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Abstract

We present the first algorithm to morph graphs on the torus. Given two isotopic essentially
3-connected embeddings of the same graph on the Euclidean flat torus, where the edges in both
drawings are geodesics, our algorithm computes a continuous deformation from one drawing to the
other, such that all edges are geodesics at all times. Previously even the existence of such a morph
was not known. Our algorithm runs in O(n1+ω/2) time, where ω is the matrix multiplication expo-
nent, and the computed morph consists of O(n) parallel linear morphing steps. Existing techniques
for morphing planar straight-line graphs do not immediately generalize to graphs on the torus; in
particular, Cairns’ original 1944 proof and its more recent improvements rely on the fact that every
planar graph contains a vertex of degree at most 5. Our proof relies on a subtle geometric analysis
of 6-regular triangulations of the torus. We also make heavy use of a natural extension of Tutte’s
spring embedding theorem to torus graphs.
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this work were done while the second author was visiting Utrecht University. No animals were harmed in the making of this
paper.

ar
X

iv
:2

00
7.

07
92

7v
1 

 [
cs

.C
G

] 
 1

5 
Ju

l 2
02

0

https://cs.slu.edu/~chambers/
http://jeffe.cs.illinois.edu
https://patrickl.in/
http://www.sparsa.net/


How to Morph Graphs on the Torus 1

1 Introduction

Computing a morph between two given geometric objects is a fundamental problem, with applications
to questions in graphics, animation, and modeling. In general, the goal is twofold: ensure the morphs
are as low complexity as possible, and ensure that the intermediate objects retain the same high level
structure throughout the morph.

Morphs between planar drawings are well studied in the topology, graph drawing, and computer
graphics literature, with many variants. A morph between two planar straight-line embeddings Γ0 and Γ1
of the same planar graph is a continuous family of planar embeddings Γt parametrized by time, starting
at Γ0 and ending at Γ1. In the most common formulation, all edges must be straight line segments at all
times during the morph; there are then many variables of how to optimize the morph.

In this paper, we consider the more general setting of morphs between two isotopic embeddings
of the same graph on the flat torus. To our knowledge, ours is the first algorithm to morph graphs
on any higher-genus surface. In fact, it is the first algorithm to compute any form of isotopy between
surface graphs; existing algorithms to test whether two graphs on the same surface are isotopic are non-
constructive [26]. Our algorithm outputs a morph consisting of O(n) steps; within each step, all vertices
move along parallel geodesics at (different) constant speeds, and all edges remain geodesics (“straight
line segments”). Our algorithm runs in O(n1+ω/2); the running time is dominated by repeatedly solving
a linear system encoding a natural generalization of Tutte’s spring embedding theorem.

1.1 Prior Results (and Why They Don’t Generalize)

Cairns [18, 19] was the first to prove the existence of a straight-line continuous deformation between
any two isomorphic planar straight-line triangulations. A long series of later works, culminating in
papers by Alamdari et al. [1] and Kleist et al. [49], improved and generalized Cairns’ argument to
apply to arbitrary planar straight-line graphs, to produce morphs with polynomial complexity, and to
derive efficient algorithms for computing those morphs. (For a more detailed history of these results, we
refer the reader to Alamdari et al. [1] and Roselli [69].) Cairns’ inductive argument and its successors
fundamentally rely on two simple observations: (1) Every planar graph has at least one vertex of degree
at most five, and (2) Every polygon with at most five vertices has at least one vertex in its visibility kernel.
Thus, every planar straight-line graph contains at least one vertex that can be collapsed to one of its
neighbors while preserving the planarity of the embedding.

Unfortunately, the first of these observations fails for graphs on the torus; it is easy to construct a
triangulation of the torus in which every vertex has degree 6. Moreover, not every star-shaped hexagon
has a vertex in its visibility kernel. Thus, it is no longer immediate that in any geodesic toroidal triangu-
lation, one can move a vertex to one of its neighbors while maintaining a proper geodesic embedding.
(Indeed, the fact that we can actually collapse such an edge is the main topic of Section 4.)

Floater and Gotsman [38] described an alternative method for morphing planar triangulations using
a generalization of Tutte’s spring-embedding theorem [75]. Every interior vertex in a planar triangu-
lation can be expressed as a convex combination of its neighbors. Floater and Gotsman’s morph lin-
early interpolates between the coefficients of these convex combinations; Tutte’s theorem implies that
at all times, the interpolated coordinates are consistent with a proper straight-line embedding. Gots-
man and Surazhsky later generalized Floater and Gotsman’s technique to arbitrary planar straight-line
graphs [43,71,72].

At its core, Floater and Gotsman’s algorithm relies on the fact that the system of linear equations
expressing vertices as convex combinations of their neighbors has full rank. An analogous system of
equations describes equilibrium embeddings of graphs on the torus [34,42]; however, for graphs with n
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vertices, this linear system has 2n equations over 2n variables (the vertex coordinates), but its rank is
only 2n−2. If the linear system happens to have a solution, that solution is consistent with a proper
embedding [25,29,42,57]; unfortunately, the system is not always solvable.

When the coefficients associated with each edge are symmetric, the linear system has a two-dimen-
sional set of solutions, which correspond to proper embeddings that differ only by translation. (See our
Theorem 2.1 below.) Thus, if two given triangulations can both be described by symmetric coefficients,
linearly interpolating those coordinates yields an isotopy [27]. Otherwise, however, even if the initial
and final coefficient vectors are feasible, weighted averages of those coefficients might not be. Steiner
and Fisher [70] modify the linear system by fixing one vertex, restoring full rank. However, while the
solution to this linear system always describes a geodesic drawing of the graph, edges in that drawing
can cross. In either setting, linearly interpolating the edge coefficients does not yield a morph.

Both of these approaches produce planar morphs that require high numerical precision to describe
exactly. Barerra-Cruz et al. [11] describe an algorithm to morph between two isomorphic weighted
Schnyder drawings of the same triangulation, each determined by a Schnyder wood together with an
assignment of positive weights to the faces. The resulting morph consists of O(n2) steps, where after
each step, all vertices lie on a 6n × 6n integer grid. The algorithm relies crucially on the fact that
the set of Schnyder woods of a planar triangulation is a distributive lattice [37]. Despite some initial
progress by Barerra-Cruz [9], it is still an open question whether this algorithm can be extended to
arbitrary planar triangulations, or even to arbitrary planar straight-line graphs. Beyond that, it is also
not clear whether this result can be extended to toroidal graphs. Aleardi et al. [3] and Gonçalves and
Lévêque [41] describe natural generalizations of Schnyder woods to graphs on the torus; however, the
Schnyder woods (or 3-orientations) of a toroidal triangulation do not form a distributive lattice.

Considerably less is known about morphing graphs on higher-genus surfaces. Like earlier planar
morphing algorithms, our algorithm follows the same inductive strategy as several earlier algorithms
for transforming combinatorial embeddings into geodesic embeddings on the torus [50, 59, 60]. Our
algorithm most closely resembles an algorithm of Kocay et al. [50], which transforms any essentially
3-connected toroidal embedding into an isotopic geodesic embedding, by repeatedly collapsing vertices
with degree at most 5 until the embedding becomes a 6-regular triangulation.

1.2 Outline of Our Results

We begin by reviewing relevant definitions and background in Section 2. Most importantly, we review a
natural generalization of Tutte’s spring embedding theorem [75] to graphs on the flat torus, first proved
by Y. Colin de Verdière [25]; see Theorem 2.1. We present a technical overview of our contributions in
Section 3, deferring details to later sections for clarity.

Like many previous planar morphing papers, most of our paper is devoted to computing pseudo-
morphs between triangulations. A pseudomorph is a continuous deformation in which vertices are al-
lowed to coincide during the motion but edges are not allowed to cross. Our pseudomorph algorithm
uses two different operations that reduce the complexity of the graph: direct collapses, which move one
vertex to one of its neighbors, and spring collapses, which increase the weight of one edge to infinity
while maintaining an equilibrium embedding, as described by Theorem 2.1. The heart of our result is
a novel analysis of 6-regular toroidal triangulations in Section 4, which implies that every non-trivial
toroidal triangulation contains at least one edge that can be directly collapsed without introducing any
crossings. We regard this analysis as the main technical contribution of our paper. We describe and
analyze spring collapses in Section 5, again relying on Theorem 2.1. We describe and analyze the base
case of our pseudomorph algorithm in Section 6: a special class of triangulations we call zippers, where
every vertex is incident to a loop.
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In Section 7, we show that a mild generalization of techniques from Alamdari et al. [1] can be used
to perturb our pseudomorph into a proper morph; this perturbation technique gives us our final mor-
phing algorithm for triangulations. Finally, in Section 8, we describe a simple reduction from morphing
essentially 3-connected geodesic toroidal embeddings to morphing triangulations, again using Theorem
2.1. We conclude in Section 9 with some open problems and future directions to consider.

2 Background and Definitions

2.1 The Flat Torus

The flat torus T is the metric space obtained by identifying opposite sides of the unit square [0,1]2 in
the Euclidean plane via (x , 0)∼ (x , 1) and (0, y)∼ (1, y). See Figure 1. Equivalently, T is the quotient
space T = R2/Z2, obtained by identifying every pair of points whose x- and y-coordinates differ by
integers. The function π: R2 → T defined by π(x , y) = (x mod 1, y mod 1) is called the covering map
or projection map.

A geodesic in T is the projection of any line segment in R2; geodesics are the natural analogues of
“straight line segments” on the flat torus. We emphasize that a geodesic is not necessarily the shortest
path between its endpoints; indeed, there are infinitely many geodesics between any two points on T.
A closed geodesic in T is any geodesic whose endpoints coincide; the two ends of any closed geodesic
are locally collinear.

2.2 Toroidal Embeddings

Geodesic toroidal drawings are the natural generalizations of straight-line planar graphs to the flat torus.
Formally, a geodesic toroidal drawing Γof a graph G is a mapping of vertices to distinct points of T and
edges to non-intersecting geodesics between their endpoints. Following standard usage in topology, we
refer to any such drawing as embedding, to emphasize that edges do not cross.1

A homotopy between two (not necessarily injective) drawings Γ0 and Γ1 of the same graph G is a
continuous function H : [0,1]× G → T where H(0, ) =Γ0 and H(1, ) =Γ1. A cycle on T is contractible
if it is homotopic to a single point and non-contractible otherwise. A homotopy is an isotopy if each
intermediate function H(t, ) is injective. In other words, an isotopy is a continuous family of embeddings
(Γt)t∈[0,1] that interpolates between Γ0 and Γ1. (Edges in these intermediate embeddings Γt are not
necessarily geodesics.)

vu vu vu

Figure 1. Three combinatorially equivalent but non-isotopic geodesic toroidal triangulations with parallel edges and loops.
Opposite edges of the square are identified.

1Formally, an embedding is a continuous injective map from the graph (as a topological space) to the torus T. We note
that this usage differs from standard terminology in many other graph drawing papers, where “embedding” refers to either a
homeomorphism class of (not necessarily injective) drawings or a rotation system.
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Two toroidal embeddings of the same graph need not be isotopic, even if they have the same rotation
system; see Figure 1. A recent algorithm of É. Colin de Verdière and de Mesmay [26] can decide whether
two toroidal drawings of the same graph are isotopic in linear time; we describe an arguably simpler
linear-time algorithm in Appendix A. However, neither of these algorithms actually construct an isotopy
if one exists; rather, they check whether the two embeddings satisfy certain topological properties that
characterize isotopy [52–54].

We explicitly consider embeddings of graphs with parallel edges and loops. In every geodesic
toroidal embedding, every loop is non-contractible (since otherwise it would be a single point), and
no two parallel edges are homotopic (since otherwise they would coincide). In this paper, we consider
only geodesic embeddings; we occasionally omit the word “geodesic” when it is clear from context.

The universal cover eΓof a geodesic toroidal embedding Γis the unique infinite straight-line plane
graph whose projection to T is Γ; that is, the projection of any vertex, edge, or face of eΓis a vertex,
edge, or face of Γ, respectively. A lift of any vertex u in Γis any vertex in the preimage π−1(u) ⊂ V (eΓ).
Similarly, each edge of Γlifts to an infinite lattice of parallel line segments in R2, and each face lifts to
an infinite lattice of congruent polygons.

vu vu vuvu vu

vu vu vu

vu vu vu

vu vu

vu vu vu

vu vu vu

vu vu

vu vu vu

vu vu vu

Figure 2. Universal covers of the geodesic embeddings from Figure 1.

The link of a vertex eu in the universal cover eΓis the simple polygon formed by the boundary of the
union of the (closed) faces incident to eu; the vertices of the link are the neighbors of eu. We emphasize
that when projecting a link down to the flat torus, the vertices and edges of the link need not remain
distinct; see Figure 1 for an example. For a vertex u in Γ, we informally write “link of u” to refer to
the link of an arbitrary lift eu of u, and similarly for edges of Γ. Because the links of any two lifts are
congruent, any property proven about one lift applies to all of the others.

Geometric properties of geodesics, polygons, and embeddings on the flat torus are defined by pro-
jection from the universal cover. For example, the angle between two edges (or geodesics) e and e0 at
a common vertex u is equal to the angle between lifts ee and ee0 at a common lift eu. Similarly, the cyclic
order of edges around a vertex u of Γis the cyclic order of the corresponding edges around an arbitrary
lift eu. In particular, if u is incident to a loop, that loop appears twice in cyclic order around u, and each
lift eu of u is incident to two different lifts of that loop. Finally, convex or reflex angles in the link of a
vertex in Γare projections of convex or reflex angle in the link of an arbitrary lift eu.

A toroidal embedding Γis a triangulation if every face of Γis bounded by three (not necessarily
distinct) edges, or equivalently, if its universal cover eΓis a planar triangulation. In particular, we do not
insist that triangulations are simplicial complexes. Every geodesic toroidal embedding Γis essentially
simple, meaning its universal cover eΓis a planar embedding of a simple (albeit infinite) graph. A geo-
desic toroidal drawing Γis essentially 3-connected if its universal cover eΓis 3-connected [41, 61–64];
every geodesic triangulation is essentially 3-connected.
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2.3 Coordinates and Crossing Vectors

To represent an arbitrary straight-line embedding of a graph in the plane, it suffices to record the coor-
dinates of each vertex; each edge in the embedding is the unique line segment between its endpoints.
However, vertex coordinates alone are not sufficient to specify a toroidal embedding; intuitively, we
must also specify how the edges of the graph wrap around the surface.

Formally, we regard each edge of the graph G as a pair of opposing half-edges or darts, each directed
from one endpoint, called the tail, toward the other endpoint, called the head. We write rev(d) to denote
the reversal of any dart d; thus, for example, head(rev(d)) = tail(d) and rev(rev(d)) = d for every dart d.

We can represent any geodesic embedding of any graph G onto the torus by associating a coordinate
vector p(v) ∈ [0, 1)2 with every vertex v of G and a crossing vector x(d) ∈ Z2 with every dart d of G. The
coordinates of a vertex specify its position in the unit square; to remove any ambiguity, we assign points
on the boundary of the unit square coordinates on the bottom and/or left edges. The crossing vector of
a dart records how that dart crosses the boundaries of the unit square. Specifically, the first coordinate
of x(d) is the number of times d crosses the vertical boundary to the right (with negative numbers
counting leftward crossings), and the second coordinate of x(d) is the number of times d crosses the
horizontal boundary upward (with negative numbers counting downward crossings). Crossing vectors
are anti-symmetric: x(rev(d)) =−x(d) for every dart d. See Figure 3.

vu vu vu

←[–1,1]

←[–1,0] [0,0]→

[0
,1
]→

←[–1,1]

←[–1,0] [0,–1]→

[0,0]→

[0
,1
]→

←[–1,0]
[0,0]→

[1,1
]→

Figure 3. The geodesic embeddings from Figure 1, showing the crossing vectors of all four darts from u to v.

Crossing vectors and their generalizations have been used in several previous algorithms for surface
graphs [20–22,33,35,36] and simplicial complexes [17,30,31] to encode the homology classes of cycles.
Crossing vectors are also equivalent to the translation vectors traditionally used to model periodic (or
“dynamic”) graphs [24,28,44–46,48,51,66,67,76] and more recently used to model periodic bar-and-
joint frameworks [14,15].

In principle, our morphing algorithm can be modified to update the coordinates of any vertex v and
the crossing vectors of darts incident to v whenever v crosses the boundary of the unit square, with only
a small penalty in the running time. But in fact, this maintenance is not necessary; it suffices to modify
only the vertex coordinates, keeping all crossing vectors fixed throughout the entire morph, even when
vertices cross the boundary of the unit square. We describe how to interpret toroidal embeddings with
these more relaxed coordinates in Appendix A.

2.4 Equilibrium Embeddings

We make frequent use of the following natural generalization of Tutte’s “spring embedding” theorem
for 3-connected planar graphs [75]:

Theorem 2.1 (Y. Colin de Verdière [25]; see also [29,42,57]). Let Γbe any essentially 3-connected
geodesic toroidal drawing, where each edge e has an associated weight λ(e) > 0. Then Γis isotopic to
a geodesic embedding Γ∗ in T such that every face is convex and each vertex is the weighted center of
mass of its neighbors; moreover, this equilibrium embedding is unique up to translation.
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The equilibrium embedding Γ∗ can be computed by solving the following linear system for the vertex
coordinates p∗(v), treating the crossing vectors x(d) and weights λ(d) as constants [25,34,42,70]:

X

tail(d)=v

λ(d) ·
�

p∗(head(d)) + x(d)−p∗(v)
�

= (0,0) for every vertex v (?)

Here λ(d) = λ(rev(d)) is the weight of the edge containing dart d. This linear system has a two-
dimensional set of solutions, which differ by translation [25, 42]; we can remove this ambiguity by
fixing p∗(r) = (0, 0) for some arbitrary root vertex r [70]. Some vertex coordinates p∗(v) in the solution
to this system may lie outside the unit square; as we explain in Appendix A, it is possible to move all
coordinates back into the unit square by appropriately adjusting the crossing vectors, but in fact no such
adjustment is necessary.

The support of this linear system is the toroidal graph G, which has balanced separators of size
O(
p

n) [4]. Thus, the linear system can be solved in O(nω/2) time using the generalized nested dissection
technique of Lipton et al. [56], where ω< 2.37287 is the matrix multiplication exponent [55].

2.5 Morphs and Pseudomorphs

A morph between two isotopic geodesic toroidal drawings Γ0 and Γ1 is a continuous family of geodesic
drawings (Γt)t∈[0,1] from Γ0 to Γ1; in other words, a morph is a geodesic isotopy between Γ0 and Γ1. Any
morph is completely determined by the continuous motions on the vertices; geodesic edges update in
the obvious way.

A morph is linear if every vertex moves along a geodesic from its initial position to its final position
at a uniform speed, and a morph is parallel if all vertices move along parallel geodesics, that is, along
projections of parallel line segments.2 In this paper, we construct morphs that consist of a sequence of
O(n) parallel linear morphs. Every morph of this type can be specified by a sequence of isotopic geodesic
toroidal embeddings Γ0, . . . ,Γk and for each index i, a set of parallel geodesics connecting the vertices
of Γi to corresponding vertices of Γi+1.

Like many previous planar morphing algorithms, our morphing algorithm first constructs a pseudo-
morph, which is a continuous family of drawings in which edges remain geodesics, vertices may become
coincident, but edges never cross. The most basic ingredient in our pseudomorph is an edge collapse,
which moves the endpoints of one edge together until they coincide.3 Collapsing an edge also collapses
the faces on either side of that edge to geodesics. Our final morph is obtained by carefully perturbing a
pseudomorph consisting of edge collapses and their reversals.

3 Technical Overview

In this section, we give a technical overview of our results: at a high level, first we develop an algorithm
to compute a pseudomorph between geodesic toroidal triangulations, and then we describe how to use
this algorithm to compute a morph between essentially 3-connected geodesic toroidal embeddings. Here
we give only a brief overview of several necessary tools; each of these components is developed in detail
in a later section of the paper.

2The paper of Alamdari et al. [1] and its predecessors [7,10] call these “unidirectional" morphs; however, this term suggests
incorrectly that vertices cannot move in opposite directions.

3This procedure is often called edge contraction in planar graph morphing literature; we use the term “collapse” to avoid
any confusion with the topological notion of contractible cycles.
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3.1 List of Ingredients

We begin with some essential subroutines and structural results.

3.1.1 Direct collapses

Following Cairns’ approach [18] and its later derivatives [1, 2, 6, 7, 10], a direct collapse consists of
moving a vertex u along some edge to another vertex v, at uniform speed, until u and v coincide,
keeping all other vertices fixed. To simplify our presentation, we require that the moving vertex u is
not incident to a loop. We informally call a vertex good if it is not incident to a loop and it can be
directly collapsed to one of its neighbors without introducing any edge crossings, and bad otherwise;
see Section 4 for a simple geometric characterization of good vertices.

As noted by Cairns [18], every vertex of degree at most 5 not incident to a loop is good; indeed,
this fact, along with the fact that every planar graph has a vertex of degree at most 5, forms the basis
of Cairns’ approach and its derivatives for computing (pseudo)morphs between straight-line planar
drawings. We prove in Lemma 6.1 that in any geodesic toroidal triangulation, a vertex of degree at
most 5 cannot be incident to a loop, so in fact all vertices of degree at most 5 are good.

On the other hand, Euler’s formula implies that the average degree of a toroidal graph is exactly 6,
and there are simple examples of degree-6 vertices that are bad. Morphing between torus graphs thus
requires new techniques to handle the special case of 6-regular triangulations.

3.1.2 6-regular triangulations

We then prove in Lemma 6.2 that if a 6-regular toroidal triangulation contains a loop, then in fact
every vertex is incident to a loop; we call this special type of triangulation a zipper. Because all the
loops in any non-trivial zipper are parallel, morphing between isotopic zippers Z0 and Z1 turns out be
straightforward. If the zippers have only one vertex, they differ by a single translation. Otherwise, two
parallel linear morphs suffice, first sliding the loops of Z0 to coincide with the corresponding loops in Z1,
and then rotating the loops to move vertices and non-loop edges to their locations in Z1. We describe
and analyze zippers in detail in Section 6.

We analyze 6-regular triangulations without loops in detail in Section 4; we regard this analysis as
the main technical contribution of the paper. Averaging arguments imply that in any 6-regular trian-
gulation where every vertex is bad, in short a bad triangulation, every vertex link is one of two specific
non-convex hexagons that we call cats and dogs, illustrated in Figure 8. Analysis of how cats and dogs
can overlap implies that any bad triangulation must contain a non-contractible cycle of vertices (each
of whose link is a cat) that consistently turns in the same direction at every vertex, and therefore has
non-zero turning angle, contradicting the fact that the total turning angle of every non-contractible cycle
on the flat torus is zero [68]. We conclude that bad triangulations do not exist; every geodesic toroidal
triangulation that is not a zipper contains at least one good vertex.

3.1.3 Equilibria and Spring Collapses

Suppose we are given two isotopic geodesic triangulations Γ0 and Γ1 that are not zippers. Our analysis
implies that Γ0 and Γ1 each contain at least one good vertex. However, it is possible that no vertex is
good in both Γ0 and Γ1. More subtly, even if some vertex u is good in both triangulations, that vertex
may be collapsible along a unique edge e0 in Γ0 but along a different unique edge e1 in Γ1.

The second problem also occurs for straight-line planar embeddings. Cairns’ solution to this problem
was to introduce an intermediate triangulation Γ1/2 in which u can be collapsed along both e0 and e1.
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Recursively constructing pseudomorphs from Γ0 to Γ1/2 and from Γ1/2 to Γ1 yields a pseudomorph from Γ0
to Γ1 with exponentially many steps. Subsequent refinements of Cairns’ approach, culminating in the
work of Alamdari et al. [1] and later improvement by Kleist et al. [49], obtained a pseudomorph with
only polynomial complexity by finding clever ways to avoid this intermediate triangulation.

Our algorithm does introduce one intermediate triangulation, but still avoids the exponential blowup
of Cairns’ algorithm. Specifically, we use an equilibrium triangulation Γ∗ isotopic to Γ0 and Γ1, as given by
Theorem 2.1. A vertex that is good in Γ0 might still be bad in Γ∗, so instead of applying a direct collapse
to Γ∗, we introduce a novel method for collapsing edges in an equilibrium embedding in Section 5.
Intuitively, we continuously increase the weight of an arbitrary edge e to infinity, while maintaining
the equilibrium triangulation given by Theorem 2.1. This spring collapse moves the endpoints of e
together, just like a direct collapse. By analyzing the solutions to the equilibrium linear system (?), we
show that a spring collapse is a parallel pseudomorph, and in fact can be simulated by an equivalent
parallel linear pseudomorph. Moreover, this parallel linear pseudomorph can be computed by solving a
single instance of system (?).

3.2 Recursive Pseudomorph Between Triangulations

We are now ready to describe our recursive algorithm to compute a pseudomorph between two isotopic
geodesic triangulations Γ0 and Γ1. We actually explain how to compute a pseudomorph Ψ0 from Γ0 to an
isotopic equilibrium triangulation Γ∗. The same algorithm gives a pseudomorph Ψ1 from Γ1 to Γ∗, and
concatenating Ψ0 with the reversal of Ψ1 yields the desired pseudomorph from Γ0 to Γ1.

If Γ0 is a zipper, we morph directly between Γ0 and the equilibrium zipper Γ∗ using at most two
parallel linear morphs. This is the base case of our recursive algorithm.

If Γ0 is not a zipper, then it contains a good vertex u. By definition, u can be directly collapsed along
some edge e to another vertex v, without introducing edge crossings. This direct collapse gives us a
parallel linear pseudomorph from Γ0 to Γ00, a geodesic toroidal triangulation whose underlying graph G0

has n−1 vertices. On the other hand, performing a spring collapse in Γ∗ by increasing the weight of the
same edge e to ∞ leads to a drawing where u and v coincide, that is, an equilibrium triangulation Γ0∗
of G0 that is isotopic to Γ00. Finally, because Γ00 and Γ0∗ are isotopic embeddings of the same graph G0, we
can compute a pseudomorph from Γ00 to Γ0∗ recursively.

Our full pseudomorph from Γ0 to Γ∗ thus consists of the direct collapse from Γ0 to Γ00, followed by
the recursive pseudomorph from Γ00 to Γ0∗, followed by the reverse of the spring collapse from Γ∗ to Γ0∗.
See Figure 4.

!✨

Figure 4. Our pseudomorph consists of a direct collapse, a recursive pseudomorph, and a reversed spring collapse.

Altogether our pseudomorph consists of O(n) parallel linear pseudomorphs: at most n direct col-
lapses to reach a zipper, O(1) parallel linear pseudomorphs to reach an equilibrium zipper, and finally
at most n reversed spring collapses. The time to compute the overall pseudomorph is dominated by the
time needed to compute the O(n) equilibrium embeddings; the overall running time is O(n1+ω/2).
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3.3 Morphing Between Embeddings

In Section 7, we show that a technique introduced by Alamdari et al. [1] for perturbing planar pseudo-
morphs into morphs can be applied with only minor modifications to our toroidal pseudomorphs, to pro-
duce morphs between geodesic toroidal triangulations. This perturbation step adds only O(n2) overhead
to the running time of our algorithm, and the resulting morphs consist of O(n) parallel linear morphs.

Finally, in Section 8, we describe a simple reduction from morphing arbitrary essentially 3-connected
embeddings to the special case of morphing triangulations. In brief, given any triangulation of any
essentially 3-connected geodesic toroidal embedding Γ, the isotopic equilibrium embedding Γ∗ given
by Theorem 2.1 can be triangulated in the same way, and any morph between the two triangulations
induces a morph between Γand Γ∗. This reduction preserves the number of parallel linear morphs and
adds only O(nω/2) overhead to the running time.

In summary, given any two isotopic essentially 3-connected geodesic toroidal embeddings, we can
construct a morph between them, consisting of O(n) parallel linear morphs, in O(n1+ω/2) time.

4 Cats and Dogs

In this section, we present the core of our technical analysis: the proof that every geodesic toroidal
triangulation without loops has a (directly) collapsible edge.

The visibility kernel of a simple polygon P is the set of all points in P that can “see” all of P; more
formally, the visibility kernel is {p ∈ P | pq ⊆ P for all q ∈ P}. The visibility kernel is always convex.
If P is the link of a vertex v in a geodesic triangulation, then v must lie in the visibility kernel of P. We
call a simple polygon good if its visibility kernel contains a vertex of the polygon, and bad otherwise.
All triangles, quadrilaterals, and pentagons are good [18], but some hexagons are bad; Figure 5 shows
several examples.

Figure 5. Three bad hexagons. Visibility kernels are shaded in blue; the third visibility kernel is empty.

A vertex u of a geodesic toroidal triangulation is good if it is not incident to a loop, and the link of
any (and thus every) lift ũ of u in eΓis good, and bad otherwise. A good vertex can be safely collapsed
to any neighbor in the visibility kernel of its link. Finally, a geodesic toroidal triangulation Γwith no
loops is good if it contains at least one good vertex, and bad otherwise. The main result of this section
is that bad triangulations do not exist; that is, every geodesic triangulation with no loops is good.

Lemma 4.1. Any bad triangulation is 6-regular, and the link of each vertex has exactly two reflex ver-
tices.

Proof: Every vertex in a bad triangulation must have degree at least 6, because every vertex with degree
at most 5 is good [18]. On the other hand, Euler’s formula for the torus implies that the average degree
is exactly 6. It follows that every bad triangulation is 6-regular.
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If a simple polygon is convex or has exactly one reflex vertex, then it is good: the visibility kernel
of a convex polygon is the polygon itself, and if there is exactly one reflex vertex, then the reflex vertex
is in the visibility kernel. So each link in a bad triangulation has at least two reflex vertices. We argue
next that the average number of reflex vertices per link is at most two, which implies that every link has
exactly two reflex vertices.

Let Γbe any (not necessarily bad) 6-regular geodesic triangulation. A corner of a vertex v in Γis
the angle between two edges that are adjacent in cyclic order around v. If v is a vertex of the link of
another vertex x , then the link of x contains exactly two adjacent corners of v. Moreover, if v is a reflex
vertex of the link of x , those two corners sum to more than half a circle. Thus, if v is reflex in the link
of two neighbors x and y , the links of x and y must share a corner of v, which implies that edges vx
and v y are adjacent in cyclic order around v; see 6. If v were reflex in the link of three neighbors x , y ,
and z, then all three edge pairs vx , v y and vx , vz and v y , vz would be adjacent around v, which is
impossible because v has degree 6.

x y

v

Figure 6. Each vertex in a 6-regular triangulation is reflex in at most two links

Thus, each vertex in Γis a reflex vertex of the links of at most two other vertices. It follows that the
average number of reflex vertices in a link is at most two, which completes the proof. �

Lemma 4.2. A bad hexagon with two reflex vertices separated by two convex vertices is never the link
of any vertex.

Proof: Consider a bad hexagon P whose reflex vertices are separated by two convex vertices. Label the
vertices a through f in cyclic order such that c and f are the reflex vertices, as shown in Figure 7.

a
b

c
d

e

f

Figure 7. A hexagon with two reflex vertices that are separated by two convex vertices. The diagonal between the reflex vertices
splits the hexagon into two non-convex quadrilaterals with disjoint visibility kernels.

Because P is bad, neither c nor f lies in its visibility kernel. Vertex c can see vertices b, d, and f , so
it cannot see both a and e. Without loss of generality, suppose c cannot see a. Then f is a reflex vertex
of the quadrilateral abc f . Every quadrilateral has at most one reflex vertex, and that reflex vertex is
in the visibility kernel, so f can see b. It follows that f cannot see d, and c is a reflex vertex of the
quadrilateral cde f .

The visibility kernels of quadrilaterals abc f and cde f are disjoint, which implies that the visibility
kernel of P is empty. We conclude that P is not the link of any vertex. �

For the remainder of the proof, we annotate the edges of any triangulation as follows. The star of
an edge in a triangulation is the union of the faces incident to that edge. An edge is flippable if its star
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is convex, and non-flippable otherwise. Every non-flippable edge is incident to the unique reflex vertex
of its star; we direct each non-flippable edge away from this reflex vertex.

Lemma 4.3. In any bad triangulation, every vertex is incident to exactly two incoming directed edges,
exactly two outgoing directed edges, and exactly two flippable edges.

Proof: Fix a bad triangulation Γ. If w is a reflex vertex in the link of some vertex v, then the edge vw is
directed toward v. So Lemma 4.1 implies that each vertex is incident to two incoming edges. It follows
that the number of directed edges in Γis exactly twice the number of vertices. Thus, each vertex is
incident to at most two outgoing edges. Because the number of directed edges in G is exactly twice the
number of vertices, each vertex is incident to exactly two outgoing edges. Finally, because every vertex
of G is incident to exactly four directed edges, Lemma 4.1 implies that every vertex of G is incident to
two flippable edges. �

Lemmas 4.2 and 4.3 imply that the links in every bad triangulation fall into two categories, which
we call cats and dogs. A cat is a bad hexagon whose reflex vertices are adjacent; a dog is a bad hexa-
gon whose reflex vertices are separated by one convex vertex. Cats are (combinatorially) symmetric;
however, there are two species of dogs, which are reflections of each other.

ear

eye eye

ear

cheek cheek

nose

mouth

chin

eye

ear

nape

Figure 8. Feline and (right-facing) canine anatomy. Flippable edges are shown in double-thick green.

We label the vertices of each cat and dog mnemonically, as shown in Figure 8. For example, if the
link of vertex v is a dog, then nose(u) is the unique convex vertex of the dog whose neighbors are reflex,
and the vertex opposite nose(u) in the link is nape(u). Since nape(u) is incident to two convex vertices,
it can immediately see every other vertex in the link other than nose(u); its visibility of the nose is
blocked by one of the two reflex vertices, which we will call mouth(u). A dog is right-facing if mouth(u)
immediately follows nose(u) in clockwise order, and left-facing otherwise.

The following lemma implies that two boundary edges of each cat and dog are also flippable, as
shown in Figure 8.

Lemma 4.4. In any bad triangulation, every triangle is incident to exactly one flippable edge.

Proof: Fix a bad triangulation Γwith n vertices. Euler’s formula implies that Γhas 3n edges and 2n
triangular faces. Lemma 4.3 implies that Γhas exactly n flippable edges, so the average number of
flippable edges per triangle is exactly 1.

The flippable edges incident to any vertex v are separated in cyclic order around v by two non-
flippable edges if the link of v is a cat, or by one non-flippable edge if the link of v is a dog. Thus, two
flippable edges never appear consecutively around a common vertex. It follows that every triangle in Γ

is incident to at most one flippable edge. �
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Lemma 4.5. Every bad triangulation contains a cat.

Proof: Let Γbe a triangulation, and let u be any vertex in Γwhose link is a dog. We argue that the link
of the nose of u must be a cat. (Mnemonically, dogs only sniff cats.)

Without loss of generality, assume that the link of u is facing right, so the triple chin(u), nape(u),
ear(u) is oriented clockwise, as shown in Figure 9. The fact that the link of u is a bad hexagon implies
several orientation constraints on its vertices:

• The triple ear(u), eye(u), mouth(u) is oriented counterclockwise; otherwise, mouth(u) could see
the entire dog.

• The triple eye(u), mouth(u), chin(u) is oriented counterclockwise; otherwise, eye(u) could see the
entire dog.

• Finally, the triple nose(u), mouth(u), nape(u) is oriented counterclockwise; otherwise, nape(u)
could see the entire dog.

nose

mouth

chin

eye

ear

nape

Figure 9. Concave chains inside any dog.

Now suppose for the sake of argument that the link of v = nose(u) is a dog. We label the other
vertices of the link of u as shown on the top row of Figure 10; in particular, x = eye(u) and y =mouth(u).
Because the flippable edge uv is inside the link of v, either u = nose(v) or u = chin(v); each of these
cases admits two subcases. The four cases are illustrated schematically in the columns of Figure 10.

• Suppose u = nose(v) and x = mouth(u), and therefore y = eye(u). Let w0 = chin(v). The
triple w0, x , y must be oriented clockwise; our earlier analysis implies that w, x , y is oriented
counterclockwise. It follows that triangles w0x v and wxu overlap, which is impossible.

• Suppose u = nose(v) and x = eye(u), and therefore y = mouth(u). Let w0 = ear(v). The triple
w0, x , y must be oriented clockwise; our earlier analysis implies that w, x , y is oriented counter-
clockwise. It follows that triangles w0x v and wxu overlap, which is impossible.

• Suppose u= chin(v) and y = nape(v). Let w0 = nose(v). The triple w0, x , y is oriented clockwise;
our earlier analysis implies that w, y, z is oriented counterclockwise. It follows that triangles w0x v
and wxu overlap, which is impossible.

• Finally, suppose u = chin(v) and y = mouth(v). Let z0 = nose(v). The triple x , y, z0 is oriented
clockwise; our earlier analysis implies that x , y, z is oriented counterclockwise. It follows that
triangles z0 yv and z yu overlap, which is impossible.

In all four cases, we derive a contradiction. We conclude that the link of nose(u) is actually a cat. �
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Figure 10. A dog’s nose (v) cannot be the center of another dog.

Every 6-regular triangulation of the torus is isotopic to the quotient of the regular equilateral-triangle
tiling of the plane by a lattice of translations [5,16,65]. We analyze the patterns of cats and dogs in bad
triangulations by analyzing their images in this reference triangulation, and in particular, by studying
the induced annotations of edges, as illustrated in Figure 11.

ear

eye eye

ear

cheek cheek

nose

mouth

chin

eye

ear

nape

Figure 11. Feline and (right-facing) canine reference anatomy; compare with Figure 8.

A cycle in a 6-regular toroidal triangulation is straight if it corresponds to a closed geodesic in the
corresponding lattice triangulation. Every straight cycle is non-contractible.

Let C be a simple polygonal (i.e., piecewise geodesic) cycle, arbitrarily directed, and let v be any
vertex of C . Let ev be any lift of v, and let euev and evew be lifts of the edges of C incident to v. The turning
angle of C at u is the signed counterclockwise angle, strictly between −π and π, between the vectors
eu�ev and ev�ew. In other words, when walking along the cycle C in the indicated direction, the turning
angle is the angle one turns left at v (or right if the angle is negative). The total turning angle of C is
the sum of the turning angles of the vertices of C .

Lemma 4.6. Every simple non-contractible cycle on the flat torus has total turning angle zero.

Lemma 4.6 follows immediately from classical results of Reinhart [68]. In short, the total turning
angle (which Reinhart calls the “winding number”) is an isotopy invariant of closed curves, and every
simple non-contractible cycle on the flat torus is isotopic to a closed geodesic. Lemma 4.6 implies in
particular that every straight cycle has total turning angle zero.

Lemma 4.7. If a bad triangulation contains one dog, it contains a straight cycle of dogs.
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Proof: Let Γbe a bad triangulation and let v1 be any vertex of Γwhose link is a dog. Label the vertices
of v’s link as shown in Figure 12; for example, u1 = nose(v1), v2 =mouth(v1), and w1 = chin(v1).

Edges u1v1 and v1w1 are flippable, and therefore edges v1v2, u1v2, and w1v2 are not flippable. Thus,
no opposite pair of edges incident to v2 are both flippable. It follows that the link of v2 is a dog, whose
ear vertex is v1.

Edges u0v1, v0v1, and v1w0 are not flippable, so edges u0v0 and v0w0 must be flippable. Thus, the
link of v0 is also a dog, whose mouth vertex is v1.

u0

v0

w0

u1

v1

w1

v2

Figure 12. One dog induces a straight cycle of dogs.

Continuing by induction in both directions, we find a bidirectional sequence . . . , v−1, v0, v1, v2, . . .
of vertices whose links are dogs, where the center vi of each dog is the mouth of the previous dog and
the ear of the next dog. Because Γis finite, this sequence must eventually repeat, forming a straight
cycle. �

Finally, we are ready to prove the main theorem of this section.

Theorem 4.8. Bad triangulations do not exist.

Proof: Let Γbe a bad triangulation. We derive a contradiction by showing that Γcontains a non-
contractible cycle whose vertices all have cat links, whose edges are all non-flippable, and finally whose
turning angle is non-zero, contradicting Lemma 4.6.

Let u1 be any vertex of Γwhose link is a cat; Lemma 4.5 implies that such a vertex exists. Label the
vertices in the neighborhood of u1 as shown in Figure 13. The directions of the non-flippable edges of
the cat are not relevant, so we will ignore them. Thus, for example, u2 and v2 are either the eyes of u1’s
link or its cheeks.

First, suppose that Γcontains at least one dog, and therefore without loss of generality that u1 is
adjacent to a vertex v1 whose link is a dog. Up to symmetry, there are two cases to consider. If the link
of v1 is a dog whose mouth is v2, then the link of v2 is also a dog (whose ear is v1). Conversely, if the
link of v2 is a dog, the ear of that dog is v1, and thus, the link of v1 is also a dog whose mouth is v2. The
previous lemma now implies a straight cycle of dogs D = . . . , v0, v1, v2, v3, . . . .

u1 u2u0

v2v0 v1

Figure 13. One cat induces a straight cycle of cats.
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Because the link of v1 is a dog, edge u0v0 is flippable; it follows that the link of u0 is a cat. Similarly,
because the link of v3 is a dog, edge u3v3 is flippable; it follows that the link of u2 is a cat. Proceeding
inductively in both directions, we find a straight cycle C = . . . , u0, u1, u2, u3, . . . of vertices, parallel to
the cycle D of dogs, all of whose links are cats. Every edge uiui+1 in C is unflippable.

On the other hand, if Γcontains no dogs, then we can construct a straight cycle C = . . . , u0, u1, u2, . . .
of cat vertices starting with any unflippable edge u0u1. Again, every edge uiui+1 in C is unflippable.

Now suppose u2 is the left ear of u1. Then by induction, for every index i, vertex ui+1 is the left ear
of ui and ui−1 is the right cheek of ui . It follows that every triple ui−1uiui+1 is oriented clockwise, and
thus the total turning angle of C is negative, contradicting Lemma 4.6. The other three cases similarly
lead to contradictions; in all cases, every triple ui−1uiui+1 has the same orientation, which implies that
the total turning angle of C is non-zero, contradicting Lemma 4.6. �

5 Equilibrium Pseudomorphs

As pointed out in Section 3, when computing a recursive pseudomorph between two triangulations Γ0
and Γ1, we must contend with the fact that while each triangulation must contain a good vertex, there
may be no way to safely collapse the same vertex along the same edge in both triangulations. It is rela-
tively straightforward to adapt Cairns’ approach for planar graphs to the torus, by recursively computing
pseudomorphs from both Γ0 and Γ1 to a suitable intermediate triangulation; unfortunately, the resulting
pseudomorph from Γ0 to Γ1 consists of an exponential number of steps.

Instead, our algorithm introduces one intermediate triangulation isotopic to both Γ0 and Γ1, namely
an equilibrium triangulation Γ∗ guaranteed by Y. Colin de Verdière’s generalization of Tutte’s spring
embedding theorem (Theorem 2.1). In this section, we describe how to collapse an arbitrary edge e in
an equilibrium triangulation to obtain a simpler equilibrium triangulation. This operation allows us to
recursively compute a pseudomorph from either Γ0 or Γ1 to Γ∗ using only a linear number of steps, as
described in Section 3.2.

Intuitively, we continuously increase the weight of e to ∞ and maintain the equilibrium triangu-
lation. We show that the resulting “spring collapse” moves all vertices of the equilibrium embedding
along geodesics parallel to e, as shown in Figure 14; in particular, edge e collapses to a single vertex.
It follows that straightforward linear interpolation from one equilibrium triangulation to the other is a
parallel linear pseudomorph.

Figure 14. Increasing the weight of any edge e to infinity collapses e and moves every vertex parallel to e.

For any triangulation Γand any assignment of positive weights λ(e) to the edges of Γ, let Eq(Γ,λ)
denote the geodesic embedding isotopic to Γthat is in equilibrium with respect to the weight vector λ,
as guaranteed by Theorem 2.1. (At the top level of recursion, we can safely assume that λ(e) = 1
for every edge e, but as we point out in Section 5.2, we cannot maintain that assumption in deeper
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recursive calls.) For each vertex v of Γ, let p∗(v,λ) denote the coordinates of v in Eq(Γ,λ), obtained
by solving linear system (?). To define the embedding Eq(Γ,λ) and its coordinates p∗(v,λ) uniquely, fix
p∗(o,λ) = (0,0) for some arbitrary vertex o.

5.1 Parallel Motion

The following lemma states intuitively that changing a single edge weight λ(e) moves each vertex of
the equilibrium embedding Eq(Γ,λ) along a geodesic parallel to e.

Lemma 5.1. Let λ and λ0 be arbitrary positive edge weights such that λ(e) 6= λ0(e) for some edge e,
and λ(e0) = λ0(e0) for all edges e0 6= e. Let d be a dart of e with tail u and head v. Then for every vertex
w, the vector p∗(w,λ0)−p∗(w,λ) is parallel to p∗(v,λ)−p∗(u,λ) + x(d).

Proof: Arbitrarily index the vertices of Γfrom 1 to n. Fix a non-zero vector σ ∈ R2 orthogonal to the
vector p∗(v,λ)−p∗(u,λ)+ x(d). For each vertex i, let zi = p∗(i,λ) ·σ and z0i = p∗(i,λ0) ·σ, and for each
dart d, let χ(d) = x(d) ·σ. Our choice of σ implies that zu −zv = χ(d). We need to prove that z0i = zi
for every vertex i.

The real vector Z = (zi)i is a solution to the linear system LZ = X , where L is the n× n weighted
Laplacian matrix

Li j =



















X

tail(d)=i

−λ(d) if i = j

X

tail(d)=i
head(d)= j

λ(d) if i 6= j

and H ∈ Rn is a vector whose ith entry is

Hi =
X

tail(d)=i

−λ(d)χ(d).

(In fact, Z is the unique solution such that zo = 0.) Similarly, Z 0 = (z0i)i is the unique solution to an
analogous equation L0Z 0 = H 0 with z00 = 0, where L0 and H 0 are defined mutatis mutandis in terms of λ0

instead of λ.
We prove that Z 0 = Z as follows. Let δ = λ0(e)−λ(e). The Laplacian matrices L and L0 differ in

only four locations:

L0i j −Li j =











−δ if i = j = u or i = j = v

δ if {i, j}= {u, v}
0 otherwise

More concisely, we have L0 = L −δ (ev −eu) (ev −eu)T , where ei denotes the ith standard coordinate
vector. Similarly, we have H 0 = H +δ ·χ(d) · (ev −eu). It follows that

L0Z = LZ −δ (ev −eu) (ev −eu)
T Z

= H −δ (ev −eu) (zv −zu)

= H +δ (ev −eu)χ(d)

= H 0

which completes the proof. �

We note in passing that a nearly identical lemma applies to internally 3-connected plane graphs;
changing the weight of one edge e moves the vertices of any Tutte embedding along lines parallel to e.
Surprisingly, this observation appears to be new.
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5.2 Spring Collapse

Now fix a toroidal triangulation Γand edge weights λ. Let e be an arbitrary edge of Γ, and let Γ0 be the
result of collapsing one endpoint u to the other endpoint v. Let a, b, c, d be the edges in the link of uv
in Γ, as shown in Figure 15. Edges a and b collapse to a single edge ab in Γ0, and edges c and d collapse
to a single edge cd in Γ0. Now define weights for the edges of Γ0 as follows:

λ0(e) :=











λ(a) +λ(b) if e = ab

λ(c) +λ(d) if e = cd

λ(e) otherwise

a b

d c

u v

ab

cd

uv

Figure 15. Collapsing u to v.

The new equilibrium embedding Eq(Γ0,λ0) has the same image as the limit of Eq(Γ,λ) as we increase
λ(e) to infinity and keep all other edge weights fixed. Lemma 5.1 implies that as we continuously
increase λ(e), the vertices of Eq(Γ,λ) move continuously along geodesics parallel to e.

5.3 Geodesic Interpolation

This continuous deformation from Eq(Γ,λ) to Eq(Γ0,λ0) is not a parallel linear pseudomorph, because
the vertices do not necessarily move at fixed speeds.4 To define a parallel linear pseudomorph, we
simply move each vertex at constant speed along its corresponding geodesic. That is, for every vertex
w and all real numbers 0≤ t ≤ 1, let

pt(w) = (1−t) · p∗(w,λ) + t · p∗(w,λ0),

and let Γt denote the geodesic drawing of G with vertex coordinates pt(v) and the same crossing vectors
as Γ. The following lemma implies that Γt is actually an embedding for all t < 1, which implies that the
continuous family of drawings Γt is a parallel linear pseudomorph from Γ0 = Eq(Γ,λ) to Γ1 = Eq(Γ0,λ0).

Lemma 5.2. Let p0p1, q0q1, and r0r1 be arbitrary parallel segments in the plane. For all real 0≤ t ≤ 1,
define pt = (1−t)p0 + t p1 and qt = (1−t)q0 + tq1 and rt = (1−t)r0 + t r1. If the triples p0, q0, r0
and p1, q1, r1 are oriented counterclockwise, then for all 0 ≤ t ≤ 1, the triple pt , qt , rt is also oriented
counterclockwise.

4We have deliberately left unspecified exactly how λ(e) grows to infinity. We conjecture that with the right choice of growth
function, the resulting vertex motion is actually linear.
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Proof: Without loss of generality, assume that segments p0p1, q0q1, and r0r1 are horizontal. Thus, we
can write pt = (px t , p y), and similarly for qt and rt . The triple pt , qt , rt is oriented counterclockwise if
and only if the following determinant is positive:

∆(t) :=

�

�

�

�

�

�

1 px t p y
1 qx t q y
1 r x t r y

�

�

�

�

�

�

Routine calculation implies

∆(t) =

�

�

�

�

�

�

1 (1−t) px0 + t px1 p y
1 (1−t)qx0 + t qx1 q y
1 (1−t) r x0 + t r x1 r y

�

�

�

�

�

�

= (1−t)

�

�

�

�

�

�

1 px0 p y
1 qx0 q y
1 r x0 r y

�

�

�

�

�

�

+ t

�

�

�

�

�

�

1 px1 p y
1 qx1 q y
1 r x1 r y

�

�

�

�

�

�

= (1−t) ·∆(0) + t ·∆(1)

Thus, the function ∆(t) has exactly one real root. It follows that if ∆(0) > 0 and ∆(1) > 0, then
∆(t)> 0 for all 0≤ t ≤ 1. �

6 Zippers

Even if the original input triangulations Γ0 and Γ1 are simple, collapsing edges eventually reduces them
to triangulations with parallel edges and loops. Every loop in a geodesic toroidal triangulation is a closed
geodesic. The base case of our recursive algorithm is a special type of geodesic toroidal triangulation
that we call a zipper, in which every vertex is incident to a loop. (This class of graphs were previously
considered by Gonçalves and Lévêque [41, Fig. 44].)

Consider any zipper Z with n vertices, for some positive integer n. If n = 1, then Z consists of a
single vertex, three loop edges, and two triangular faces. Otherwise, the loops in Z are disjoint closed
geodesics, so they must be parallel; it follows that each vertex of Z is incident to exactly one loop. In
either case, the n loops in Z decompose the torus into n annuli, each of which is decomposed into two
triangles by two boundary-to-boundary edges. Figure 1 shows three two-vertex zippers, and Figure 16
shows a zipper with five vertices.

Figure 16. A five-vertex zipper. Doubled red edges are loops.

6.1 Zipper Structure

The following results motivate our choice of zippers as a base case of our recursive algorithm.

Lemma 6.1. In every geodesic toroidal triangulation, every vertex incident to a loop has degree at
least 6.
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Proof: Let Γbe a geodesic toroidal triangulation, let v be a vertex of Γincident to a loop, let d0 be
either of the darts of that loop.

Let ∂ f denote the clockwise facial walk around the face f to the right of d0. Because the interior
of f is an open disk, ∂ f is contractible. Because Γis a triangulation, ∂ f consists of exactly three darts
d0, d1, and d2, where head(di) = tail(di+1 mod 3) for each index i. Because every contractible geodesic
loop consists of a single point, d0 is non-contractible and thus is not homotopic to ∂ f . It follows that
d2 6= rev(d1).

Symmetrically, the counterclockwise walk around the face to the left of d0 consists of three darts
d0, d 01, d 02, where d 02 6= rev(d 01). Thus, at least six distinct darts head into v: in counterclockwise cyclic
order, d0, rev(d1), d2, rev(d0), d 02, rev(d 01).

5 �

d0

d1

d2

f

d2́

d1́

v

ℓ

eʹ

e
f

v

w

f ʹ

(a) (b)

Figure 17. (a) Proof of Lemma 6.1. (b) Proof of Lemma 6.2

Lemma 6.2. Every 6-regular triangulation that contains a loop is a zipper.

Proof: Again, let Γbe a 6-regular triangulation, and let v be a vertex of Γincident to a loop `. The
previous proof implies that v is incident to two edges on either side of `. Let e and e0 be the edges
incident to v on one side of `; the edges `, e, and e0 enclose a triangular face f . Thus, e and e0 share
another common endpoint w. (Except in the trivial case where Γhas only one vertex, v and w are
distinct.) Because e and e0 are adjacent in cyclic order around v, there is another triangular face f 0

with e and e0 on its boundary; the third edge of f 0 is a loop through w. The lemma now follows by
induction. �

Corollary 6.3. Every triangulation that contains a loop but is not a zipper contains a vertex of degree
at most 5 that is not incident to a loop.

6.2 Morphing Zippers

We next describe a straightforward approach to morphing between arbitrary isotopic zippers, which
requires at most two parallel linear morphing steps.

Let Z and Z 0 be arbitrary isotopic zippers with n vertices. If n = 1, then Z and Z 0 differ only
by translation, so assume otherwise. Ladegaillerie [52–54] proved that two embeddings of the same
graph G on the same surface are isotopic if and only if, the images of any cycle in G in both embeddings
are homotopic. Ladegaillerie’s theorem implies that all cycles in Z and all cycles in Z 0 are parallel to a
common vector σ.

5If Γhas only one vertex, then d 02 = d1 and d 01 = d2, and so v is incident to only three distinct edges. Otherwise, v is incident
to five distinct edges.
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In the first parallel morphing step, we translate all vertices in Z along geodesics orthogonal to σ
until the image of each loop has the same image as the corresponding loop in Z 0. Then in the second
parallel morphing step, we translate all vertices along their respective loops to move all vertices and
edges to their proper positions in Z 0. See Figure 18 for an example. In both stages, Lemma 5.2 implies
that linear interpolation between the old and new vertex coordinates yields an isotopy.

Figure 18. Morphing one zipper into another. Doubled red edges are loops.

7 Converting Pseudomorphs to Morphs

In this section, we adapt a perturbation strategy of Alamdari et al. [1], which transforms their pseudo-
morphs between planar triangulations into morphs, to geodesic triangulations on the flat torus.

To explain our adaptation, we must first give a brief sketch of their algorithm. Let Γ0 be the initial
planar input triangulation. The input to their perturbation algorithm is a pseudomorph consisting of
a (direct) collapse of a good vertex u to a neighbor v, a morph (not a pseudomorph) consisting of k
parallel linear steps Γ00  Γ01   · · · Γ0k, and finally the reverse of a collapse of u to v resulting in the
final triangulation Γk. The output is a proper morph from Γ0 to Γk, consisting of k + 2 parallel linear
steps.

Alamdari et al. proceed as follows. Let P be the link of u in the initial triangulation Γ0. For each
index i, let vi and Pi respectively denote the images of v and P in the intermediate triangulation Γ0i . For
each index i, a position ui is found within the visibility kernel of Pi so that for all i, the vector ui�ui+1 is
parallel to vi�vi+1 (the direction of the parallel linear morph Γ0i  Γ0i+1). For vertices of degree 3 and 4,
it is simple to place u as a certain convex combination of the vertices in P. The strategy for vertices of
degree 5 is more complicated. First, a value " is computed such that for each index i, the intersection
of the disk of radius " centered at vi and the visibility kernel of Pi intersects only the edges of the kernel
incident to vi; call this intersection Si . A specific position ui is then chosen within each region Si .

A close examination of their paper reveals that the strategy for vertices of degree 5 generalizes to
vertices u of arbitrary degree (greater than 2). In particular, the definition of ui depends solely on " and
the positions of the edges in Pi incident to vi .

The radius " is computed as follows. For each index i, we need a positive distance "i > 0 smaller
than the minimum distance from v to any edge of the kernel of Pi that is not incident to v, at any time
during the morphing step Γi   Γi+1. It suffices to compute the minimum distance from v to the lines
supporting edges of Pi not incident to v. The squared distance to each of these lines at any time t can
be expressed as the ratio f (t)/g(t) of two quadratic polynomials f and g. Alamdari et al. argue that a
lower bound 0 < δ ≤ mint

p

f (t)/g(t) can be computed in constant time in an appropriate real RAM
model [1]. Then "i is the minimum of these lower bounds δ. Altogether computing "i takes O(deg(u))
time. Finally, " =min1≤i≤k "i .
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Once the radius " is known, computing each sector Si in O(deg(u)) time is straightforward.
The point u0 can be chosen arbitrarily within S0. For each index i in increasing order, Alamdari et

al. describe how to choose a point ui+1 ∈ Si+1 in O(1) time, such that the vector ui�ui+1 is parallel
to the vector vi�vi+1. This part of the algorithm makes no reference to the rest of the triangulation;
it works entirely within the sectors Si and Si+1. Moreover, no part of this algorithm relies on u being
directly collapsed to v, only that vertices u and v have the same image in the triangulations Γ0i and Γ0i+1.

We apply this perturbation technique to the toroidal pseudomorphs computed in Section 3.2 as fol-
lows. Recall that our pseudomorph consists of a direct collapse, a recursively computed pseudomorph,
and a reversed spring collapse. First we (recursively) perturb the recursive pseudomorph into a proper
morph Γ00   · · ·   Γ0k consisting of k parallel linear morphs. We then compute the sectors Si and the
radius " exactly as described above. To perturb the initial direct collapse from u to v, we move u to
an arbitrary point in the intersection of S0 and the edge e along which u is collapsed. We compute the
intermediate positions ui for u exactly as described above, working entirely within the local coordinates
of the sectors Si . Finally, to perturb the reversed spring collapse, we first move u from uk to a new
point u0k ∈ Sk so that the image of the collapsing edge e becomes parallel to the direction of the original
spring collapse, after which we simply interpolate to the final triangulation, as described in Section 5.3.
Because the vertices move along parallel geodesics, Lemma 5.2 implies that this final interpolation is
a parallel linear morph. Altogether, we obtain a morph consisting of k + 3 parallel linear morphs. We
emphasize that the additional step moving uk to u0k is the only significant difference from the algorithm
presented by Alamdari et al.

Unrolling the recursion, we can perturb our pseudomorph between two n-vertex toroidal triangula-
tions into a proper morph consisting of O(n) parallel linear morphing steps in O(n2) time. The overall
time to compute this morph is still dominated by the time needed to compute O(n) equilibrium trian-
gulations for the spring collapses.

Theorem 7.1. Given any two isotopic geodesic toroidal triangulations Γ0 and Γ1 with n vertices, we can
compute a morph from Γ0 to Γ1 consisting of O(n) parallel linear morphs in O(n1+ω/2) time.

8 Not Just Triangulations

Finally, it remains to describe how to morph between embeddings that are not triangulations. Following
existing work in the planar setting, we extend the given embeddings Γ0 and Γ1 to triangulations, and
then invoke our earlier triangulation-morphing algorithm. The main difficulty is that it may not be
possible to triangulate both Γ0 and Γ1 using the same diagonals, because corresponding faces, while
combinatorially identical, have different shapes.

Two different techniques have been proposed to overcome this hurdle in the planar setting. The
first method subdivides each pair of corresponding faces into a compatible triangulation, introducing
additional vertices if necessary [2, 43, 71–73]; however, this technique increases the complexity of the
graph to O(n2) [8]. The second technique uses additional morphing steps to convexify faces to that
they can be compatibly triangulated without additional vertices [1,7]. While the subdivision technique
generalizes to toroidal embeddings (at least when all faces are disks), it is unclear how to generalize
existing morphing techniques.

We introduce a third technique, which avoids both subdivision and additional morphing steps by
exploiting Theorem 2.1. We emphasize that our method can also be applied to 3-connected straight-line
plane graphs, giving a new and arguably simpler approach for the planar case as well.
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Theorem 8.1. Given any two isotopic essentially 3-connected geodesic toroidal embeddings Γ0 and Γ1
with n vertices, we can compute a morph from Γ0 to Γ1 consisting of O(n) parallel linear morphs in
O(n1+ω/2) time.

Proof: Let Γ∗ be an equilibrium embedding isotopic to Γ0 and Γ1 as given by Theorem 2.1. It suffices to
describe how to morph from Γ0 to Γ∗; to morph from Γ0 to Γ1 one can simply first morph from Γ0 to Γ∗
and then from Γ∗ to Γ1.

Arbitrarily triangulate the faces of Γ0; this can be done in O(n) time using Chazelle’s algorithm [23],
or in O(n log n) time in practice. Because each face of Γ∗ is convex, we can triangulate Γ∗ in the exact same
manner. The result is two isotopic geodesic toroidal triangulations T0 and T∗. Given a morph between T0
and T∗ as promised by Theorem 7.1, we obtain a morph between Γ0 and Γ∗ by simply ignoring the edges
added when triangulating. In particular, the morph is specified by a sequence of geodesic triangulations
T0, T1, . . . , Tk = T∗, and dropping the additional edges from each triangulation Ti results in a geodesic
embedding Γi isotopic to Γ0.

The number of parallel morphing steps remains O(n), and the running time is dominated by the
computation of the morph between T0 and T∗, which is O(n1+ω/2) by Theorem 7.1. �

Finally, Theorem 8.1 immediately yields the first proof of the following corollary:

Corollary 8.2. Two essentially 3-connected geodesic embeddings on the flat torus are isotopic if and
only if they are isotopic through geodesic embeddings.

9 Conclusions and Open Questions

In this paper, we have given the first algorithm to construct a morph between two isotopic geodesic
graphs on the flat torus. Key tools in our algorithm include a geometric analysis of 6-regular triangula-
tions on the torus, as well as repeated use of a generalization of Tutte’s spring embedding theorem by
Y. Colin de Verdière [25] (Theorem 2.1). Several of our applications of spring embeddings also apply
to planar morphs and give a new approach to compute linear complexity morphs.

Because it relies heavily on Theorem 2.1, our algorithm requires that the input embeddings are
essentially 3-connected. If a given toroidal embedding Γis not essentially 3-connected, an isotopic
equilibrium drawing Γ∗ still exists, but it may not be an embedding; nontrivial subgraphs can collapse to
geodesics or even points in Γ∗. Morphing less connected toroidal embeddings remains an open problem.

It is natural to ask whether any of our results can be extended to higher-genus surfaces. Y. Colin de
Verdière actually generalized Tutte’s theorem to graphs on arbitrary Riemannian 2-manifolds without
positive curvature [25]. However, the resulting equilibrium embedding is the solution a certain convex
optimization problem that, in general, cannot be formulated as solving a linear system. At a more basic
level, our analysis of cats and dogs in Section 4 relies on the average vertex degree being exactly 6, a
property that holds only for graphs on the torus or the Klein bottle. Even the existence of “parallel”
morphs requires a locally Euclidean metric.

Our results share two closely related limitations with existing planar morphing algorithms. First,
planar morphs involving either Cairns-style edge collapses or spring embeddings require high numerical
precision to represent exactly. Second, while edge collapses yield planar morphs with low combinatorial
complexity, the resulting morphs are not good for practical visualization applications [58]. Because our
algorithm uses both edge collapses and spring embeddings, it suffers from the same numerical precision
issues and (we expect) the same practical limitations. Floater, Gotsman, and Surazhsky’s barycentric
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interpolation technique [38, 43, 71, 72] yields better results in practice for planar morphs, but as we
discussed in Section 1.1, their technique does not immediately generalize to the torus.

Finally, there are several variants and special cases of planar morphing for which generalization
to the flat torus would be interesting, including morphing with bent edges [58], morphing orthogonal
embeddings [12,13,39,40], and morphing weighted Schnyder embeddings [11].

Acknowledgements. We thank Timothy Chan for inspiring this work by noting to the third author
that extensions of Alamdari et al. [1] to the torus were unknown.
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A Relaxed Coordinate Representations

The coordinate representation described in Section 2.3, while intuitive, is much more constrained than
necessary. Here we describe a more relaxed representation that allows morphs to be described entirely
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We also observe that this representation leads naturally to a linear-time algorithm to test whether
two given toroidal embeddings are isotopic. Our algorithm is arguably simpler than the more general
linear-time isotopy algorithm of É. Colin de Verdière and de Mesmay [26]. We emphasize that both of
these isotopy algorithms are non-constructive; they do not construct an isotopy if one exists. Rather,
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A.1 Translation Vectors and Equivalence

To represent a geodesic embedding Γof a graph G on the flat torus T, we associate a coordinate vector
p(v) ∈ R2 with every vertex v of G and a translation vector τ(d) ∈ Z2 with every dart d of G. We
do not require vertex coordinates to lie in the unit square; instead, each coordinate vector p(v) records
the coordinates of an arbitrary lift ev of v to the universal cover eΓ. The translation vector of each dart
encode which lifts of its endpoints are connected in eΓ. Specifically, for each dart d in G, the universal
cover eΓcontains an edge between p(tail(d)) and p(head(d)) + τ(d), and therefore also contains and
edge between p(tail(d))+(i, j) and p(head(d))+τ(d)+(i, j) for all integers i and j. Translation vectors
are antisymmetric: τ(d) =−τ(rev(d)).

Coordinate representations are not unique; in fact, each toroidal embedding has an infinite family of
equivalent representations. Two coordinate representations (p,τ) and (p0,τ0)with the same underlying
graph are equivalent, meaning they represent the same geodesic embedding (up to translation), if and
only if

∆(d) := p(head(d)) +τ(d)−p(tail(d)) = p0(head(d)) +τ0(d)−p0(tail(d))

for every dart d. The vector ∆(d), which we call the displacement vector of d, is the difference between
the head and tail of any lift of d to eΓ.

Let (p,τ) be any coordinate representation of Γ. Given arbitrary integer vector π(v) ∈ Z2 for each
vertex of G, we can define a new coordinate representation (pπ,τπ) as follows:

pπ(v) = p(v) +π(v) for every vertex v

τπ(d) = τ(d) +π(tail(d))−π(head(d)) for every dart d

Easy calculation implies that the representations (p,τ) and (pπ,τπ) are equivalent. This transformation
is a multidimensional generalization of the reweighting or repricing strategy proposed by Tomizawa [74]
and Edmonds and Karp [32] for minimum-cost flows, and later used by Johnson to compute shortest
paths [47].

Every geodesic toroidal embedding has a unique canonical coordinate representation (p,τ), where
p(v) ∈ [0, 1)2 for every vertex v. In this canonical coordinate representation, each translation vector
τ(d) encodes how dart d crosses the boundaries of the fundamental square; in other words, canonical
translation vectors are crossing vectors, exactly as described in Section 2.3.

A.2 Normalization and Isotopy Testing

Let Γ0 and Γ1 be two isotopic geodesic toroidal embeddings of the same graph G, given by coordinate rep-
resentations (p0,τ0) and (p1,τ1) respectively. To simplify the presentation of our morphing algorithm,
we implicitly assume that the translation vectors in both representations are identical: τ0(d) = τ1(d)
for every dart d. This assumption allows us to describe, reason about, and ultimately compute a morph
from Γ0 to Γ1 entirely in terms of changes to the vertex coordinates; all translation vectors remain fixed
throughout the morph.

If necessary, we can enforce this assumption in O(n) time using the following normalization algo-
rithm. Let (p0,τ0) and (p1,τ1) be the given coordinate representations of Γ0 and Γ1, respectively. First,
construct an arbitrary spanning tree T of the underlying graph G, directed away from an arbitrary root
vertex r. For every vertex v, let P(v) denote the unique directed path in T from r to v. For each vertex
v, let

π(v) =
X

d∈P(v)

(τ1(d)−τ0(d)).
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We can compute the vectors π(v) for all vertices in O(n) time by preorder traversal of T . Finally, we
replace the target representation (p1,τ1) with the equivalent representation (pπ1 ,τπ1 ).

Lemma A.1. For all darts d in T , we have τπ1 (d) = τ0(d).

Proof: Let d be any dart in T directed from some vertex u to one of its children v in T . Straightforward
calculation implies

τπ1 (d) = τ1(d) +π(u)−π(v)

= τ1(d) +
X

d 0∈P(u)

(τ1(d
0)−τ0(d

0))−
X

d 0∈P(v)

(τ1(d
0)−τ0(d

0))

= τ1(d)−(τ1(d)−τ0(d))

= τ0(d).

A similar calculation (or antisymmetry) implies that τπ1 (d) = τ0(d) for every dart d directed from a
vertex to its parent in T . �

Theorem A.2. Γ0 and Γ1 are isotopic if and only if τπ1 (d) = τ0(d) for every dart d.

Proof: We exploit a theorem of Ladegaillerie [52–54], which states that two embeddings are isotopic if
and only if every cycle in one embedding is homotopic to the corresponding cycle in the other embed-
ding.

For any dart d in the underlying graph G, let ∆0(d) and ∆1(d) denote the displacement vectors of d
in Γ0 and Γ1, respectively. (We emphasize that displacement vectors are independent of the coordinate
representation.) For any directed cycle C in G, let ∆0(C) and ∆1(C) denote the sum of the displacement
vectors of its darts:

∆0(C) :=
X

d∈C

∆0(d) ∆1(C) :=
X

d∈C

∆1(d)

The vector ∆0(C) is the integer homology class of C in Γ0. Two cycles on the torus are homotopic if and
only if they have the same integer homology class; in particular, the image of C in Γ0 is contractible
if and only if ∆0(C) = (0, 0). Ladegaillerie’s theorem implies that Γ0 and Γ1 are isotopic if and only if
∆0(C) =∆1(C) for every cycle C .

The spanning tree T defines a set of fundamental cycles that span the cycle space of G. Specifically,
for each dart d that is not in T , the fundamental directed cycle CT (d) consists of d and the unique
directed path in T from head(d) to tail(d). Every directed cycle in G (indeed every circulation in G) can
be expressed as a linear combination of fundamental cycles. It follows by linearity that Γ0 and Γ1 are
isotopic if and only if every fundamental cycle has the same integer homology class in both embeddings;
that is, ∆0(CT (d)) =∆1(CT (d)) for every dart d ∈ G \ T .

Straightforward calculation implies that the homology class of any cycle is also equal to the sum of
the translation vectors of its darts with respect to any coordinate representation:

∆0(C) =
X

d∈C

τ0(d) ∆1(C) =
X

d∈C

τ1(d) =
X

d∈C

τπ1 (d).

In particular, for any non-tree dart d 6∈ T , we immediately have

∆0(CT (d))−∆1(CT (d)) =
X

d 0∈CT (d)

�

τ0(d
0)−τπ1 (d

0)
�

= τ0(d)−τπ1 (d)

Thus, τπ1 (d) = τ0(d) for every dart d if and only if ∆0(C) = ∆1(C) for every fundamental cycle C ,
which completes the proof of the theorem. �
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Theorem A.2 and our normalization algorithm immediately imply an O(n)-time algorithm to test
whether two given coordinate representations (p0,τ0) and (p1,τ1) represent isotopic toroidal embed-
dings of the same graph G. Our algorithm is arguably simpler than the isotopy algorithm of É. Colin
de Verdière and de Mesmay [26], which is also based on Ladegaillerie’s theorem [52–54]. On the other
hand, our isotopy algorithm is specific to geodesic embeddings on the flat torus; whereas, É. Colin de
Verdière and de Mesmay’s algorithm works for arbitrary combinatorial embeddings of graphs on arbi-
trary 2-manifolds.
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