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Abstract
In barter exchanges, participants swap goods with one another without exchanging
money; these exchanges are often facilitated by a central clearinghouse, with the
goal of maximizing the aggregate quality (or number) of swaps. Barter exchanges
are subject to many forms of uncertainty–in participant preferences, the feasibility
and quality of various swaps, and so on. Our work is motivated by kidney exchange,
a real-world barter market in which patients in need of a kidney transplant swap
their willing living donors, in order to find a better match. Modern exchanges
include 2- and 3-way swaps, making the kidney exchange clearing problem NP-
hard. Planned transplants often fail for a variety of reasons–if the donor organ is
rejected by the recipient’s medical team, or if the donor and recipient are found
to be medically incompatible. Due to 2- and 3-way swaps, failed transplants can
“cascade” through an exchange; one US-based exchange estimated that about 85%
of planned transplants failed in 2019. Many optimization-based approaches have
been designed to avoid these failures; however most exchanges cannot implement
these methods, due to legal and policy constraints. Instead, we consider a setting
where exchanges can query the preferences of certain donors and recipients–asking
whether they would accept a particular transplant. We characterize this as a two-
stage decision problem, in which the exchange program (a) queries a small number
of transplants before committing to a matching, and (b) constructs a matching
according to fixed policy. We show that selecting these edges is a challenging
combinatorial problem, which is non-monotonic and non-submodular, in addition to
being NP-hard. We propose both a greedy heuristic and a Monte Carlo tree search,
which outperforms previous approaches, using experiments on both synthetic data
and real kidney exchange data from the United Network for Organ Sharing.

1 Introduction
We consider a multi-stage decision problem in which a decision-maker uses a fixed policy to solve

a hard (stochastic) problem. Before using the policy, the decision-maker can first measure some of
the uncertain problem parameters–in a sense, guiding the policy toward a better solution. Our primary
motivation is kidney exchange, a process where patients in need of a kidney transplant swap their
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(willing) living donors, in order to find a better match. Many government-run kidney exchanges match
patients and donors using a matching algorithm that follows strict policy guidelines [9]; this matching
algorithm is often written into law or policy, and is not easily modified. Modern kidney exchanges
use both cyclical swaps and chain-like structures (initiated by an unpaired altruistic donor) [25], and
identifying the max-size or max-weight set of transplants is both NP- and APX-hard [1, 7].

In kidney exchange–as in many resource allocation settings–information used by the decision-
maker is subject to various forms of uncertainty. Here we are primarily concerned with uncertainty
in the feasibility of potential transplants: if a donor is matched with a potential recipient, will the
transplant actually occur? Planned transplants may fail for a variety of reasons: for example, medical
testing may reveal that the donor and recipient are incompatible (a positive crossmatch); the recipient
or their medical team may reject a donor organ in order to wait for a better match; or the donor
may decide to donate elsewhere before the exchange is planned. Failed transplants are especially
troublesome in kidney exchange, due to the cycle and chain structures used: for example, suppose
that a cyclical swap is planned between three patient/donor pairs; if any one of the planned transplants
fails, then none of the other transplants in that cycle can occur. Unfortunately, it is quite common for
planned transplants to fail. For example, the United Network for Organ Sharing (UNOS1) estimates
that in FY2019, about 85% of their planned kidney transplants failed [18].

Various matching algorithms have been proposed that aim to mitigate transplant failures (for exam-
ple, using stochastic optimization [15, 3], robust optimization [22], or conditional value at risk [6]).
However, implementing these strategies would require modifying fielded matching algorithms–which
in many cases would require changing law or policy. One way to avoid failures without modifying
the matching algorithm is to pre-screen potential transplants [18, 10, 11], by communicating with the
recipients’ medical team and possibly using additional medical tests. Pre-screening transplants is
costly, as it requires scarce time and resources. Furthermore, there are often many thousand potential
transplants in any given exchange; selecting which transplants to screen is not easy.

In this paper we investigate methods for selecting a limited number of transplants to pre-screen,
in order to “guide” the matching algorithm to a better outcome. We formalize this as a multistage
stochastic optimization problem, and we consider both an offline setting (where screenings are
selected all at once), and an online setting (where screenings are selected sequentially).
Related Work. While kidney exchange is known to be a hard packing problem, several algorithms
exist that are scalable in practice, and are used by fielded exchanges [14, 3, 20]. Prior work has
addressed potential transplant failures; our model is inspired by Dickerson et al. [15]. Pre-screening
potential transplants has also been addressed in prior work ([11, 23], and § 5.1 of [13]), and our model
is similar to stochastic matching and stochastic k-set packing [5]. However there are substantial
differences between these models and ours: (a) many prior approaches assume that a large number
of transplants may be pre-screened [11, 23]–on the order of one for each patient in the exchange;
we assume far fewer screenings are possible; (b) prior work often assumes a query-commit setting–
where successfully pre-screened transplants must be matched. Instead we assume that non-screened
transplants may also be matched–which more-accurately represents the way that modern exchanges
operate; (c) most prior work assumes that transplants that pass pre-screening are guaranteed to result
in a transplant. In reality, transplants often fail after pre-screening, a fact reflected in our model.

One of our approaches is based on Monte Carlo Tree Search (MCTS), which allows efficient explo-
ration of intractably large decision trees. While MCTS is primarily associated with Markov decision
processes and game-playing [12], it has been used successfully for combinatorial optimization [16].
We use a version of MCTS, Upper Confidence Bounds for Trees (UCT), which balances exploration
and exploitation by treating each tree node as a multi-armed bandit problem [4, 17].

Our Contributions
1. (§ 2) We formalize the policy-constrained edge query problem: where a decision-maker (such

as a kidney exchange program) selects a set of potential edges (potential transplants) to pre-
screen, prior to constructing a final packing (a set of transplants) using a fixed algorithm. This
model generalizes existing models in the literature, as edge failure probabilities depend on
whether or not the edge is pre-screened. Further, we allows for context-specific constraints,
such as those imposed by public policy or the particular hospital or exchange.

2. (§ 3) We prove that when the decision-maker uses a max-weight packing policy (the
most common choice among fielded exchanges), the edge query problem is both non-

1UNOS is the organization tasked with overseeing organ transplantation in the US: https://unos.org/.
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Figure 1: Single-stage edge selection: First, edges are selected to be queried, and responses revealed.
Then, a final matching is constructed according to the exchange’s matching policy. Finally, the
post-match edge failures are revealed.

monotonic and non-submodular in the set of queried edges. Despite these worst-case
findings we show that this problem is nearly monotonic for real and synthetic data, and
simple algorithms perform quite well. On the other hand, when the decision-maker uses
a failure-aware (stochastic) packing policy, the edge query problem becomes monotonic
under mild assumptions.

3. (§ 4) We conduct numerical experiments on both simulated and real exchange data from the
United Network for Organ Sharing (UNOS). We demonstrate that our methods substantially
outperform prior approaches and a randomized baseline.

2 The Policy-Constrained Edge Query Problem
Kidney exchanges are represented by a graph G = (E, V ) where vertices V represent (incom-

patible) patient-donor pairs, and non-directed donors (NDDs) who are willing to donate without
receiving a kidney in return. Directed edges e ∈ E between vertices represent potential transplants
from the donor of one vertex to the patient of another. Edge weights represent the “utility” of an
edge, and are typically set by exchange policy. Solutions to a kidney exchange problem (henceforth,
matchings) consist of both directed cycles on G containing only patient-donor pairs, and directed
chains beginning with an NDD and passing through one or more pairs; see Appendix A for an
example exchange graph. Each vertex may participate in only one edge in a matching–as each vertex
can donate and receive at most one kidney.

Vectors are denoted in bold, and are indexed by either cycles or edges: ye indicates the element of
y corresponding to edge e, and xc is the element of x corresponding to cycle c. Our notation uses a
cycle-chain representation for matchings2: let C represent cycles and chains in G, where each cycle
and chain corresponds to a list of edges; as is standard in modern exchanges, we assume that cycles
and chains are limited in length. Matchings are expressed as a binary vector x ∈ {0, 1}|C|, where
xc = 1 if cycle/chain c is in the matching, and 0 otherwise. Let wc be the weight of cycle/chain c (the
sum of c’s edge weights). LetM denote the set of feasible matching–that is, the set of vertex-disjoint
cycles and chains on G. The total weight of a matching is simply the summed weights of all its
constituent cycles and chains:

∑
c∈C xcwc. We denote sets of edges using binary vectors, where

q ∈ {0, 1}|E| represents the set of all edges with qe = 1.
In the remainder of this paper we refer to pre-screening a transplant as querying an edge, in order

to be consistent with the literature.
Selecting Edge Queries. Our setting consists of two phases (see Figure 1): during pre-match, the
decision-maker selects edges to query, and each queried edge is either accepted or rejected; then
the decision-maker constructs a matching using a fixed policy. During post-match, each match edge
either fails (no transplant) or succeeds (the transplant proceeds). We consider two version of the
pre-match phase: in the single-stage version, the decision-maker selects all queries before observing

2Our experiments use the position-indexed formulation, which is more compact and equivalent [14].
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edge responses (accept/reject); in the multi-stage version, one edge is selected at a time and responses
are observed immediately.

Unlike most prior work, edges in our model may fail during both the pre- and post-match phase.
For example, suppose the decision-maker queries an edge from a 60-year-old non-directed donor, to
a 35-year-old recipient; if the recipient or their medical team rejects the elderly donor and decides
to wait for a younger donor, this is a pre-match rejection. Instead suppose the edge is not queried,
and it is included in the final matching; if medical screening reveals that the patient and donor are
incompatible, this is a post-match failure. We refer to pre-match failures as rejections and post-match
failures as failures; however we make no assumption about their cause. We represent potential failures
and rejections using binary random variables: r ∈ {0, 1}|E| denotes pre-match rejections, where
re = 1 if e is queried and rejected, and 0 otherwise (re = 0 for all non-queried edges). Similarly
f ∈ {0, 1}|E| denotes post-match failures, where fe = 1 if edge e fails post-match, and 0 otherwise.
We assume that the distribution of rejections r ∼ PR(q) is known, and depends on q; we assume the
distribution of failures f ∼ PF (q, r) is known, and depends on both q and r.

Rejections and failures impact the matching through the weight of each cycle and chain. If any
cycle edge fails, then no transplants in the cycle can proceed; if a chain edge fails, than all edges
following it cannot proceed.3 Suppose we observe failures f ; the final matching weight of c is

F (c,y) ≡


∑
e∈c we if

∑
e∈c ye = 0

0 if c is a cycle and
∑
e∈c ye > 0∑

e∈c′ we if c is a chain, where c′ includes all edges up to the first failed edge.

Thus the post-match expected weight of matching x, due to both rejections r and failures f , is

W (x; q, r) ≡ E
f∼PF (q,r)

[∑
c∈C

xc F (c, r + f)

]
.

Matching Policy In this paper we assume that the final matching is constructed using a fixed matching
policy, which uses only non-rejected edges; we denote this policy by M(r). We focus primarily
on the max-weight policy MMAX(·), which is used by most fielded exchanges, and the failure-aware
policy MFA(·), which maximizes the expected post-match weight [15]:

MMAX(r) ∈ arg max
x∈M

∑
c∈C

xc F (c, r) , MFA(r) ∈ arg max
x∈M(r)

E
f∼PF (q,r)

[∑
c∈C

xc F (c, r + f)

]
.

Evaluating this policy requires solving a kidney exchange clearing problem, which is NP-hard [1].
However, state-of-the-art method can solve realistic kidney exchange clearing problems in fractions
of a second (e.g., our experiments use the PICEF method of Dickerson et al. [14]); thus, throughout
this paper we treat this policy as a low- or no-cost oracle.

Next we formalize the edge selection problem–the main focus of this paper. We denote by E the
set of “legal” edge subsets, subject to exchange-specific constraints; we assume that E is a matroid
with ground set E. For example, the decision-maker may limit the number of queries issued to any
one medical team (vertex in G) or transplant center (group of vertices). We aim to select an edge set
q ∈ E which maximizes the expected weight of the final matching. These edges are selected using
only the distribution of future rejections and failures; we take a stochastic optimization approach,
maximizing the expected outcome over this uncertainty.
Single-Stage Setting. The single-stage policy-constrained edge selection problem (henceforth, the
edge selection problem) is expressed as

max
q∈E

V S(q) , with V S(q) ≡ E
r∼PR(q)

[
W (M(r); q, r)

]
, (1)

where, M(r) denotes the matching policy after observing rejections r, and W (x; q, r) denotes the
post-match expected weight of matching x. Exact evaluation of V S(q) is often intractable, as the
support of PR(q) grows exponentially in |q|. In experiments we approximate V S(q) using sampling,
and these approximations converge for a moderate number of samples (see Appendix B).

3This assumes that chains can be partially executed: for example, suppose that the 4th edge in a 10-edge
chain fails; the first three edges can still be matched, and the post-failure chain weight sums only these three
edges. Not all fielded exchanges use this policy: some exchanges cancel the entire chain if one of its edges fails.
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Multistage Setting. In the multi-stage setting, edge rejections are observed immediately after each
edge is queried. The multi-stage problem is expressed as

max
q1∈E1

E
r1∼PR(q1)

[
max
q2∈E1

E
r2∼PR(q2)

[
. . . max

qK∈E1
E

rK∼PR(qK)
[ W (M(r); q, r) ]

]
. . .

]
, (2)

where q ≡
∑K
i=1 q

i denotes all queried edges, r ≡
∑K
i=1 r

i denotes all rejections, and E1 ⊆ E be
denotes the legal edge subsets containing only one edge. First, we observe that Problems 1 and 2
require evaluating a matching policy M(r). In the case of kidney exchange, evaluating both the
max-weight policy MMAX(·) and the failure-aware policy MFA(·) require solving NP-hard problems;
thus Problems 1 and 2 are at least NP-hard as well.

However, regardless of matching policy, the question whether edge selection is is hard. We observe
that while these problems are difficult in principle, experiments (§ 4) show that they are easy in
practice. Proofs of the following propositions can be found in Appendix D.
Proposition 2.1. With matching policy MFA(·), the objective of Problem 1 is non-monotonic in the
number of queried edges, even with independent edge distributions.

In other words, querying additional edges can sometimes lead to a worse outcome. This is
somewhat counter-intuitive; one might think that providing additional information to the matching
policy would strictly improve the outcome. This is a worst-case result–and in fact our experiments
demonstrate that querying edges almost always leads to a better final matching weight.
Proposition 2.2. With matching policy MMAX(·), the objective of Problem 1 is non-submodular in
the set of queried edges.

In other words, certain edges are complementary to each other–and querying complementary edges
simultaneously can yield a greater improvement than querying them separately. Taken together, these
propositions indicate that single-stage edge selection with matching policy MMAX(·) is a challenging
combinatorial optimization problem. On the other hand, using the failure-aware matching policy
MFA(·) allows us to avoid some of these issues.
Proposition 2.3. With matching policy MFA(·), and if all edges are independent, the objective of
Problem 1 is monotonic in the set of queried edges.

While Propositions 2.1 and 2.2 state that single-stage edge selection is challenging in the worst
case, our computational results suggest that these problems are often easier on realistic exchanges.

3 Solving the Policy-Constrained Edge Query Problem
First we propose an exhaustive tree search which returns an optimal solution to Problem 1 given

enough time. Building on this, we propose a Monte Carlo Tree Search algorithm and a simple greedy
algorithm. Our multi-stage approaches are very similar to these, and can be found in Appendix E.

Our optimal exhaustive search uses a search tree where each tree node corresponds to an edge
subset in q ∈ E . The children of node q correspond to any q′ ∈ E which are equivalent to the parent
q, but include one additional edge: C(q) ≡ {(q + q′) ∀q′ ∈ E : |q′| = 1 | (q + q′) ∈ E} . We say
that edge sets (or tree nodes) containing L edges are on the Lth level of the tree. We refer to nodes
with no children as leaf nodes. Unlike other tree search settings, the optimal solution to Problem 1
may be at any node of the tree, not only leaf nodes; this is a consequence of non-monotonicity (see
Proposition 2.1). The tree defined by root node q = 0 and child function C(q) contains all legal edge
subsets in E , when E is a matroid. Thus, any exhaustive tree search algorithm (such as depth-first
search) will identify an optimal solution, given enough time and memory.

Of course exhaustive search is only tractable if E is small. Consider the class of budgeted edge sets
E(Γ) used in our experiments: E(Γ) ≡ {q ∈ {0, 1}|E| | |q| ≤ Γ} (edge sets containing at most Γ
edges). The number of edge sets in E(Γ) grows roughly exponentially in Γ and |E|, and is impossible
to enumerate even for small graphs. Suppose a graph has 50 edges and we have an edge budget of
five: there are over two million edge sets in E(5). Even small exchange graphs can have thousands of
edges, and thus E(Γ) cannot be enumerated. Therefore, we propose search-based approach.
Monte Carlo Tree Search for Edge Selection (MCTS): We propose a tree-search algorithm for
single-stage edge selection, MCTS, based on Monte Carlo Tree Search (MCTS), with the Upper
Confidence for Trees (UCT) algorithm [17]. Our approach keeps track of a value (the objective value
of Problem 1) and a UCB value estimate for each node, and these values are updated during sampling.
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The formula used to estimate a node’s UCB value is
U
N − V min

V max − V min
+
√
NP /N

where U is the “UCB value estimate” calculated by MCTS, N is the number of visits to the node, NP

is the number of visits to the node’s parent, and V max and V min are the largest and smallest node
values encountered during search.

When the set of tree nodes is too large to enumerate UCT can use a huge amount of memory–by
storing values for each visited node. To limit both memory use and runtime, we incrementally search
the tree from a temporary root node. Beginning from the root (the the empty edge set), we use
UCB sampling on the next L levels of nodes–where L is a small fixed integer. After a fixed time
limit, sampling stops and we set the new root node to the current root’s best child according to its
UCB estimate–using the method of [17]. This process repeats until we reach the final level of the
search tree. Algorithm 1 gives a pseudocode description of MCTS, which uses Algorithm 2 as a
submethod. While often successful, MCTS requires extensive training and parameter tuning. As a
simpler alternative, we propose a greedy algorithm.
Single-Stage Greedy Algorithm: Greedy. Like MCTS, our greedy algorithm (Greedy) begins with
the empty edge set as the root node, and iteratively searches deeper levels of the tree. However unlike
MCTS, Greedy simply selects the child node with the greatest objective value in Problem 1–that is,
greedily improving the objective value; see Appendix E for a pseudocode description.

ALGORITHM 1: MCTS: Tree Search for
Single-Stage Edge Selection

(input) K: maximum size of any legal edge set
(input) T : time limit per level
(input) L: number of look-ahead levels

qR ← 0 root node (no edges)
q∗ ← 0 the best visited node
V ∗ ← objective value of q∗

for N = 1, . . . ,K do
M ← min{N + L,K}
Q← all nodes in levels N to M
U [q]← 0 ∀q ∈ Q UCB value estimate
V [q]← 0 ∀q ∈ Q objective value
N [q]← 0 ∀q ∈ Q number of visits
while less than time T has passed do

Sample(qR, M )
qR ← arg maxq∈C(qR) U [q]

Delete U [·], V [·], and N [·]
return q∗

ALGORITHM 2: Sample: Sampling function used
by MCTS

(input) q, M

N [q]← N [q] + 1
V [q]← objective of edge set q in Problem 1
if V [q] > V ∗ then

q∗ ← q, V ∗ ← V [q]
if q has no children then

return V [q]
if q has children then

if |q| < M then
q′ ← arg maxq∈C(qR) U [q] + UCB[q]

U [q]← U [q]+ Sample(q′, M )
else

q′ ← a random descendent of q at any level
V ′ ← objective value of q′ in Problem 1
if V ′ > V ∗ then

q∗ ← q′, V ∗ ← V ′

U [q]← U [q] + V ′

Runtime. Our methods rely on an “oracle” to solve the NP-hard kidney exchange matching problem;
while state-of-the-art methods solve real-sized instances of these problems in fractions of a second,
there is no guaranteed bound for absolute runtime. Instead, we can report the number of calls to
this oracle for each method as a measure of complexity. Both benchmark methods (max-weight
matching and failure-aware [15]) as well as IIAB [11] use exactly one oracle call; i.e., they are
O(1). Both Greedy and MCTS use a fixed number of samples (M ) to evaluate the objective of an
edge set. Greedy evaluates the objective of an edge set exactly Γ times; thus, Greedy is O(M · Γ).
Finally, MCTS can in theory visit all potential edge sets of size at most Γ (i.e., an exhaustive search),
which is O(M ·

∑Γ
γ=1

(|E|
γ

)
). Since this version of MCTS is intractable in both runtime and memory,

Algorithm 1 imposes reasonable limits on our implementation.

4 Computational Experiments
We conduct a series of computational experiments using both synthetic data, and real kidney

exchange data from UNOS; all code for these experiments is available online.4 In these experiments,
“legal” edge sets are the budgeted edge sets defined as E(Γ) ≡ {q ∈ {0, 1}|E| | |q| ≤ Γ}.

4https://github.com/duncanmcelfresh/kpd-edge-query
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In Sections 4.1 and 4.2 we present results in the single- and multi-stage edge selection settings,
respectively. We use two types of data for these experiments:
Real Data. We use exchange graphs from the United Network for Organ Sharing (UNOS), represent-
ing UNOS match runs between 2010 and 2019. Some of these exchange graphs only have the trivial
matching (no cycles or chains), or they have only one non-trivial matching. We ignore these graphs
because the matching policy is a “constant” function (to return the one feasible matching) and edge
queries cannot change the outcome. Removing these, we are left with 324 UNOS exchange graphs.
Synthetic Data. We generate random kidney exchange graphs based on directed Erdős-Rényi graphs
defined using parameters N and p: let V be a fixed set of N vertices; for each pair of vertices (V1, V2)
there is an edge from V1 to V2 with probability p, and an edge from V2 to V1 with probability p
(independent of the edge from V1 to V2). Any vertices with no incoming edges are considered NDDs.

In these experiments edge rejections and failures are independently distributed for each edge e; let
PR be the rejection probability, PQ is the post-match success probability if e is queried/accepted, and
PN is the success probability if e is not queried. To simulate edge rejections and failures we use two
synthetic edge distributions: Simple and KPD. In the Simple distribution, PR = 0.5, PQ = 1, and
PN = 0.5 for all edges. The KPD distribution is inspired by the fielded exchange setting from which
we draw our real underlying compatibility graphs. According to UNOS, about 34% of all edges are
rejected by a donor or recipient pre-match [18]; we draw PR uniformly from U(0.25, 0.43) for each
edge. Edges ending in highly-sensitized patients (who are often less healthy and more likely to be
incompatible) are considered high-risk; for these edges we draw PQ from U(0.2, 0.5) and PN from
U(0.0, 0.2). For other edges we draw PQ from U(0.9, 1.0) and PN from U(0.8, 0.9).

4.1 Single-Stage Edge Selection Experiments
In this section we compare against the baseline of a max-weight matching without edge queries

(using policy MMAX(·)). Many fielded kidney exchanges use a variant of this matching policy, so by
comparing against this baseline we are illustrating the impact of edge queries on the state-of-the-art
matching policies used in many real exchanges. Let VX be the objective5 of Problem 1 achieved by
method X , we calculate ∆MAX (the relative difference from baseline) as ∆MAX ≡ (VX−V S(0))/V S(0).
A value of ∆MAX = 0 means that method X did not improve over the baseline, a value of ∆MAX = 1
means that X achieved an objective 100% greater than the baseline, and so on. Furthermore a value
of ∆MAX > 0 means that method X increases the objective by querying edges, while ∆MAX < 0 means
that method X decreases the objective by querying edges.
Result: Greedy is essentially Optimal with small random graphs. First we investigate the dif-
ficulty of edge selection. Using random graphs, we compare Greedy to the optimal solution to
Problem 1, found by exhaustive search (OPT). We generate three sets of 100 random graphs with
N = 50, 75, and 100 vertices, and each with p = 0.01. For all graphs we run both OPT and Greedy
with edge budget 3; we calculate the optimality gap of Greedy as %OPT ≡ 100×(VOPT−VGreedy)/VOPT,
where VX denotes the objective achieved by method X . (VOPT > 0 in all graphs used in these exper-
iments.) If %OPT = 0 then Greedy returns an optimal solution, and %OPT > 0 means that Greedy
is not optimal. Table 1 (left) shows the number of random graphs binned by %OPT, as well as the
maximum %OPT over all graphs. For each N , Greedy returns an optimal solution for at least 90 of
the 100 graphs; the maximum %OPT over all graphs is 2.8.

In other words, Greedy always returns an optimal or nearly-optimal set of edges to query for small
random graphs. This is somewhat unexpected, since the edge selection problem is both non-monotone
and non-submodular (see Section 2).
Result: Greedy is essentially monotonic with UNOS graphs. We test Greedy on real UNOS
graphs, using maximum budget 100. Figure 2a shows the median ∆MAX over all UNOS graphs,
with shading between the 10th and 90th percentiles. Larger edge budgets almost never decrease
the objective achieved by Greedy, and Greedy never produces a worse outcome than the baseline.
Thus–in our setting–single-stage edge selection is effectively monotonic in our setting, and Greedy
is an effective method.
Result: MCTS and Greedy are nearly equivalent with UNOS graphs. We compare all methods on
UNOS graphs, using smaller, more-realistic edge budgets from 1 to 10. For MCTS we use a 1-hour
time limit per edge (Γ hours total). Figures 2b and 2d compare ∆MAX for MCTS, Greedy, and random

5All objective values are estimated using up to 1000 sampled rejection scenarios (see Appendix B), as it is
intractable to evaluate the exact objective of large edge sets.
†We use an approximation of Fail-Aware for the KPD dist.; true Fail-Aware should always have ∆MAX > 0.
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Table 1: Left: Optimality gap for Greedy, over 100 random graphs with p = 0.01 and various N , with edge
budget Γ = 3; bottom row shows the maximum value of %OPT over all graphs. Right: Single-stage results
on UNOS graphs using the variable IIAB edge budget (top rows), and the failure-aware method (bottom row).
Columns PX indicates the Xth percentile of ∆MAX over all UNOS graphs.

Num. Graphs (out of 100)

%OPT N = 50 N = 75 N = 100

[0, 0.1] 93 93 90

(0, 1] 5 4 9

(1, 2] 1 3 1

(2, 100] 1 0 0

Max %OPT 2.8 1.5 1.0

Simple edge dist. KPD edge dist.

Method P10 P50 P90 P10 P50 P90

MCTS 0.40 0.67 1.11 0.05 0.45 3.44

Greedy 0.47 0.64 1.00 0.02 0.47 3.44

Random 0.00 0.10 0.46 −0.11 0.00 0.63

IIAB 0.21 0.45 0.89 −0.27 0.12 2.24

Fail-Aware 0.00 0.09 0.23 −0.27† 0.00† 2.17†

edge selection, for the Simple and KPD edge distributions, respectively. We draw two conclusions
from these results: (1) MCTS and Greedy produce almost identical results, further suggesting that
Greedy is nearly optimal in our setting; (2) in our setting, edge selection is effectively monotonic, as
∆MAX almost never decreases. However Figure 2d gives an example of non-monotonicity for both
Greedy and Random: in some cases, querying edges can lead to a worse outcome than querying no
edges.
Result: Both MCTS and Greedy outperform benchmarks from the literature. We also compare
against two state-of-the-art approaches: the edge selection approach of [11] (IIAB), which uses a
variable edge budget that depends on the graph structure; and and the failure-aware matching policy
of [15] (Fail-Aware6), which does not query edges To our knowledge, IIAB is the only edge selection
method in the literature. We compare against the Fail-Aware method because it is a state-of-the-art
kidney exchange matching policy which aims to maximize the expected matching weight, under a
similar edge failure model to ours; we compare against this approach to further illustrate the utility of
querying edges.

Table 1 (right) shows a comparison of all edge-selection methods–each using the variable edge
budget of IIAB; the bottom row shows results for Fail-Aware. Both MCTS and Greedy achieve greater
∆MAX (in distribution) than both benchmark methods. This is expected in both cases: IIAB uses a
heuristic to select edges to query, which does not consider the final matching weight—the objective of
our edge selection problem; on the other hand, both MCTS and Greedy are designed to maximize this
objective. We do not expect Fail-Aware to out-perform any edge selection methods, since Fail-Aware
does not have access to information revealed after edge queries.

It is notable that Greedy performs better than MCTS (in distribution). This likely means that MCTS
is under-trained—that the time and memory limits used in our implementation are too restrictive;
alternatively, this indicates that Greedy is simply very effective in our setting.

4.2 Multi-Stage Edge Selection Experiments on UNOS Graphs
We run initial multi-stage edge selection experiments on all UNOS graphs with the Simple edge

distribution. For each graph we test our multi-stage variants of MCTS and Greedy, and compare
with a baseline of random edge selection; as before, MCTS uses a 1-hour training time per level. It
is substantially harder to evaluate the multi-stage objective, as each edge edge-selection method
changes depending on rejections observed in prior stages. Similarly, the MCTS search tree is orders of
magnitude larger in the multi-stage setting: each node in tree corresponds to both an edge set and a
rejection scenario (see Appendix E).

In these initial experiments we evaluate each method on 10 edge rejections realizations (only a
small subset). We estimate ∆MAX for each method and each graph by averaging the final matching
weight over all realizations. Figure 2c shows the results of these experiments.

These initial multi-stage results are quite similar to our single-stage results. However it is notable
that the objective value in the multi-stage setting is somewhat higher than in the single-stage setting–
even using the simple method Greedy. Further, this suggests that more can be gained by developing
a more sophisticated multi-stage edge selection policy. We leave this for future work.

6For the KPD distribution we use an approximation of Fail-Aware, which assumes a uniform edge failure
probability.
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Figure 2: Results for UNOS graphs. Right: edge budget up to 10 for the Simple distribution (top)
and the KPD distribution (bottom). Top-left: Greedy with edge budget up to 100, for the simple
distribution. Bottom-left: multi-stage methods using the Simple distribution. In all plots, a solid line
indicates median ∆MAX over all UNOS graphs, and shading is between the 10th and 90th percentiles;
a dotted line indicates the baseline.

5 Conclusions and Future Research Directions
Many planned kidney exchange transplants fail for a variety of reasons; these failures greatly

reduce the number of transplants that an exchange can facilitate, and increase the waiting time for
many patients in need of a kidney. Avoiding transplant failures is a challenge, as exchanges are often
constrained by policy and law in how they match patients and donors. We consider a setting where
exchanges can pre-screen certain transplants, while still matching patients and donors using a fixed
policy. We formalize a multi-stage optimization problem based on realistic assumptions about how
transplants fail, and how exchanges match patients and donors; we emphasize that these important
assumptions are not included in prior work. While this problem is challenging in theory, we show
that it is much easier in practice–with computational experiments using both synthetic data and real
data from the United Network for Organ Sharing. In experiments, we find that pre-screening even a
small number of potential transplants (around 10) significantly increases the overall quality of the
final match–by more than 100% of the original match weight.

Our initial study of the pre-screening problem suggests several areas for future work. First we
assume that the distribution of transplant failures is known, when in reality only rough approximations
of these distributions are available. Second, we assume that exchange participants (donors, recipients,
hospitals) are not strategic. In reality, strategic behavior plays a substantial role in real exchanges [2];
we expect that participants might behave strategically when responding to pre-screening requests.
Third, our model does not account for equitable treatment of different patients [21]. For example,
it may be the case that pre-screening a transplant decreases the likelihood of the transplant being
matched. That might disproportionately impact highly-sensitized patients, which are both sicker and
more difficult to match than other patients.
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Broader Impact
This work lives within the broader context of kidney exchange research. For clarity, we separate

our broader impacts into two sections: first we discuss the impact of kidney exchange in general; then
we discuss our work in particular, within the context of kidney exchange research and practice.

Impacts of Kidney Exchange Patients with end-stage renal disease have only two options: receive
a transplant, or undergo dialysis once every few days, for the rest of their lives. In many countries
(including the US), these patients register for a deceased donor waiting list–and it can be months
or years before they receive a transplant. Many of these patients have a friend or relative willing to
donate a kidney, however many patients are incompatible with their corresponding donor. Kidney
exchange allows patients to “swap” their incompatible donor, in order to find a higher-quality match,
more quickly than a waiting list. Transplants allow patients a higher quality of life, and cost far less,
than lifelong dialysis. About 10% of kidney transplants in the US are facilitated by an exchange.

Finding the “most efficient” matching of kidney donors to patients is a (computationally) hard
problem, which cannot be solved by hand in most cases. For this reason many fielded exchanges
use algorithms to quickly find an efficient matching of patients and donors. Many researchers study
kidney exchange from an algorithmic perspective, often with the goal of improving the number or
quality of transplants facilitated by exchanges. Indeed, this is the purpose of our paper.

Impacts of Our Work In this paper we investigate the impact of pre-screening certain potential
transplants (edge) in an exchange, prior to constructing the final patient-donor matching. To our
knowledge, some modern fielded exchanges pre-screen potential transplants in an ad-hoc manner;
meaning they do not consider the impacts of pre-screening on the final matching. We propose methods
to estimate the importance of pre-screening each edge, as measured by the change in the overall
number and quality of matched transplants.7 Importantly, our methods do not require a change in
matching policy; instead, they indicate to policymakers which potential transplants are important to
pre-screen, and which are not. The impacts of our contributions are summarized below:
Some potential transplants cannot be matched, because they cannot participate in a “legal” cyclical
or chain-like swap (according to the exchange matching policy). Accordingly, there is no “value”
gained by pre-screening these transplants; our methods will identify these potential transplants, and
will recommend that they not be pre-screened. Pre-screening requires doctors to spend valuable time
reviewing potential donors; removing these unmatchable transplants from pre-screening will allow
doctors to focus only on transplants that are relevant to the current exchange pool.
Some transplants are more important to pre-screen than others, and our methods help identify
which are most important for the final matching. We estimate the value pre-screening of each
transplant by simulating the exchange matching policy in the case that the pre-screened edge is
pre-accepted, and in the case that it is pre-refused.
To estimate the value of pre-screening each transplant, we need to know (a) the likelihood
that each transplant is pre-accepted and pre-refused, and (b) the likelihood that each planned
transplant fails for any reason, after being matched. These likelihoods are used as input to our
methods, and they can influence the estimated value of pre-screening different transplants. Importantly,
it may not be desirable to calculate these likelihoods for each potential transplant (e.g., using data from
the past). For example if a patient is especially sick, we may estimate that any potential transplant
involving this patient is very likely to fail prior to transplantation (e.g., because the patient is to ill to
undergo an operation). In this case, our methods may estimate that all potential transplants involving
this patient have very low “value”, and therefore recommend that these transplants should not be
pre-screened. One way to avoid this issue is to use the same likelihood estimates for all transplants.
To estimate the impact of our methods (and how they depend on the assumed likelihoods, see
above), we recommend using extensive modeling of different pre-screening scenarios before
deploying our methods in a fielded exchange. This is important for several reasons: first, exchange
programs cannot always require that doctors pre-screen potential transplants prior to matching. Since
we cannot be sure which transplants will be pre-screened and which will not, simulations should
be run to evaluate each possible scenario. Second, theoretical analysis shows that pre-screening
transplants can—in the worst case—negatively impact the final outcome. While this worst-case

7Quality and quantity of transplants is measured by transplant weight, a numerical representation of transplant
quality (e.g., see UNOS/OPTN Policy 13 regarding KPD prioritization points https://optn.transplant.
hrsa.gov/media/1200/optn_policies.pdf).
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outcome is possible, our computational experiments show that it is very unlikely; this can be addressed
further with mode experiments tailored to a particular exchange program.
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