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Abstract: In this paper, we consider the problem of practically asymptotically stabilizing the
DC-DC boost converter under parameter uncertainty. In particular, we propose an estimation
algorithm that identifies the input voltage and output load of the converter in finite time. Using
these estimates, we design a control algorithm that “unites” global and local control schemes.
The global control scheme induces practical asymptotic stability of a desired output voltage
and corresponding current, and the local control scheme maintains industry-standard PWM
behavior during steady state. Stability properties for the resulting hybrid closed-loop system
are established and simulation results illustrating the main results are provided.

Keywords: Electrical circuits, energy and power networks, hybrid inclusions, cyber-physical
systems, switched systems, learning, identification, stabilization, modeling.

1. INTRODUCTION

The DC-DC boost converter is widely used in the power
systems of electric vehicles (Bellur and Kazimierczuk,
2007). These systems operate under constantly changing
demands such as supplying energy during acceleration and
storing it during braking, necessitating power conversion
technology that is capable of adapting to these changes.
The industry standard control scheme for the boost con-
verter is pulse-width modulation (PWM). However, since
PWM controllers typically utilize a linearized model of
the converter dynamics, the stability properties only hold
locally near the set-point (Kassakian et al., 1991). Re-
cently, a renewed interest in power converters has orig-
inated from the rise of hybrid modeling paradigms and
new perspectives on their control, including time-based
switching, state-event triggered control, and optimization-
based control, were proposed (Vasca and Tannelli, 2012).

In this paper, motivated by the prevalence of PWM control
implementations in industry and the widespread famil-
iarity with its operation, we propose a control algorithm
that stabilizes the boost converter even under uncertainty
in the input voltage and load resistance and maintains
PWM behavior during steady-state operation. We utilize
the modeling approach first proposed by Theunisse et al.
(2015) that captures the transient behavior and every
possible state of the converter system. Using hybrid sys-
tems tools presented in Section 2, we study the properties
of a modular “uniting” control framework, discussed in
Section 3, that switches between global and local control
schemes. In Section 4, we propose an estimator that per-
mits finite-time estimation of the converter input voltage
and load resistance. We show in Section 5 that the closed-
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loop uniting framework and finite-time estimator induce
global practical asymptotic stability of a desired voltage
value. The hybrid systems tools recently developed in
(Goebel et al., 2012, Sanfelice, 2021) form the enabling
techniques to achieve these results. Due to space con-
straints, some proofs are sketched or omitted, and will be
published elsewhere.

Notation. We denote the real, nonnegative, positive,
and natural numbers as R, R>¢, Rs0, and N, respectively.

Given a set S, 05 denotes its boundary and S its closure.
The Euclidean norm is denoted |-|. The distance of a point
x to a nonempty set S is defined by |z|s = inf e |y — z|.
Given a set-valued mapping M : R™ =% R”, the domain of
M is the set dom M = {z € R™ : M(z) # @}, and the
range of M is the set rgeM = {y e R" : Jx € R s.t. y €
M(z)}. A function 8 : R>g X R>g — R is said to be
of class KCL if it is nondecreasing in its first argument,
nonincreasing in its second argument, lim, 4 8(r,s) =0
for each s € R>¢, and lims_,o B(r, s) = 0 for each r € R>o.
The p-sublevel set of the function V' domV — R,
which is the set of points {z € domV : V(z)<pu}, is
denoted Ly (p). The closed unit ball centered at the
origin of appropriate dimension (in the Euclidean norm) is
denoted B. The set SP™*"™ contains positive semidefinite
matrices with dimension n x n.

2. PRELIMINARIES
2.1 Preliminaries on hybrid systems

In this paper, a hybrid system # has data (C, F, D, G, k)
and is given by (Goebel et al., 2012, Sanfelice, 2021)

(x,u) e C t € F(z,u)
H={<(z,u) €D T € G(z,u) (1)
y = k(z,u)

where x € R" is the state, u € R™ is the input, F' : R™ x
R™ = R" is a set-valued map defining the flow map of the



differential inclusion capturing the continuous dynamics,
and C' C R™ x R™ defines the flow set on which flows are
permitted. Similarly, G : R™ x R™ = R"™ is a set-valued
map defining the jump map of the difference inclusion
modeling the discrete behavior, and D C R™ x R™ is the
jump set on which jumps are permitted. The vector y € R”
defines the output of the hybrid system.

A solution z to H is parameterized by (¢,j) € R>o x N,
where ¢ is the amount of ordinary time that has passed and
j is the number of jumps that have occurred. The domain
of z, denoted domx C R>¢ x N, is a hybrid time domain,
in the sense that for every (7,J) € domuwz, there exists

a nondecreasing sequence {t; }]]iol with £y = 0 such that

doma N ([0,7] % {0, 1,...,J}) = Ui ([t 4], {5} - A
solution x to H is called maximal if it cannot be extended.
A solution is called complete if its domain is unbounded.
The set of all maximal solutions to H is denoted Sy, and
the set of all maximal solutions to H with initial condition
belonging to a set K is denoted Sy (K). A set K is said to
be forward invariant for H if every solution z € Sy (K) is
complete and satisfies rgex C K.

2.2 Boost converter model

The boost converter is a class of switched-mode power
supply that utilizes a switch S, inductor L, diode d, and
capacitor ¢ to raise the voltage at the output load R
compared to the input voltage F. The state of the switch S
(open or closed) represents the control input to the boost
converter plant. When the switch is closed, current flows
through the inductor and generates a magnetic field. When
the switch is opened, the inductor magnetic field decays to
maintain the current towards the load, causing a polarity
reversal within the inductor. The primary voltage source in
series with the inductor then charges the capacitor through
the diode to a higher voltage than is attainable using the
voltage source alone. If the switch is cycled fast enough,
the inductor does not fully discharge between cycles and
the load voltage remains higher than that of the source.

The boost converter dynamics may be expressed as a
(continuous time) plant, Hp, with discrete-valued input
denoting the position of the switch S. We model it as H in
(1) but with no jumps. That is, H p with state x := (v, ir,),
xr € Xp := My U M; which are given below, input ¢ €
{0,1}, and output given by x. Following Theunisse et al.
(2015), its dynamics reduce to the differential inclusion
with constraints

T S FP(‘T7q)

(z,q9) € Cp (2)
where Cp := (Mo x {0}) U (My x {1}), My = M; U
M = {x € R?:ip >0}, My := My = {x € R? : v, > 0}
with My ={z € R? :i;, >0} U{z € R? : v, < E,iy, = 0},
M2={$€R2Z’UCZO},Mgz{J}ERQ:UC>E7iL=0},
and Fp is the Krasovskii regularization of the vector fields
and the corresponding constraint sets associated with each
mode of circuit operation given by, for each z € Xp, (see
Theunisse et al. (2015) for details)

1 1.
— 5= Ve + =1 P
Rete ek if v € My \ Ms
Fp(z,0) := —TU+ T
—ﬁvc}x [—%vc—i—%,ﬂ] if z € M3 (3)
~ 1o, N
Fp(z,1):= B ifx € M.
T

3. MOTIVATION AND PROBLEM STATEMENT

Since the supply voltage E and load resistance R for
the converter may vary during operation, it is desirable
to estimate these values so the chosen control algorithm
can adapt accordingly. Furthermore, since the stability
properties of boost converter PWM control algorithms
typically only hold locally near the set-point, we desire
to solve the following problems:

Problem 1: Design an algorithm that permits on-
line estimation of the boost converter input voltage
E and load resistance R.

Problem 2: Design an adaptive control law whose
closed-loop system induces practical asymptotic sta-
bility of a desired output voltage.

Due to our desire to maintain PWM operation in steady-
state, the boost converter is an ideal candidate for the
control framework known as “uniting control.” This frame-
work utilizes a divide and conquer approach to control
design by combining two feedback controllers and a logic-
based algorithm that selects which controller to apply.
Uniting control strategies permit combining a global con-
troller that renders a set-point stable but may not have
good performance near the set point, and a local controller
that induces satisfactory performance, but only locally
(Teel and Kapoor, 1997).

The uniting control logic is implemented as follows. Given
a plant Hp as in (2) interconnected with two separate
control algorithms, Hy, referred to as “global,” and H;,
referred to as “local,” the choice of control algorithm is
governed by a supervisory controller that selects between
H1 and Hy based on the plant state in relation to a closed
set A" and an open set M D N as follows:

e Apply the global controller H; until the solution to
the plant enters A'. When any such point is reached,
switch to the local controller Hg.

e Apply the local controller H, as long as the solution
to the plant remains inside M. If the state of the
plant leaves M, switch to the global controller ;.

Given H; and Hy, the uniting control sets N and M will
be designed to satisfy the following assumption.

Assumption 3.1. Given a hybrid system Hp as in (2),

e cach maximal solution x to Hp with input q generated
by H1 converges to N in finite (hybrid) time;

e cach solution x to Hp from N and input q generated
by Ho remains in M for all (hybrid) time.

Hence, for the boost converter, the global controller drives
the converter state into AV, from where solutions under the
local PWM controller remain inside M for all future time.

Next, we will separately design the parameter estimation
algorithm and the global and local control algorithms be-
fore combining them using the uniting control framework.

4. HYBRID PARAMETER ESTIMATION
AND UNITING CONTROL
4.1 Parameter estimation

We begin by studying Problem 1 from Section 3. For
the purpose of estimating R and F, we establish the



following lemma, which allows us to express the dynamics
of maximal solutions to Hp in a convenient form.

Lemma 4.1. Fach mazimal solution t — z(t) to Hp in
(2) with input t — q(t) satisfies!

o(t) = fr(z(t), q(t) + fa(x(t), q(£))9 (4)
for all t € dom(z,q), where ¥ = (91,92) := (R™1,E) and

[ i
€ if
_ Y

fi(z,q) = :0:|

¢q=0, x € M1\ M3

if (q:l,zEM)or
(=0, z € M3)

(g=0, z € My \ M3) or

fa(z,q) == (g=1, = € M)

q=0, xeﬁg.

e g
¢ if

Estimating the parameters R and E is equivalent to
estimating the parameter vector ¢ in (4). For this purpose,
we extend the finite-time parameter estimator proposed
in Hartman et al. (2012) to classes of hybrid systems
whose solutions satisfy (4). The algorithm is expressed as
a hybrid system, denoted H g, and operates as follows. Let
(t,j) — zg(t,j) be a solution to Hg — hence, defined on a
hybrid time domain — with zp = (Z, 0,w,Q,m, T), where &
is the estimate of z, 1 is the estimate of ¥, and w, Q, n, T
are auxiliary variables. Consider the initial interval of flow
I° := [tg,t1] x {0} for the solution zp with constant ¥
and initial conditions w(0,0) = 0, Q(0,0) = 0, (0,0) = 0,
'(0,0) = 0, and 9(0,0) arbitrary. Omitting the (¢,j) of
solutions, for the sake of making an argument, suppose
that over this interval of flow, ) and T" satisfy

QO=w'w, I =w'wd. (5)
Then, if there exists a positive time ¢; € I° such that
Q(t1,0) is invertible, ¥ can be reset to Q71T leading to

D(t1,1) = Q *(t1,0)T'(t1,0) (6)

= (/Otclu(t, 0) Tw(t, 0)dt> 1(/(:;(15, 0) Tw(t, 0)dt19> =9.

However, since ¢ is unknown prior to hybrid time (¢1,1),
a trajectory for I' satisfying (5) cannot be generated. Due
to this, we rewrite the dynamics of I" as
P=w' (Wd+z—i—n)
where ) = 2 — # — w(9¥ — ¥). Note that since w(0,0) = 0,
the initial condition 7(0,0) = 0 implies Z(0,0) = z(0,0).
Differentiating n yields
H=d—i—w—10)+wl. (7)
Next, we define a matrix function (x,q) — K(z,q) =
KT(x,q) > 0 to be designed. The arguments of K are
omitted below for simplicity. Then, let &, w, and ¥ satisfy
&= fi(2,q) + fole, )9 + Kz — &) +w
w= fa(z,q) — Kw.
Plugging the above expressions into (7) yields n = —Kn.
Hence, w, @, n, and I" are now expressed in terms of known
quantities and we can compute ¥ as in (6).

I Since Hp in (2) is a continuous-time system, its solutions are
parameterized using only ¢.

Following Hartman et al. (2012), we implement the es-
timation scheme outlined above as a hybrid algorithm
whose jump map imposes the initial conditions specified

just above (5) and computes ¥ as in (6). Then, the hy-
brid system Hg = (Cg, Fg,Dg,Gg,0) has state zp :=
(#,9,w,Q,n,T) € Xg := RZxRZxR2*2x SP2*2xR2xR?,
inputs (z,q) € Cp, output 6 € R%, and dynamics
ZE:FE(xaquE) (xv(LZE)GCE
ZE:GE(:I;’ZE) (xvquE) E-DE (8)
0:= (071, 0,) = (R, E)
where Gg(z, 2g) = (z,Q7'T,0,0,0,0),
fi(@,9) + f2(2, )0 + K (2 — &) + wh(z,q, zp)
h(:rﬂ q, ZE)
f2($1q) - Kuw
WT(AJ
—Kn
w (Wh+z—2—n)
with A(z,q,25) = Uw' + fa(z,q) ") (z — 2), and
Cg :={(z,q,2zr) € Cp x Xg : det(Q) < u}
Dg :={(z,q,zr) € Cp x Xg : det(Q) > pu}.
The matrix function K and the parameter Q = QT > 0

modify the convergence rate of  and ] during flows, and
i > 0 ensures that Q! is well-defined in the jump map.

FE(:E7q7 ZE) =

The dynamics of Hp in (8) are similar to the estimator
proposed in Hartman et al. (2012). However, in Hartman
et al. (2012), f; and fy are continuous functions of the
state and input, compared to piecewise continuous in (4).

Similarly to Hartman et al. (2012), each maximal solution
to Hp is guaranteed to jump if the following holds.

Assumption 4.2. Given a compact set A C Xp x {0, 1},
there exist a,b > 0 such that, for any mazimal solution
t — x(t) to Hp with input t — q(t) satisfying rge(z,q) C A
and any t > 0 such that [t,t + a] C dom(z,q),

t+a

[ ha(a(),0() falo(s),a(s))ds > b (9)

7

Next, we establish the following proposition, which states
the stability properties of the interconnection of the plant
‘Hp and estimator Hg. The proof follows similarly to (Li
and Sanfelice, 2019, Proposition 4.4).

Proposition 4.3. Consider the interconnection of Hp in
(2) and Hp in (8) with K(x,q) = k + ; f2(z, Q)Qf3 (z,q)
where k > i[ and Q = QT > 0, with input? (t,j)
q(t,j) € {0,1}. Given a compact set A C Xp x {0,1}
satisfying Assumption 4.2, there exists u > 0 in (8) such
that, for each mazimal solution ¢ = (x,q,zg) to the
interconnection satisfying rge(z,q) C A, there exists a
hybrid time (t',j") € dom ¢ such that ¢(t',j) € A x Ag

with A
Ap={zgeXg:i=x 9=0, n=0}. (10

4.2 Global control algorithm

Next we study Problem 2 from Section 3 in the context of
the uniting control framework described therein, beginning
with the global control algorithm. The hybrid control

2 Since the interconnection of Hp and Hg is a hybrid system, the
input and state of Hp are now parameterized by (¢, 7).



algorithm proposed in Theunisse et al. (2015) represents
an ideal candidate for the global controller. Given a desired
output voltage v7, this algorithm renders the set

Ap={z e R® tv. =v},i, =i} = ¥} (11)
globally asymptotically stable for the boost converter
when the converter parameters ¢, L, R, E > 0 are known.

However, in contrast to Theunisse et al. (2015), the param-
eters R and F are unknown in this paper. Hence, we apply
the certainty equivalence principle and substitute the pa-
rameter estimates R and E from Hp in (8) for R and E,
respectively. Then, following the derivation in Theunisse
et al. (2015), given a desired voltage v}, the set-point
2*() = (v7,3%) with 35 = RE A
control Lyapunov function V(z,0) = (x — z*(9)) " P(x —
2*(0)), where P = [Pg p22] > 0 with 222 = 222 'We define
a hybrid system H; with state z; := ¢ € X; = {0,1},
inputs = € Xp and § € R2,,, and dynamics

is stabilized using the

G=0=: Fi(z) (z,21,0) € Cy
- =1-q=:G1(») (z,21,0) € Dy (12)
51(53,217@) =4q
where k1 represents the input g of Hp,
Cy = {(2,21,0) € Xp x X1 x R2( : Fp(a,0) < p,g =0}
U{(z,21,0) € Xp x X1 x R2 : 31 (2,0) < p,g =1}
Dy = {(2,21,0) € Xp x X1 x R2 : Fo(a,0) > p,q =0}

U{(z,21,0) € Xp x Xy x RZy: J1(2,0) > p,q =1},
and p € Ry is a design parameter that, as in Theunisse
et al. (2015), spatially regularizes the closed-loop global
controller by modifying the separation between the func-
tions 4 and 41 to avoid Zeno behavior. The functions 7,
q € {0,1} are given by

Fa(@,0) = (2, 0) + Kq(ve — 0)?
where 7, (z,0) := 2(agv? + byve + ¢4ir + d,) with

(13)

* Sk
P11, p22t
w=-B,  a=-B, bo = 2424 2l
* * - -
__ p11v _ _ pbu1v p2o K _ p22FE
bi="5 =-Too R a=5,
Tk Tk
__ p22ipE __ p22irE
do = - L dy = - L

and Ky = ko 2;;;;, K =k 2;;;, where ko, k; € (0,1) are

design parameters that ensure Ko, K; € (0,2p11/(Rc)).

Given (t,7) = x(t,j) and (t,7) — 0(t,7), each solution
(t,j) — q(t,j) to H; maintains a constant switch state
until (¢, j) intersects with the p level-set of 7,, at which
point the value of ¢ is toggled.

Note that the jump set D; below (12) has been modified
compared to the model in Theunisse et al. (2015). In

particular, the conditions Jo(z,0) = p and 51 (z,0) = p
in Theunisse et al. (2015) are instead Fo(z,0) > p and

o (x,é) > p, respectively. This change ensures complete-
ness of maximal solutions for the closed-loop uniting con-
trol algorithm discussed in Section 4.4.

To ensure that Assumption 4.2 is satisfied for the closed-
loop global controller, we define the set

IM:={ze€Xp:v.>0,ir >0}. (14)

Then, we establish the following proposition, which states
the stability properties of the closed-loop global controller.

Proposition 4.4. Consider the interconnection of the
plant Hp in (2) with ¢, L, R, E > 0, global controller H,
n (12) with ko, k1 € (0,1) and p > 0, and parameter es-
timator Hg in (8) with K(z,q) = k+ 1 f2(x,q)Ufy (z,q),
where k > %I and Q@ = QT > 0. Given a desired set-
point voltage v¥ > E and a compact set A C II x &y X
Xg, with 11 given in (14), that is forward invariant for
the interconnection, there exists p1 > 0 in (8) such that,
for each mazimal solution ¢ = (x,z1,zE) to the inter-
connection with $(0,0) € A, there exists a hybrid time
(t',5") € dom¢ such that ¢(t',j') € Il x Xy x Ag, with
Ag given in (10). Furthermore, there exists € KL such
that, for each compact set T C R? and each v > 0, there
exists p* > 0 guaranteeing the following property: for each
p € (0,p*] defining C1 and Dy in (12), every solution ¢
to the interconnection with ¢(0,0) € T x X1 x Ag is such
that, for all (t,j) € dom ¢, its x component satisfies

(£, 4)|ap < B(2(0,0) 45, T +7) + v
Sketch of Proof: Assumption 4.2 holds for every max-
imal solution with ¢(0,0) € A. Then, from Proposition

4.3 we have § = 6 in finite time, and the stability result
follows from (Theunisse et al., 2015, Theorem IV.7). O

(15)

In words, Proposition 4.4 states that, for each maximal
solution to the closed-loop system resulting with the global
controller from A, the parameter estimate 0 converges to 6
in finite time. Then, following convergence of é, solutions
satisfy the practical KL stability condition given in (15).

4.8 Local control algorithm

Next, we design the local control algorithm for the uniting
control framework. Recall from Section 3 that we desire
to maintain PWM behavior near the set-point. Assuming
the converter operates only in the continuous conduction
mode, we design the PWM controller by averaging the
converter dynamics as in Teel and Nesi¢ (2010). The
average system for the steady-state converter is given by

T = Ao(é)x + Bo(é) + d(z, é)(Al(é) — Ao(é))x (16)
where the function d represents the PWM duty cycle and

£ wo-[ 1), nen 1]

N
L

Next, we linearize (16) about x*(#) (see Kassakian et al.
(1991) for details) and denote the region of the state-space
where the linearization holds as £ C R?. Expressing the
linearized average model in error coordinates yields

F = Aug(0)7 + Bavg(0)d(x,0) (a7)
where # = x — 2*(0) and d(z,0) = d(z,0) — d*(f), with

d*(0) = 1— E/v* being the steady-state duty cycle for the
linearized average model, and

X _1 E A o
&mw=[ %’“L &w@=[fﬁc
_v’c*L 0

c

L
Since the pair (Aavg, Bavg) is controllable for all R,E >0,
we apply a full state-feedback controller of the form

d(z,0) = —K(0),

(18)



yielding the closed-loop dynamics

&= Aa(0)i (19)
where K is chosen such that Acl(é) = Advg(é) —
Bavg(é)l? (0) is Hurwitz for each . Then, the PWM duty
cycle is computed as d(z, 9) — ¢(d*(f) — K(0)Z), where
¥ (s) := min{max{0, s}, 1} is a saturation function.

Then, we define the hybrid system Ho with state zp := 7 €
Xy := [0,1], inputs = € Xp and 6 € R2, and dynamics

7 =1/e =: Fo(zo) (2, 20,0) € Cy

=0 = Gol(z) (2, 20,0) € Dy
1 if 7<d(z6) (20

Ko(x,20,0) == { {1,0} if 7=d(x,0)

0 if 7> d(z0)

where Cp := Xp x [0,1] x RZ ) and Dy := Xp x {1} xR%

Each solution (¢, j) — 7(t, j) to Ho represents a timer that
counts continually with a rate of 1/¢ and resets to zero each
time 7 = 1. The output k¢ is a square wave representing
the PWM signal that determines the converter switch
state. The parameter ¢ > 0 represents the PWM period.

To ensure validity of the linearization in (17), and that the
converter operates only in the continuous conduction mode
under the local controller, we define the set X, := LN1IL.

Then, since the matrix Acl(é) in (19) is Hurwitz for each

0, there exists an open set® B,, C X, containing a
nelghborhood of Ap that is forward invariant for (19).

Next, we establish the following proposition, which states
the stability properties of the closed-loop local controller.

Proposition 4.5. Consider the interconnection of the
plant Hp in (2) with ¢, L, R, E > 0, local controller H
im (20) with € > 0, and parameter estimator Hp with
K(z,q) = k+ %fg(x,q)ﬁf;(x,q), where k > iI and
Q=07 > 0. Given a desired set-point voltage v} > E and
a compact set A C II x Xo x Xg, with 1T given in (14), that
s forward invariant for the interconnection, there exists
w > 0 in (8) such that, for each mazimal solution ¢ =
(x, 20, 2E) to the interconnection with ¢(0,0) € A, there
exists a hybrid time (t',7') € dom ¢ such that ¢(t',j') €
I x Xy X Ag, with Ag given in (10). Furthermore, there
exists B € KL such that, for each compact set T C Ba,
and each v > 0, there exists €* > 0 guaranteeing the
following property: for each e € (0,e*] defining Fy in (20),
every solution ¢ to the mterconnectzon with ¢(0,0) € T x
Xox Ag is such that, for all (t,j) € dom ¢, its x component
satisfies

lz(t, j)lap < B(12(0,0)|ap,t +j) + v (21)
Sketch of Proof: Assumption 4.2 holds for every max-
imal solution with ¢(0,0) € A. Then, from Proposition
4.3 we have 6§ = 0 in finite time, and the stability result

follows from (Teel and Nesi¢, 2010, Theorem 2). O
4.4 Uniting control algorithm

To implement the uniting control framework, the supervi-
sor logic outlined in Section 3 is applied to the interconnec-

3 The set B, is the basin of attraction for (19) (Goebel et al.,
2012, Definition 7.3).

tion of the boost converter plant Hp using the global and
local control algorithms H; and Hg, respectively. Recall
that zy is the state of Hg, z1 is the state of Hq, and the
output x of the selected controller is mapped to the input
q of Hp. Then, we define the hybrid system H with state
& = (z,20,21,p) € X := Xp x Xy x Xy x {0,1}, input
f € R%,, and dynamics

£ e F(E0) &0 ec
¢re G (€,0) € D.

The logic variable p € {0,1} is set to 0 when the global
controller is selected and to 1 when the local controller is
selected. The flow map F is equal to (Fp, Fp,0,0) when
p = 0 and to (Fp,0,F;,0) when p = 1. It is written

concisely as Fp(z, ky(z, 2, é))

Fe =] ( ;1;)1 (f;ggZo)
0

(22)

The flow set C is given by
C = {(f,é) €eX xR, (m,ﬁp(x,zp,é)) € Cp,
(I‘, 20, é) € OOa (.T, 21, é) S Ola
(z,p) € M x {0}) U (R*\ N x {1}) }.
where the sets A/ and M are to be designed.
The jump map G permits jumps by Gg when p = 0 and
by G; when p = 1, and toggles the value of p based on the

converter state z in relation to the sets A/ and M. This is
expressed as*

G°¢) ¢e D\ D’
G'(¢) ¢e D'\ D’

G(&) =4 G (¥ ¢eD*\(D°uDY)
{G°(¢),G*(¢)} ¢eD’nD?
{G'(¢),G*()} ¢eD'nD?

where Go(f) = ((E,GO(ZO)»Zlvp)a Gl(g) = (x,207G1(Zl)7p)a
G?(€) := (z,20,21,1 — p), and the jump set is given by
D := D° U D' U D? with
0:{59 €eX xR, : (z,2
={(&,9) ) e X xR, : (z,21
={(£,0) e ¥ xR,
(z,p) € (R"\M x {0}) U (V> {1}) }.

Next we will design the uniting control sets N" and M.

79A) €D07p20}
,é) EDl,p: 1}

5. UNITING CONTROL SETS AND MAIN RESULT

Any sets A and M that satisfy Assumption 3.1 are
acceptable for the uniting control framework in (22). We
provide one example of how these sets can be designed for
the boost converter. We define the closed set N as a ball
given by .

N :=z*(0) +ryB (23)
where rpr € Ry is chosen such that NV C By, . Then, we
choose p in (12) such that each maximal solution to the
closed-loop global controller converges to N'. The choice
of a ball for NV is arbitrary and was done for simplicity.

4 The jump maps associated with the sets D° N D? and D! N D?
are necessary to satisfy outer semicontinuity of G in (Goebel et al.,
2012, Assumption 6.5).



The reachable set from A" may be computed, for example,
via Poisson analysis as in (Almer et al., 2007). However,
since this technique is computationally intensive for real-
time implementation, we approximate M using the lin-
earized model (19). A rigorous analysis of this approxima-
tion is beyond the scope of the paper. Using the Lyapunov
function V(%) := 7' P#, where P = PT > 0 solves
AT(O)P + PA4(6) = —Q and Q = QT > 0, we choose
a parameter 79 € Ry such that Lf‘;(ro) O N. Then,

solutions to (19) from N remain inside M = L(ro).

To bound the trajectories of the closed-loop local con-
troller, points on the boundary of M are parameterized
in a grid such that the variation in the vector field Fp be-
tween adjacent points is small. Since the converter switch
remains in one state for at most £ seconds during each
PWM period, we compute the finite-time reachable set
from each point on the boundary of M by integrating F'p
for € seconds for each ¢ € {0,1}. Then, M is defined as

M= 1nt(L‘~/(rM)) (24)
where rpy € Rsg is chosen such that M bounds the

set reachable in ¢ seconds from M for each switch state
g € {0,1}. Finally, we choose the matrix function K in
(18) and the parameter € > 0 in (20) so that M C X..

Next, we establish our main result, which states the
stability properties of the closed-loop uniting controller.

Theorem 5.1. Consider the interconnection of the hybrid
system H in (22) with ¢,L,R,E > 0, ko,k1 € (0,1),
p >0, ¢ > 0, and parameter estimator Hg in (8) with
K(z,q) = k+ % fa2(z,q)Uf) (z,q), where k > 11 and Q =
Q7 > 0. Given a desired set-point voltage v} > E, uniting
control sets N and M satisfying Assumption 3.1, and a
compact set A CTI x Xy x Xy x {0,1} x Xg, with 11 given
n (14), that is forward invariant for the interconnection,
there exists p > 0 in (8) such that, for each mazimal
solution ¢ = (x, 29, 21,p, 2E) to the interconnection with
#(0,0) € A, there exists a hybrid time (t',7') € dom¢
such that ¢(t',7") € II x Xy x X1 x {0,1} x Ag, with Ag
given in (10). Furthermore, there exists 5 € KL such that,
for each compact set Y C R? and each v > 0, there exist
p*,e* > 0 guaranteeing the following property: for each
p € (0, p*] defining C1 and Dy in (12) and each e € (0,e*]
defining Fy in (20), every solution ¢ to the interconnection
with $(0,0) € T x Xy x Xy x {0,1} x Ag is such that, for
all (t,7) € dom ¢, its x component satisfies

[z(t, 5)]ap < B(12(0,0)]ap,t + ) + v (25)
and such solutions exhibit no more than two toggles in the
value of the solution component p.

Sketch of Proof: The stability result follows from Propo-
sitions 4.4 and 4.5. The value of p can be shown to toggle

at most twice by analysis of the trajectories from the sets
N and M\ N (see (Sanfelice, 2021, Theorem 4.6)). O

6. SIMULATION RESULTS

In this section, we present simulation results for the
interconnection of H and Hpg. Simulations are performed
using the Hybrid Equations Toolbox (Sanfelice et al., 2013)

with ¢ = 0.1F, L = 0.2H, P = [662 2. € = 0.0001,

p = 0.001, p = 0.001, and Ap = (7, 3.27). The set N in

(23) is defined with rnr = 0.05v}, and a grid of 10 points is
used to compute M in (24) from M. Initial conditions are
xo = (3,6), Ey = 6, Ry = 3.6, Ry = 3, Ey = 5, as shown
in Figure 1.5 Both parameter estimates converge at 0.5
seconds. They converge again when E changes at ¢t = 3
and when R changes at ¢ = 5. The plant state converges
to a neighborhood of Ap following each convergence of the
parameter estimate to the true value.

7
6
5
1y 4
3
2
|
o

Ve t
Fig. 1. Left: trajectories under H; shown in blue and Hg
in magenta. Right: parameter estimates R and E.
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