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Abstract— We propose a hybrid control algorithm that guar-
antees fast convergence and uniform global asymptotic stability
of the set of minimizers of a convex objective function. The
algorithm, developed using hybrid system tools, employs a unit-
ing control strategy, in which Nesterov’s accelerated gradient
descent is used “globally” and the heavy ball method is used
“locally”, relative to the set of minimizers. The proposed hybrid
control strategy switches between these accelerated methods to
ensure convergence to the set of minimizers without oscillations,
with a (hybrid) convergence rate that preserves the convergence
rates of the individual optimization algorithms. We analyze
key properties of the resulting closed-loop system including
existence of solutions, uniform global asymptotic stability,
and convergence rate. Additionally, attractivity properties of
Nesterov’s algorithm are analyzed. Numerical results validate
the findings.

I. INTRODUCTION

We propose an algorithm that solves optimization prob-
lems of the form minξ∈Rn L(ξ) with accelerated gradient
methods. Nesterov’s accelerated gradient descent is an ac-
celerated method that guarantees convergence to the set of
minimizers of a convex function L [1]. Nesterov’s algorithm
achieves a faster convergence rate than classical gradient
descent by adding a velocity term to the gradient. More
recently, there has been growing interest in analyzing Nes-
terov’s algorithm from a dynamical systems perspective [2]
[3] [4]. Due to its implications on robustness, we are partic-
ularly interested in achieving global asymptotic stability of
the set of minimizers of L, for Nesterov’s algorithm, which
the literature shows is a hard problem to solve [5] [6].

One characterization of the dynamical system for Nes-
terov’s algorithm, proposed in [4], is

ξ̈ + 2dξ̇ +
1

Mζ2
∇L(ξ + βξ̇) = 0, (1)

where the quantities d and β take different forms depending
on the convexity properties of L. The constant M > 0 is the
Lipschitz constant of the gradient of L, and the constant ζ >
0 rescales time in solutions to (1). As in [4], in this paper,
we consider the case where ζ = 1, for simplicity of analysis.
The dynamical system in (1) models a mass-spring-damper
with a curvature-dependent damping term. The authors in [4]
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characterize the convergence rate for (1) to be exponential
when L is strongly convex, and show a convergence rate of

1
(t+2)2 when L is nonstrongly convex (for t ≥ 1). The work
in [4] assumes that the set of interest is the origin, at which
L is zero. The stability properties of these algorithms are not
studied in [4].

Another commonly used accelerated gradient method is
the heavy ball method [7], with dynamical system

ξ̈ + λξ̇ + γ∇L(ξ) = 0 (2)

where λ and γ are positive tunable parameters, which
represent friction and gravity, respectively; see [8] [9].
While algorithms based on acceleration converge quickly,
such methods can suffer from oscillations. Heavy ball, for
instance, converges very slowly when λ is large and very
quickly, but with oscillations, when λ is small [8]. The
top plot in Figure 1 shows the former behavior. Nesterov’s
algorithm converges quickly but also suffers from oscillations
[2], as shown in the middle plot in Figure 1. This behavior
motivates the logic-based algorithm proposed in this paper
to exploit the main features of each accelerated gradient
method. Our proposed logic-based algorithm, shown in the
bottom of Figure 1 shows the improvement obtained by using
Nesterov’s algorithm “globally,” namely, far away from the
minimizer of L, and heavy ball “locally,”namely, nearby the
minimizer of L.
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Fig. 1. Comparison of the performance of the heavy ball method, with large
value of λ, Nesterov’s accelerated gradient descent, and the proposed logic-
based algorithm. The objective function is L(z1) = z21 . Top: the heavy ball
algorithm, with large λ, converges very slowly. Top inset: zoomed out view
of heavy ball. Middle: Nesterov’s accelerated gradient descent converges
quickly, but with oscillations. Bottom: our proposed logic-based algorithm
yields fast convergence, with no oscillations.

The main contributions of this paper are as follows.



Building from our previous work in [10], we propose a
uniting algorithm, designed using hybrid system tools, that
uses Nesterov’s algorithm globally and the heavy ball method
with large λ locally to guarantee fast convergence with
uniform global asymptotic stability of the set of minimizers
of L. The algorithm proposed in this paper not only renders
the set of minimizers globally asymptotically stable, but also
has a (hybrid) convergence rate that preserves the rates of
the individual optimization algorithms for all (hybrid) time.
Specifically, we show that our algorithm attains a (hybrid)
exponential convergence rate when L is strongly convex. The
proposed algorithm uses a switching strategy that measures
the gradient of L, which is typically done via the method of
finite differences, using measurements of L. Our algorithm,
however, does not require measurements of the Hessian of
L. In the process, we extend properties and convergence
results for Nesterov’s algorithm in [4]. In particular, we prove
existence of solutions for (1) and global asymptotic stability
of the set of minimizers for cost functions with a minimum
value that is not necessarily zero.

The rest of the paper is organized as follows. Section II
contains a brief explanation of notation, the hybrid systems
framework, and definitions of strongly convex functions.
Section III presents the motivation and problem statement.
Section IV presents some of the nominal properties of
Nesterov’s algorithm and the heavy ball method. Section V
introduces the hybrid algorithm, uniting Nesterov’s algorithm
globally and the heavy ball algorithm locally, and its nominal
properties. Due to space constraints, detailed proofs of results
will be published elsewhere.

II. PRELIMINARIES

A. Notation

We denote the real, positive real, and natural numbers R,
R>0, and N, respectively. The set Cn represents the family
of n-th continuously differentiable functions. For vectors v ∈
Rn and w ∈ Rn, |v| =

√
v>v denotes the Euclidean vector

norm of v, and 〈v, w〉 = v>w the inner product of v and w.
The closure of a set S is denoted S. The distance of a point
x ∈ Rn to a set S ∈ Rn is defined by |x|S = infy∈S |y − x|.
Given a set-valued mapping M : Rm ⇒ Rn, the domain of
M is the set dom M = {x ∈ Rm : M(x) 6= ∅ }.

B. Preliminaries on Hybrid Systems

In this paper, a hybrid system H has data (C,F,D,G)
and is defined as [11, Definition 2.2]

H =

{
ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

(3)

where x ∈ Rn is the system state, F : Rn ⇒ Rn is the flow
map, C ⊂ Rn is the flow set, G : Rn ⇒ Rn is the jump map,
and D ⊂ Rn is the jump set. The notation ⇒ indicates that
F and G are set-valued maps. A solution φ is parameterized
by (t, j) ∈ R≥0×N, where t is the amount of time that has
passed and j is the number of jumps that have occurred. The
domain of φ, namely, domφ ⊂ R≥0 × N is a hybrid time

domain, which is a set such that for each (T, J) ∈ domφ,
domφ ∩ ([0, T ]× {0, 1, . . . , J}) = ∪Jj=0([tj , tj+1], j) for a
finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tJ+1.
A hybrid arc φ is a function on a hybrid time domain that,
for each j ∈ N, t 7→ φ(t, j) is absolutely continuous on
the interval Ij := {t : (t, j) ∈ domφ}. A solution φ to
H is called maximal if it cannot be extended further. The
set SH contains all maximal solutions to H. A solution is
called complete if its domain is unbounded. In the upcoming
results, we will assume that our proposed hybrid closed-loop
algorithm meets the hybrid basic conditions, as defined in
[11, Assumption 6.5].

C. Preliminaries on Convex and Strongly Convex Functions

The algorithm proposed in this paper allows the cost
function L to be strongly convex, as defined in [12].

Definition 2.1: (Strongly convex functions) A C2 function
L :Rn → R is strongly convex if the following hold: there
exists µ > 0, such that for all u1, z1 ∈ Rn,
(SC1) ∇2L(z1) ≥ µI;
(SC2) L(u1) ≥ L(z1) + 〈∇L(z1), u1 − z1〉+ µ

2 |u1 − z1|2.
Additionally, some of the results in this paper employ the

properties of convexity, quadratic growth, and the Polyak-
Lojasiewicz condition, which are weaker conditions than
strong convexity [13], [14], [15].

Definition 2.2: (Convex functions) A C1 function L :
Rn → R is (nonstrongly) convex if L(u1) ≥ L(z1) +
〈∇L(z1), u1 − z1〉 for all u1, z1 ∈ Rn.

Definition 2.3: (Quadratic growth) A function L : Rn →
R has quadratic growth away from its minimizer A1 = {z∗1}
if there exists α > 0 such that L(z1) − L∗ ≥ α |z1|2A1

for
all z1 ∈ Rn, where L∗ := L(z∗1).

III. MOTIVATION AND PROBLEM STATEMENT

As illustrated in Figure 1, the performance of Nesterov’s
accelerated gradient descent commonly suffers from os-
cillations near the minimizer. This is also the case for
the heavy ball method when λ > 0 is small. However,
when λ is large, the heavy ball method converges slowly,
albeit without oscillations. In Section I we discussed how
Nesterov’s algorithm guarantees an exponential convergence
rate for strongly convex L. We desire to attain such a rate,
while avoiding oscillations via the heavy ball algorithm with
large λ. We state the problem to solve as follows:
Problem (?): Given a scalar, real-valued, continuously dif-
ferentiable, strongly convex objective function L, design an
optimization algorithm that preserves the convergence rate of
Nesterov’s accelerated gradient descent, without oscillations
and with uniformity with respect to the compact sets of initial
conditions, without knowing the function L or the location
of its minimizer, and with robustness.

We propose a logic-based algorithm that unites Nesterov’s
algorithm, used globally to converge uniformly, with the
heavy ball method, with large λ, used locally to avoid
oscillations. For such an algorithm, we want to preserve



the convergence rates of the individual heavy ball and Nes-
terov algorithms. One difficulty in designing such a uniting
algorithm is that the objective function L and the set of
minimizers are unknown, so the algorithm must be able
to detect when to switch, and do so in a way that avoids
chattering.

IV. STABILITY AND CONVERGENCE PROPERTIES OF

HEAVY BALL AND NESTEROV’S ALGORITHMS

In this section, we present some useful properties of
Nesterov’s algorithm in (1) and the heavy ball algorithm
in (2). For the analysis to follow, we impose the following
Assumption on L.

Assumption 4.1: The function L is C2 and strongly con-
vex.

A. Results for Nesterov’s Accelerated Gradient Descent

Every maximal solution to (1) is complete and bounded,
when L satisfies Assumption 4.1, as shown in the following
lemma.

Lemma 4.2: (Existence of solutions to (1)) Let L satisfy
Assumption 4.1. Then, every maximal solution to (1) is
bounded, complete, and unique.

The following theorem shows that the ODE in (1), for the
strongly convex case, has the set A, defined as

A :=
{
z ∈ R2n : ∇L(z1) = z2 = 0

}
= A1 × {0}, (4)

uniformly globally asymptotically stable. To establish it, we
use the invariance principle in [16, Corollary 4.2].

Theorem 4.3: (Global asymptotic stability of A for (1))
Let L satisfy Assumption 4.1. Then, the set A, defined via
(4), with d and β defined via (9), is globally asymptotically
stable for (1).

In Theorem 4.3, we show global asymptotic stability of
the set A for (1), which was not proved in [4].

B. Results for the Heavy Ball Algorithm

When Assumption 4.1 is satisfied, then every maximal
solution to (2) is complete and bounded, as stated in the
following lemma.

Lemma 4.4: (Existence of solutions to (2)) Let L satisfy
Assumption 4.1. Then, every maximal solution to (2) is
bounded, complete, and unique.

The following result establishes that the closed-loop sys-
tem resulting from (2) has a set A, defined via 4, globally
asymptotically stable. To prove it, we use the invariance
principle in [16, Corollary 4.2].

Theorem 4.5: (Global asymptotic stability of A for (2).)
Let L satisfy Assumption 4.1. Additionally, let λ > 0 and
γ > 0. Then, the setA defined in 4, is globally asymptotically
stable for (2).

V. UNITING OPTIMIZATION ALGORITHM

In this section, we present a uniting optimization algo-
rithm for C2 strongly convex objective functions, namely
functions for which Assumption 4.1 holds. The algorithm
exploits measurements of∇L, which in practice are typically
approximated using measurements of L.

A. Modeling

We interpret the ODEs in (1) and (2) as control systems
consisting of a plant and a control algorithm [10] [17].
Defining z1 as ξ and z2 as ξ̇, the plant for both ODEs is
given by the double integrator[

ż1

ż2

]
=

[
z2

u

]
=: FP (z, u) (z, u) ∈ R2n × Rn (5)

with outputs given by functions of the state, as defined below.
The control algorithm leading to (2) is

u = κ0(h0(z)) = −λz2 − γ∇L(z1) (6)

and the control algorithm leading to (1) is

u = κ1(h1(z)) = −2dz2 −
1

M
∇L(z1 + βz2) (7)

where M > 0 is the Lipschitz constant for ∇L and

h0(z) :=

[
z2

∇L(z1)

]
, h1(z) :=

[
z2

∇L(z1 + βz2)

]
. (8)

where h0 corresponds to the output for heavy ball and h1

corresponds to the output for Nesterov’s algorithm. The
parameters λ > 0 and γ > 0 should be designed to achieve
convergence without oscillations nearby the minimizer.

As in [4], we have set ζ = 1 in (1) for simplicity of
analysis. For strongly convex L, the constants d and β are
typically chosen as follows:

d :=
1

(
√
κ+ 1)

, β :=
(
√
κ− 1)√
κ+ 1

(9)

where κ := M
µ ≥ 1 is the condition number associated with

L; see [12] [18]. The constants defined as in (9) satisfy 2d+
β = 1.

The proposed logic-based algorithm “unites” the two indi-
vidual controllers, or, equivalently, optimization algorithms
defined by κ0 and κ1. The algorithm defined by κ1 plays
the role of the global algorithm in uniting control (see, e.g.,
[17]), while the algorithm defined by κ0 plays the role of the
local algorithm. A logic variable q ∈ Q := {0, 1} indicates
which algorithm is currently used.

The design of the logic and parameters of the individual
algorithms is done using Lyapunov functions. The Lyapunov
function used for heavy ball is

V0(z) := γ (L(z1)− L∗) +
1

2
|z2|2 (10)

defined for each z ∈ R2n. The Lyapunov function used for
the Nesterov algorithm is

V1(z) :=
1

2
|a(z1 − z∗1) + z2|2 +

1

M
(L(z1)− L∗) (11)



defined for each z ∈ R2n, where a > 0 is properly chosen.
To encapsulate the plant and static state-feedback laws,

we define a hybrid closed-loop system H with state x :=
(z, q) ∈ R2n ×Q and data (C,F,D,G) as follows:

F (x) :=

[ z2

κq(hq(z))

]
0

 ∀x ∈ C := C0 ∪ C1 (12a)

G(x) :=

[
z

1− q

]
∀x ∈ D := D0 ∪D1 (12b)

where C0, C1, D0, and D1 are to be defined. We denote,
for each q ∈ Q := {0, 1}, the closed-loop systems resulting
from the individual optimization algorithms as Hq . Namely,
the closed-loop resulting from using the global algorithm
(Nesterov’s algorithm, κ1) is denoted as H1, and the closed-
loop resulting from using the local algorithm (heavy ball,
κ0) is denoted as H0.

The switching rules in this section rely on quadratic
growth of L, in Definition 2.3, which is a weaker property
than strong convexity, even for C1 functions [13]. Exploiting
Definition 2.3, the following lemma from [10] relates the
size of the gradient at a point to the distance from the point
to the minimizer z∗1 .

Lemma 5.1: (ε-suboptimality) Let L satisfy Assumption
4.1, and let α > 0 come from Definition 2.3. For some ε > 0,
if z1 ∈ Rn is such that |∇L(z1)| ≤ εα, then |z1|A1

≤ ε.
Proof. Since L satisfies Assumption 4.1, this implies that L
also satisfies the properties in Definition 2.2 and Definition
2.3. Then, combining the properties in these definitions for
u1 = z∗1 yields

α |z1|2A1
≤ |L(z1)− L∗| ≤ |∇L(z1)| |z1|A1

=⇒ |z1|A1
≤ 1

α
|∇L(z1)| . (13a)

This is true since L(z1) ≥ L∗. From (13a), we can deduce
that |∇L(z1)| ≤ εα implies |z1|A1

≤ 1
α (εα) = ε.

The ε-suboptimality condition from Lemma 5.1 is typi-
cally used as a stopping condition for optimization [12], as
it indicates that the argument of L is close enough to the set
of minimizers. We will exploit Lemma 5.1 to determine when
the state component z1 of the hybrid closed-loop system H1

is close enough to the global minimizer to switch to the local
optimization algorithm, κ0, in this way activating H0.

The switch between κ0 and κ1 is governed by a supervi-
sory algorithm implementing switching logic. The supervisor
selects between these two optimization algorithms, based on
the plant’s output and the optimization algorithm currently
applied.

To that end, let ε0 > 0, α > 0, c0 > 0, and γ > 0 from
κ0 be such that

c̃0 := ε0α > 0 (14a)

d0 := c0 − γ
(
c̃20
α

)
> 0. (14b)

Then, V0 in (10) can be upper bounded, using Definition 2.2
with u1 = z∗1 , as follows: for each z ∈ R2n,

V0(z) = γ (L(z1)− L∗) +
1

2
|z2|2

≤ γ |∇L(z1)| |z1|A1
+

1

2
|z2|2 (15)

Then, when |∇L(z1)| ≤ c̃0, the ε-suboptimality condition in
Lemma 5.1 implies |z1|A1

≤ c̃0
α , from where we get

V0(z) ≤ γ
(
c̃20
α

)
+

1

2
|z2|2 (16)

Then, by defining the set Ũ0 as

Ũ0 :=

{
z ∈ R2n : |∇L(z1)| ≤ c̃0,

1

2
|z2|2 ≤ d0

}
, (17)

every z ∈ Ũ0 belongs to the c0-sublevel set of V0. In fact,
using the conditions in (14) and (16), we have that for each
z ∈ Ũ0,

V0(z) ≤ γ
(
c̃20
α

)
+

1

2
|z2|2 ≤ c0. (18)

The parameters c̃0, d0, λ, and γ are designed so that Ũ0 is in
the region where κ0 is to be used. In this design, λ is large
to avoid oscillations when converging to the minimum.

The set Ũ0 is contained in the basin of attraction induced
by κ0, due to the global attractivity property guaranteed by
Theorem 4.5.

Let ε1,0 ∈ (0, ε0), α > 0, and c1,0 ∈ (0, c0) such that

c̃1,0 := ε1,0α ∈ (0, c̃0) (19a)

d1,0 := c1,0 − a2

(
c̃1,0
α

)2

− 1

M

(
c̃21,0
α

)
∈ (0, d0) (19b)

Then, with V1, namely, with V1 given in (11) and using
Definition 2.2 with u1 = z∗1 ,

V1(z) ≤ a2 |z1|2A1
+ |z2|2 +

1

M
|∇L(z1)| |z1|A1

(20)

Then, when |∇L(z1)| ≤ c̃1,0, the ε-suboptimality condition
in Lemma 5.1 implies |z1|A1

≤ c̃1,0
α , from where we get

V1(z) ≤ a2

(
c̃1,0
α

)2

+ |z2|2 +
1

M

(
c̃21,0
α

)
. (21)

Then, by defining

T̃1,0 :=
{
z ∈ R2n : |∇L(z1)| ≤ c̃1,0, |z2|2 ≤ d1,0

}
(22)

which, by construction, is contained in the interior of Ũ0,
every z ∈ T̃1,0 belongs to the c1,0-sublevel set of V1. In
fact, using the conditions in (19) and (21), we have for each
z ∈ T̃1,0,

V1(z) ≤ a2

(
c̃1,0
α

)2

+ |z2|2 +
1

M

(
c̃21,0
α

)
≤ c1,0. (23)

When q = 1, |∇L(z1)| ≤ c̃1,0, and |z2|2 ≤ d1,0, the
supervisor will switch from the global algorithm κ1 to the



local algorithm κ0. The constants c0 and c1,0, c̃0, c̃1,0, d0,
and d1,0 comprise the hysteresis necessary to avoid chattering
at the switching boundary.

To make the switch back to κ1, choose ĉ0 > c0 and define
the set{

z ∈ R2n : γ (L(z1)− L∗) +
1

2
|z2|2 ≥ ĉ0

}
. (24)

This set defines the (closed) complement of a sublevel set
with level larger than c0. It is used for the design of the set
D0, which triggers the jumps from using κ0 to use κ1, so
that when, in particular, the state z1 is far from the set A1,
then κ1 is used to steer it back to nearby it.

Employing Ũ0, T̃1,0, and the set in (24), the flow and jump
sets C and D are defined as follows:

C0 := Ũ0 × {0}, C1 := R2n \ T̃1,0 × {1} (25a)

D0 := T̃0,1 × {0}, D1 := T̃1,0 × {1} (25b)

where

T̃0,1 ⊂
{
z ∈ R2n : γ (L(z1)− L∗) +

1

2
|z2|2 ≥ ĉ0

}
.

(26)
Remark 5.2: The algorithm has no knowledge of the

particular objective function L; however, however, it uses
knowledge of L(z1)−L∗ to trigger jumps from q = 0 to q =
1, which would only occur due to wrong initializations of the
logic variable or due to large measurement noise. Though
somewhat restrictive, having knowledge of L∗ is justified
since a wide range of optimization problems require steering
the value of the objective function to zero. Additionally, L∗

– and, for that matter, objective functions in general – can
be learned online [19].

B. Main Results

Under Assumption 4.1, the hybrid closed-loop system H
in (12), with C and D defined via (25), is well-posed as it
satisfies the hybrid basic conditions.

When, Assumption 4.1 holds, every maximal solution toH
is complete and bounded, as stated in the following lemma.

Lemma 5.3: (Existence of solutions to H) Let L satisfy
Assumptions 4.1. Then, every maximal solution to the hybrid
closed-loop system H in (12), with C and D defined via (25),
is bounded and complete.

The following result establishes that the hybrid closed-
loop system H with data as in (12) has the set

A :=
{
z ∈ R2n :∇L(z1) = z2 = 0

}
×{0} = A1×{0}×{0}

(27)
globally asymptotically stable, with convergence that is ex-
ponential. The last {0} component in A is due to the logic
state ending with value q = 0, namely using κ0 as the state
z reaches the set of minimizers of L. To prove the following
result, we use the invariance principle in [16, Corollary 4.2].

Theorem 5.4: (Global asymptotic stability of A and con-
vergence rate for H) Let L satisfy Assumption 4.1. Addi-
tionally, let λ > 0, γ > 0, ε1,0 ∈ (0, ε0), c1,0 ∈ (0, c0),

c0 > 0, c̃1,0 ∈ (0, c̃0) from (14a) and (19a), d1,0 ∈ (0, d0)
from (14b) and (19b), and ĉ > c0. Then, the set A,
defined in (27), is globally asymptotically stable for H.
Furthermore, each maximal solution (t, j) 7→ x(t, j) =
(z1(t, j), z2(t, j), q(t, j)) of the hybrid closed-loop algorithm
H starting from C1 satisfies,

L(z1(t, 0))− L∗ ≤ (L(z1(0, 0))− L∗) exp(−at) (28)

for each t ∈ I0 where q is equal to 1, and

L(z1(t, 1))− L∗ ≤ (L(z1(t1, 1))− L∗) exp(−2µt) (29)

for each t ∈ I1 where q is equal to 0, where t1 is the time at
which the first jump occurs, where µ > 0, and where a > 0
is defined, for κ := M

µ ≥ 1, as a := d+ β
2κ = 1√

κ
− 1

2κ .

Since the set A is compact and H satisfies the hybrid basic
conditions, the global asymptotic stability in Theorem 5.4 is
both uniform and robust [11].
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Fig. 2. A comparison of the evolution of z1 and z2 over time for H0, H1,
HAND-2, and H, defined via (12) with C and D defined in (25), for a
function L(z1) := z21 with a single minimizer at A1 = {0}. Nesterov’s
accelerated gradient descent (H1), shown in red, settles to within 1% of A1

in about 8.8 seconds. The heavy ball algorithm H0, shown in green, settles
to within 1% of A1 in about 138.1 seconds. HAND-2, shown in purple,
settles to within 1% of A1 in about 2.6 seconds. The hybrid closed-loop
system H, shown in blue, settles to within 1% of A1 in about 2.4 seconds.

Example 5.5: To show the effectiveness of the uniting
algorithm, we compare it in simulation to the optimization
algorithms H0, H1, and the HAND-2 algorithm from [5]
for strongly convex functions L satisfying Assumption 4.1.
Using an alternate state space representation, namely, z1 := ξ
and z2 := ξ + τ

2 ξ̇, the HAND-2 algorithm has state (z, τ) ∈
R2n+1 and data (C,F,D,G)

F (z, τ) :=

 2
τ (z2 − z1)
−2cτ∇L(z1)

1

 ∀(z, τ) ∈ C (30a)

G(z, τ) :=

[
Gz(z, τ)
Tmin

]
∀(z, τ) ∈ D (30b)

where c > 0, Gz(z, τ) := [z>1 z
>
1 ]>, C :={

(z, τ) ∈ R2n+1 : τ ∈ [Tmin, Tmax]
}

, and D :={
(z, τ) ∈ R2n+1 : τ ≥ Tmax

}
, where 0 < Tmin <

Tmax < ∞. It is shown therein that each maximal solution
(t, j) 7→ (z1(t, j), z2(t, j), τ(t, j)) of HAND-2 satisfies

L(z1(t, j))− L∗ ≤ ka |z̃1(0, 0)|2 exp
(
−k̃bα̃ (t+ j)

)
(31)

for all (t, j) ∈ dom(z, τ), where ka := 0.5k1M , M > 0,
k1 :=

(cµ)−1+T 2
min

∆T 2 , ∆T := Tmax − Tmin, 0 < Tmin <

Tmax, c > 0, 1
cµ < T 2

max − T 2
min, k̃b := 1 − k0,



k0 :=
(cµ)−1+T 2

min

T 2
max

, j ≥ α̃(t + j) := max{t+j−∆T,0}
∆T+1 ,

and |z̃1(0, 0)| := |z1(0, 0)− z∗1 |. This bound holds when
z1(0, 0) = z2(0, 0) and τ(0, 0) = Tmin.

To compare these algorithms, we use the objective func-
tion L(z1) = z2

1 , with a single minimizer at A1 = {0}. This
objective function is strongly convex with µ = 2 and its
gradient is Lipschitz continuous with M = 2, which results
in κ = M

µ = 1. For simulation, we used the heavy ball
parameter values γ = 2

3 and λ = 40. For HAND-2, we used
the parameter values Tmax = 5.63, Tmin = 3, and c = 0.25.
The parameter values for the uniting algorithm are c0 = 1000
and c1,0 = 400, ε0 = 20, ε1,0 = 15, and α0 = α1,0 = 1,
which yield the values c̃0 = 20, c̃1,0 = 15, d0 = 733.3, and
d1,0 = 231.25, which are calculated via (14) and (19). We
also pick ĉ = 21. Initial conditions for H0, H1, and H are
z1(0, 0) = 50, z2(0, 0) = 0, and q(0, 0) = 1, and for HAND-
2 are z1(0, 0) = 50, z2(0, 0) = 50, and τ(0, 0) = Tmin.

Figure 2 shows the z1 and z2 components over time for
each of the algorithms1. Black dots with times labeled in
seconds denote when each solution settles within 1% of A1.
Algorithm H1, shown in red, reaches the set A1 quickly with
a rise time of about 2.4 seconds. However, it overshoots to
about -8.15, at a peak time of 3.6 seconds. Then it continues
oscillating until it settles within 1% of A1 in about 8.8
seconds. AlgorithmH0, shown in green, slowly settles within
1% of A1 in about 138.1 seconds, which is the same as
its rise time. The HAND-2 algorithm settles to within 1%
of A1 in about 2.6 seconds. The hybrid closed-loop system
H, shown in blue, settles within 1% of A1 in about 2.4
seconds, which is also the same as its rise time. This is
a 8.6% improvement over HAND-2, a 72.7% improvement
over H1 and a 98.3% improvement over H0.

The different choice of initial conditions between HAND-
1 and H is essential to the improved performance of the
hybrid closed-loop algorithm H over HAND-2. Namely, the
bound in (31) is guaranteed only when z1(0, 0) = z2(0, 0).
This means that the initial velocity for HAND-2 will be
nonzero, unless the state starts at the set of minimizers,
which can lead to overshoot in the transients of solutions. In
comparison, z2(0, 0) can be set to zero for H, which helps
to avoid overshoot. Such overshoot in HAND-2 means this
algorithm reaches the set of minimizers later than H, as seen
in Figure 2.

VI. CONCLUSION

We presented an algorithm, designed using hybrid system
tools, that properly unites Nesterov’s accelerated algorithm
and the heavy ball algorithm to ensure fast convergence
and uniform global asymptotic stability. Future work will
extend our results characterizing convergence rate and UGAS
to include a generic parameter ζ > 0. Application of the
algorithm to learning is also part of future work.

1Code at
gitHub.com/HybridSystemsLab/UnitingGradientsSC
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