 50% word overlap). For
each paraphrase classification task, 25% of selected
data is reserved for testing. We use a multi-layer
perceptron classifier with a single hidden layer of
size 256 with ReLU activation, and a softmax layer
to generate binary labels. We use a relatively sim-
ple classifier following the reasoning of Adi et al.
(2016), that this allows examination of how easily
extractable information is in these representations.

For both correlation and classification tasks, we
experiment with phrase-only inputs and context-
available (full-sentence) inputs. To obtain sentence
contexts, we search for instances of source phrases
in a Wikipedia dump, and extract sentences con-
taining them. For a given phrase pair, target phrases
are embedded in the same sentence context as the
source phrase, to avoid effects of varying sentence
position between phrases of a given pair. >

*http://saifmohammad.com/WebPages/BiRD.html

*http://paraphrase.org

Because context sentences are extracted based on source
phrases, our use of the same context for source and target
phrases can give rise to unnatural contextual fit for target

6 Results

6.1 Similarity correlation

Full dataset The top row of Figure 2 shows
correlation results on the full BiRD dataset for
all models, layers, and representation types, with
phrase-only inputs. Among representation types,
Avg-Phrase and Avg-All consistently achieve the
highest correlations across models and layers. In all
models but DistilBERT, correlation of Avg-Phrase
and Avg-All peaks at layer 1 and decreases in sub-
sequent layers with minor fluctuations. Head-Word
and SEP both show weaker, but non-trivial, corre-
lations. The CLS token is of note with a consis-
tent rapid rise as layers progress, suggesting that
it quickly takes on properties of the words of the
phrase. For all models but DistilBERT, CLS token
correlations peak in middle layers and then decline.

Model-wise, XLM-RoBERTa shows the weakest
overall correlations, potentially due to the fact that
it is trained to infer input language and to handle
multiple languages. BERT retains fairly consis-
tent correlations across layers, while RoBERTa and
XLNet show rapid declines as layers progress, sug-
gesting that these models increasingly incorporate
information that deviates from human intuitions
about phrase smilarity. DistilBERT, despite being
of smaller size, demonstrates competitive correla-
tion. The CLS token in DistilBERT is notable for
its continuing rise in correlation strength across
phraTWeconsider this acceptable for the sake of controlling
sentence position—and if anything, differences in contextual
fit may aid models in distinguishing more and less similar
phrases. The slight boost observed on the full datasets (for

Avg-Phrase) suggests that the sentence contexts do provide
the intended benefit from using input of a more natural size.
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Figure 3: Correlation on BiRD dataset with phrases embedded in sentence context (context-available input setting).

layers. This suggests that DistilBERT in particular
makes use of the CLS token to encode phrase infor-
mation, and unlike other models, its representations
retain the relevant properties to the final layer.

Controlled dataset Turning to our controlled
AB-BA dataset, we examine the extent to which the
above correlations indicate sophisticated phrasal
composition versus effective encoding of informa-
tion about phrases’ component words. The bottom
row of Figure 2 shows the correlations on this con-
trolled subset. We see that performance of all mod-
els drops significantly, often with roughly zero cor-
relation. Avg-All and Avg-Phrase no longer dom-
inate the correlations, suggesting that these repre-
sentations capture word information, but not higher-
level compositional information. XLM-RoBERTa
and XLNet show particularly low correlations, sug-
gesting heavier reliance on word content. Notably,
the CLS tokens in RoBERTa and DistilBERT stand
out with comparatively strong correlations in later
layers. This suggests that the rise that we see in
CLS correlations for DistilBERT in particular may
correspond to some real compositional signal in
this token, and for this model the CLS token may
in fact correspond to something more like a repre-
sentation of the meaning of the full input sequence.
The Avg-Phrase representation for ROBERTa also
makes a comparatively strong showing.

Including sentence context Figure 3 shows the
correlations when target phrases are embedded as
part of a sentence context, rather than in isolation.
As can be expected, Avg-Phrase is now consis-
tently the highest in correlation on the full dataset—
other tokens are presumably more impacted by the

presence of additional words in the context. We
also see that the Avg-Phrase correlations no longer
drop so dramatically in later layers, suggesting
that when given full sentence inputs, models re-
tain more word properties in later layers than when
given only phrases. This general trend holds also
for Avg-All and Head-Word representations.

In the AB-BA setting, we see that presence
of context does boost overall correlation with hu-
man judgment. Of note is XLM-RoBERTa’s Avg-
Phrase, which without sentence context has zero
correlation in the AB-BA setting, but which with
sentence context reaches our highest observed AB-
BA correlations in its final layers. However, even
with context, the strongest correlation across mod-
els is still less than 0.3. It is still the case, then, that
correlation on the controlled data degrades signifi-
cantly relative to the full dataset. This indicates that
even when phrases are input within sentence con-
texts, phrase representations in transformers reflect
heavy reliance on word content, largely missing ad-
ditional nuances of compositional phrase meaning.

6.2 Paraphrase classification

Full dataset Results for our full paraphrase clas-
sification dataset, with phrase-only inputs, are
shown in the top row of Figure 4. Accuracies
are overall very high, and we see generally sim-
ilar patterns to the correlation tasks. Best accu-
racy is achieved by using Avg-Phrase and Avg-
All representations. RoOBERTa, XLM-RoBERTa,
and XLNet show decreasing correlations for top-
performing representations in later layers, while
BERT and DistilBERT remain more consistent
across layers. Performance of CLS requires a few
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Figure 4: Classification accuracy on PPDB dataset (phrase-only input setting). First row shows classification
accuracy on original dataset, and second row shows accuracy on controlled dataset.
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Figure 5: Classification accuracy on PPDB dataset with phrases embedded in sentence context. First row shows
classification accuracy on original dataset, and second row shows accuracy on controlled dataset.

layers to peak, with top performance around mid-  layers—so to the extent that there is any compo-
dle layers, and in some models shows poor per-  sitional phrase information being captured, it may
formance in later layers. SEP shows unstable per-  increase within representations in the middle lay-
formance compared to other representations, espe-  ers. Overall, the consistency of these results with
cially in DistilBERT and RoBERTa. those of the correlation analysis suggests that the
apparent lack of accurate compositional meaning
Controlled dataset The bottom row of Figure 4  information in our tested phrase representations
shows classification accuracy when word overlap  is not simply a result of cosine correlations being
is held constant. Consistent with the drop in cor-  inappropriate for picking up on correspondences.
relations on the controlled AB-BA experiments
above, classification performance of all models Including sentence context Figure 5 shows the
drops down to only slightly above chance perfor-  classification results for representations of phrases
mance of 50%. This suggests that the high classifi- embedded in sentence contexts. The patterns
cation performance on the full dataset relies largely ~ largely align with our observations from the corre-
on word overlap information, and that there is lit-  lation task. Performance on the full dataset is still
tle higher-level phrase meaning information to aid ~ high, with Avg-Phrase now showing consistently
classification in the absence of the overlap cue. We  highest performance, being least influenced by the
see in some cases a very slight trend such that clas-  presence of new context words. In the controlled
sification accuracy increases a bit toward middle  setting, we see the same substantial drop in per-
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horse ran | color ran
gallop POS NEG
dissolve NEG POS

Table 3: An example of landmark experiment of verb
“run”. Representations are expected to have higher co-
sine similarities between phrase and landmark word
that are marked “POS”.

formance relative to the full dataset—there is very
slight improvement over the phrase-only represen-
tations, but the highest accuracy among all models
is still around 0.6. Thus, the inclusion of sentence
context again does not provide any additional ev-
idence for sophisticated compositional meaning
information in the tested phrase representations.

7 Qualitative analysis: sense
disambiguation

The above analyses rely on testing models’ sensitiv-
ity to meaning similarity between two phrases. In
this section we complement these analyses with an-
other test aimed at assessing phrasal composition:
testing models’ ability to select the correct senses
of polysemous words in a composed phrase, as pro-
posed by Kintsch (2001). Each test item consists
of a) a central verb, b) two subject-verb phrases
that pick out different senses of the verb, and c)
two landmark words, each associating with one of
the target senses of the verb. Table 3 shows an ex-
ample with central verb “ran” and phrases “horse
ran”/ “color ran”. The corresponding landmark
words are “gallop”, which associates with “horse
ran”, and “dissolve”, which associates with “color
ran”. The reasoning is that composition should
select the correct verb meaning, shifting represen-
tations of the central verbs—and of the phrase as
a whole—toward landmarks with closer meaning.
For this example, models should produce phrase
embeddings such that “horse ran” is closer to “gal-
lop” and “color ran” is closer to “dissolve”. We
use the items introduced in Kintsch (2001), which
consist of a total of 4 sets of landmark tests. We
feed landmarks and phrases respectively through
each transformer, without context, to generate cor-
responding representations p};ep for each layer ;
and representation type rep. Cosine similarity be-
tween each phrase-landmark pair is computed and
compared against expected similarities.

Figure 6 shows the percentage of phrases that
fall closer to the correct landmark word than to the

incorrect one, averaged over 16 phrase-landmark
word pairs. We see strong overall performance
across models, suggesting that the information
needed for this task is successfully captured by
these models’ representations. Additionally, we
see that the patterns largely mirror the results above
for correlation and classification on uncontrolled
datasets. Particularly, Avg-Phrase and Avg-All
show comparatively strong performance across
models. ROBERTa and XLNet show stronger per-
formance in early layers, dropping off in later lay-
ers, while BERT and DistilBERT show more con-
sistency across layers. XLM-RoBERTa and XLNet
show lower performance overall.

For this verb sense disambiguation analysis, the
Head-Word token is of note because it corresponds
to the central verb of interest, so its sense can
only be distinguished by its combination with the
other word of the phrase. XLM-RoBERTa has
the weakest performance with Head-Word, while
BERT and DistilBERT demonstrate strong disam-
biguation with this token. As for the CLS token,
RoBERTa produces the highest quality representa-
tion at layer 1, and BERT outperforms other models
starting from layer 6, with DistilBERT also show-
ing strong performance across layers.

Notably, the observed parallels to our correlation
and classification results are in alignment with the
uncontrolled rather than the controlled versions of
those tests. So while these parallels lend further
credence to the general observations that we make
about phrase representation patterns across models,
layers, and representation types, it is worth not-
ing that these landmark composition tests may be
susceptible to lexical effects similar to those con-
trolled for above. Since these test items are too few
to filter with the above methods, we leave in-depth
investigation of this question to future work.

8 Discussion

The analyses reported above yield two primary
takeaways. First, they shed light on the nature
of these models’ phrase representations, and the
extent to which they reflect word content versus
phrasal composition. At many points in these mod-
els there is non-trivial alignment with human judg-
ments of phrase similarity, paraphrase classifica-
tion, and verb sense selection. However, when we
control our correlation and classification tests to
remove the cue of word overlap, we see little evi-
dence that the representations reflect sophisticated
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Figure 6: Landmark experiments. Y-axis denotes the percentage of samples that are shifted towards the correct
landmark words in each layer. Missing bars occur when representations are independent of input at layer 0, such
that cosine similarity between phrases and landmarks will always be 1.

phrase composition beyond what can be gleaned
from word content. While we see strong perfor-
mance on classic sense selection items designed
to test phrase composition, the observed results
largely parallel those from the uncontrolled ver-
sions of the correlation and classification analyses,
suggesting that success on this landmark test may
reflect lexical properties more than sophisticated
composition. Given the importance of systematic
meaning composition for robust and flexible lan-
guage understanding, based on these results we
predict that we will see corresponding weaknesses
as more tests emerge for these models’ handling of
subtle meaning differences in downstream tasks.

Our systematic examination of models, layers
and representation types yields a second takeaway
in the form of practical implications for selecting
and extracting representations from these models.
For faithful representations of word content, Avg-
Phrase is generally the strongest candidate. If only
the phrase is embedded, drawing from earlier lay-
ers is best in ROBERTa, XILM-RoBERTa, and XL-
Net, while middle layers are better in BERT, and
later layers in DistilBERT. If the phrase is input
as part of a sentence, middle layers are generally
best across models. Though the CLS token is often
interpreted to represent a full input sequence, we
find it to be a poor phrase representation even with
phrase-only input, with the notable exception of
the final layer of DistilBERT.

As for representations that reflect true phrase
meaning composition, we have established that
such representations may not currently be avail-
able in these models. However, to the extent
that we do see weak evidence of potential com-
positional meaning sensitivity, this appears to be

strongest in DistilBERT’s CLS token in final layers,
in RoOBERTa’s Avg-Phrase representation in later
layers, and in XLM-RoBERTa’s Avg-Phrase repre-
sentation from later layers only when the phrase is
contained within a sentence context.

9 Conclusions and future directions

We have systematically investigated the nature of
phrase representations in state-of-the-art transform-
ers. Teasing apart sensitivity to word content ver-
sus phrase meaning composition, we find strong
sensitivity across models when it comes to word
content encoding, but little evidence of sophisti-
cated phrase composition. The observed sensitivity
patterns across models, layers, and representation
types shed light on practical considerations for ex-
tracting phrase representations from these models.

Future work can apply these tests to a broader
range of models, and continue to develop controlled
tests that target encoding of complex compositional
meanings, both for two-word phrases and for larger
meaning units. We hope that our findings will stim-
ulate further work on leveraging the power of these
generalized transformers while improving their ca-
pacity to capture compositional meaning.
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