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Abstract

Existing tensor factorization methods assume that the input ten-
sor follows some specific distribution (i.e. Poisson, Bernoulli,
and Gaussian), and solve the factorization by minimizing some
empirical loss functions defined based on the corresponding
distribution. However, it suffers from several drawbacks: 1)
In reality, the underlying distributions are complicated and
unknown, making it infeasible to be approximated by a simple
distribution. 2) The correlation across dimensions of the input
tensor is not well utilized, leading to sub-optimal performance.
Although heuristics were proposed to incorporate such corre-
lation as side information under Gaussian distribution, they
can not easily be generalized to other distributions. Thus, a
more principled way of utilizing the correlation in tensor fac-
torization models is still an open challenge. Without assuming
any explicit distribution, we formulate the tensor factorization
as an optimal transport problem with Wasserstein distance,
which can handle non-negative inputs.
We introduce SWIFT, which minimizes the Wasserstein dis-
tance that measures the distance between the input tensor
and that of the reconstruction. In particular, we define the
N -th order tensor Wasserstein loss for the widely used ten-
sor CP factorization and derive the optimization algorithm
that minimizes it. By leveraging sparsity structure and dif-
ferent equivalent formulations for optimizing computational
efficiency, SWIFT is as scalable as other well-known CP algo-
rithms. Using the factor matrices as features, SWIFT achieves
up to 9.65% and 11.31% relative improvement over baselines
for downstream prediction tasks. Under the noisy conditions,
SWIFT achieves up to 15% and 17% relative improvements
over the best competitors for the prediction tasks.

Introduction
Tensor factorization techniques are effective and powerful
tools for analyzing multi-modal data and have been shown
tremendous success in a wide range of applications includ-
ing spatio-temporal analysis (Bahadori, Yu, and Liu 2014;
Fanaee-T and Gama 2016), graph analysis (Gujral, Pasricha,
and Papalexakis 2020), and health informatics (Yin et al.
2019; He, Henderson, and Ho 2019) applications. Many con-
straints such as non-negativity (Kim, He, and Park 2014),
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sparsity (Henderson et al. 2017), orthogonality (Wang et al.
2015), and smoothness (Afshar et al. 2018) are imposed on
tensor methods in order to improve the performance both
quantitatively and qualitatively. Moreover, depending on the
nature of input data, tensor methods fit different distribu-
tions on data including Gaussian (Bader and Kolda 2007),
Poisson (Chi and Kolda 2012), Bernoulli (Hong, Kolda, and
Duersch 2020) distributions and minimize various empirical
loss functions such as sum square loss, KL-divergence, and
log-loss. However, there are several limitations with these
techniques. 1) Existing factorization models often assume
some specific data distributions, yet in practice, the under-
lying distributions are complicated and often unknown. 2)
The nature of these factorization models neglects correlation
relations within each tensor mode (such as external knowl-
edge about similarity among those features). Although there
are several extensions to tensor factorization approaches that
consider these similarity matrices as side information (Acar,
Kolda, and Dunlavy 2011; Kim et al. 2017), they are derived
under Gaussian distribution and are not directly generalizable
to unknown distributions.

Recent success of Wasserstein distance or loss (a.k.a. earth
mover’s distance or optimal transport distance) shows its
potential as a better measure of the difference between two
distributions (Arjovsky, Chintala, and Bottou 2017; Cuturi
2013; Frogner et al. 2015). This distance metric provides a
natural measure of the distance between two distributions
via a ground metric of choice and can be defined as the cost
of the optimal transport plan for moving the mass in the
source distribution to match that in the target one. Recently,
Wasserstein distance has been applied to matrix factorization
and dictionary learning problems with great success (Sandler
and Lindenbaum 2009; Rolet, Cuturi, and Peyré 2016; Qian
et al. 2016; Schmitz et al. 2018; Varol, Nejatbakhsh, and
McGrory 2019). To the best of our knowledge, its extension
to tensor factorization was never studied and is in fact non-
trivial due to the following challenges:

• Wasserstein loss is not well-defined for tensors: The
Wasserstein loss is originally defined over vectors, where
each entry of the vector represents one physical location
and the cost of transporting from one location to another is
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used. Existing matrix-based Wasserstein loss are defined
by the sum of the vector-based Wasserstein loss over the
columns of the matrices (Rolet, Cuturi, and Peyré 2016).
Unfortunately, this definition is not applicable to tensors of
multiple modes.

• Wasserstein loss is difficult to scale: Learning with
Wasserstein loss generally requires solving the optimal
transport problem in each iteration, which is extremely
time-consuming.

• Large and sparse nonnegative input: Existing works on
Wasserstein matrix factorization are developed based on
dense input with relatively small size. In reality, tensors can
often be very large are are often sparse. Efficient learning
algorithms are possible only when the sparsity structures
of the large input tensor are properly identified and fully
utilized.

To overcome these challenges, we propose SWIFT, a ten-
sor factorization method which efficiently minimizes Wasser-
stein distance for sparse nonnegative tensors. The main con-
tributions of SWIFT include:

• Defining Optimal Transport for Tensors that Handles
Nonnegative Input: SWIFT is the first technique that min-
imizes optimal transport (OT) distance for tensor factor-
ization approaches. The benefit of OT is that it does not
assume any specific distribution in the data. SWIFT is able
to handle nonnegative inputs such as binary, counts and
probability measures, which are common input in real-
world tensor data.

• Full Utilization of Data Sparsity and Parallelism: By
fully exploring and utilizing the sparsity structure of the
input data, SWIFT significantly reduces the number of
times required to compute OT and enables parallelism.
SWIFT obtains up to 16× faster OT computation than
direct implementation of Wasserstein tensor factorization.

• Efficient Computation: SWIFT reduces the amount of
computations by smartly rearranging the objective func-
tion for solving each factor matrix. Scalability of SWIFT
is comparable with well-known CP algorithms. Moreover,
SWIFT achieves up to 921× speed up over a direct imple-
mentation of Wasserstein tensor factorization without our
speedup strategies, as shown in the appendix.

Notations and Background
Basic Notations and Tensor Operations
We denote vectors by bold lowercase letters (e.g. u), matrices
by bold uppercase letters (e.g. A), and tensors by Euler script
letters (e.g. X ). The entropy E for a nonnegative matrix A ∈
RM×N+ is defined asE(A) = −

∑M,N
i,j=1 A(i, j)log(A(i, j)).

KL(A||B) is the generalized KL-divergence between two
matrices A,B ∈ RM×N is defined as KL(A||B) =∑M,N
i,j=1 A(i, j)log(A(i,j)

B(i,j) )−A(i, j) + B(i, j).
Mode-n Matricization. Matricization (Kolda and Bader

2009) is the process of reordering the entries of a tensor
into a matrix. Specifically, the mode-n matricization is the
concatenation of all the mode-n fibers obtained by fixing

the indices for every but the nth mode. It transforms the
tensor X ∈ RI1×I2...×IN into matrix X(n), and the size of
the resulting matrix is In by I1...In−1In+1...IN . To ease the
notation, we define I(−n) = I1...In−1In+1...IN .

Khatri-Rao Product. The Khatri-Rao product (Kolda and
Bader 2009) of two matrices A ∈ RI×R and B ∈ RJ×R
is the column-wise Kronecker product C = A � B =
[a1 ⊗ b1 a2 ⊗ b2 · · · aR ⊗ bR] , where ai,bi are the
column-i of matrices A and B, ⊗ denotes the Kronecker
product, and C ∈ RIJ×K . We denote the Khatri-Rao prod-
uct of all factor matrices except the n-th mode as

A
(−n)
� = (AN�...�An+1�An−1�...�A1) ∈ RI(−n)×R, (1)

where An ∈ RIn×R indicates the n-th factor matrix.
Canonical/Polyadic (CP) decomposition. The CP fac-

torization (Kolda and Bader 2009) approximates a ten-
sor X as the sum of rank-one tensors ( X̂ =

JA(1),A(2), ....,A(N)K =
∑R
r=1 a

(1)
r ◦ a(2)

r ◦ ... ◦ a(N)
r ),

where X̂ is a reconstructed tensor, a(n)
r is the r-th column of

factor matrix A(n), ◦ denotes the outer product of vectors,
and R is the number of the rank-one tensors to approximate
the input tensor, i.e., the target rank. The mode-n matriciza-
tion of reconstructed tensor X̂ is X̂(n) = An(A

(−n)
� )T ∈

RIn×I(−n) .

Preliminaries & Related Work
Wasserstein Distance and Optimal Transport. Wasser-
stein distance (a.k.a. earth mover’s distance or optimal trans-
port distance) computes the distance between two probability
vectors1. Given two vectors a ∈ Rn+, b ∈ Rm+ and cost
matrix C ∈ Rn×m+ , the Wasserstein distance between a, b
is shown by W (a,b) and minimizes 〈C,T〉 where 〈., .〉 in-
dicates the Frobenius inner product and C ∈ Rn×m+ is a
symmetric input cost matrix where C(i, j) represents the
cost of moving a[i] to b[j]. T ∈ U(a,b) where T is an
optimal transport solution between probability vectors a and
b and U(a,b) = {T ∈ Rn×m+ |T1m = a,TT1n = b} is a
set of all non-negative n×m matrices with row and column
sums a, b respectively. 1m represents m dimensional vector
of ones. The aforementioned problem has complexity O(n3)
(assuming m = n) (Peyré, Cuturi et al. 2019). However,
computing this distance metric comes with a heavy compu-
tational price (Pele and Werman 2009). In order to reduce
the complexity of computation, Cuturi et.al. (Cuturi 2013)
propose an entropy regularized optimal transport problem
between vectors a, b:

WV (a,b) = minimize
T∈U(a,b)

〈C,T〉 − 1

ρ
E(T), (2)

where E(T) is an entropy function and ρ is a regularization
parameter. When ρ ≥ 0, the solution of (2) is called the
Sinkhorn divergence (a.k.a. entropy regularized Wasserstein
distance) between probability vectors a and b. Eq. (2) is
a strictly convex problem with a unique solution and can
be computed with vectors u ∈ Rn+,v ∈ Rm+ such that
diag(u)K diag(v) ∈ U(a,b). Here, K = exp(−ρC) ∈

1Vector a is a probability vector if ‖a‖1 = 1 and all elements in
a are non-negative.
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Rn×m+ . Finding the optimal u and v can be computed via the
Sinkhorn’s algorithm (Sinkhorn and Knopp 1967).

Wasserstein Dictionary Learning. There are several
techniques for minimizing Wasserstein loss for dictionary
learning problem (Sandler and Lindenbaum 2009; Rolet, Cu-
turi, and Peyré 2016; Qian et al. 2016; Schmitz et al. 2018;
Varol, Nejatbakhsh, and McGrory 2019; Xu 2020). Sandler
et.al. (Sandler and Lindenbaum 2009) introduces the first
non-negative matrix factorization problem that minimizes
Wasserstein loss by proposing a linear programming prob-
lem, however, their method needs heavy computation. Cuturi
(Rolet, Cuturi, and Peyré 2016) proposed a Wasserstein dic-
tionary learning problem based on entropy regularization.
(Qian et al. 2016) proposes a similar method by exploiting
knowledge in both data manifold and features correlation.
Xu (Xu 2020) introduces a nonlinear matrix factorization
approach for graphs that considers topological structures. Un-
fortunately, these approaches cannot be directly generalized
to tensor inputs due to the challenges mentioned in Section .

SWIFT Framework
We define and solve optimal transport problem for ten-
sor input by proposing Scalable WassersteIn FacTorization
(SWIFT) for sparse nonnegative tensors. First we define
the input and output for SWIFT. Our proposed method re-
quires the N -th order tensor X ∈ RI1×...×IN and N cost
matrices Cn ∈ RIn×In+ (n = 1, ..., N) capturing the rela-
tions between dimensions along each tensor mode as the
input to SWIFT. Here, Cn is a cost matrix for mode n and
can be computed directly from the tensor input, or derived
from external knowledge. It can also be an identity matrix,
meaning that the correlation among features are ignored if
the cost matrix is not available. SWIFT is based on CP de-
composition and computes N non-negative factor matrices
An ∈ RIn×R+ (n = 1, ..., N) as the output. These factor
matrices can then be used for downstream tasks, such as
clustering and classification.

Wasserstein Distance for Tensors
Definition 1 (Wasserstein Matrix Distance) Given a cost
matrix C ∈ RM×M+ , the Wasserstein distance between
two matrices A = [a1, ..., aP ] ∈ RM×P+ and B =

[b1, ...,bP ] ∈ RM×P+ is denoted by WM (A,B), and given
by:

WM (A,B) =

P∑
p=1

WV (ap,bp)

= minimize
Tp∈U(ap,bp)

P∑
p=1

〈C,Tp〉 −
1

ρ
E(Tp)

= minimize
T∈U(A,B)

〈C,T〉 − 1

ρ
E(T),

(3)

Note that sum of the minimization equals minimization of
sums since each Tp is independent of others. Here, ρ is
a regularization parameter, C = [C, ....,C]︸ ︷︷ ︸

P times

and T =

[T1, ...Tp, ...,TP ] are concatenations of the cost matrices

and the transport matrices for the P optimal transport prob-
lems, respectively. Note that U(A,B) is the feasible region
of the transport matrix T and is given by:

U(A,B) =
{
T ∈ RM×MP

+ | Tp1M = ap,T
T
p 1M = bp ∀p

}
=
{
T ∈ RM×MP

+ |∆(T) = A,Ψ(T) = B
}

(4)
where ∆(T) = [T11M , ...,TP1M ] = T(IP ⊗ 1M ),
Ψ(T) = [TT

1 1M , ...,T
T
P1M ] and 1M is a one vector with

length M .
Definition 2 Wasserstein Tensor Distance: The Wasser-
stein distance between N -th order tensor X ∈ RI1×...×IN+

and its reconstruction X̂ ∈ RI1×...×IN+ is denoted by
WT (X̂ ,X ):

WT (X̂ ,X ) =

N∑
n=1

WM

(
X̂(n),X(n)

)
≡

N∑
n=1

{
minimize

Tn∈U(X̂(n),X(n))
〈Cn,Tn〉 −

1

ρ
E(Tn)

}
,

(5)
where Cn = [Cn,Cn, ...,Cn] ∈ RIn×InI(−n)

+ is ob-
tained by repeating the cost matrix of the n-th mode for
I(−n) times and horizontally concatenating them. Tn =

[Tn1, ...,Tnj , ...,TnI(−n)
] ∈ RIn×InI(−n)

+ and Tnj ∈
RIn×In+ is the transport matrix between the columns X̂(n)(:

, j) ∈ RIn+ and X(n)(:, j) ∈ RIn+ .

Note that C and Cn are for notation convenience and we
do not keep multiple copies of C and Cn in implementation.
Proposition 1 The Wasserstein distance between tensors X
and Y denoted by WT (X ,Y) is a valid distance and satisfies
the metric axioms as follows:

1. Positivity: WT (X ,Y) ≥ 0

2. Symmetry: WT (X ,Y) = WT (Y,X )

3. Triangle Inequality: ∀X ,Y,Z WT (X ,Y) ≤
WT (X ,Z) +WT (Z,Y)

We provide the proof in the appendix.

Wasserstein Tensor Factorization
Given an input tensor X , SWIFT aims to find the low-rank
approximation X̂ such that their Wasserstein distance in
(5) is minimized. Formally, we solve for X̂ by minimizing
WT (X̂ ,X ), where X̂ = JA1, . . . ,AN K is the CP factoriza-
tion of X . Together with Definitions 1 and 2, we have the
following optimization problem:

minimize
{An≥0,Tn}Nn=1

N∑
n=1

(
〈Cn,Tn〉 −

1

ρ
E(Tn)

)
(6)

subject to X̂ = JA1, . . . ,AN K

Tn ∈ U(X̂(n),X(n)), n = 1, . . . , N

where the first constraint enforces a low-rank CP approxi-
mation, the second one ensures that the transport matrices
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are inside the feasible region. We also interested in impos-
ing non-negativity constraint on the CP factor matrices for
both well-definedness of the optimal transport problem and
interpretability of the factor matrices. Similar to prior works
on vector-based, and matrix-based Wasserstein distance min-
imization problems (Frogner et al. 2015; Qian et al. 2016), in
order to handle non-probability inputs, we convert the second
hard constraint in (6) to soft regularizations by Lagrangian
method using the generalized KL-divergence. Together with
the fact that X̂(n) = An(A

(−n)
� )T for CP factorization, we

convert (6) into the following objective function:

minimize
{An≥0,Tn}Nn=1

N∑
n=1

(
〈Cn,Tn〉 −

1

ρ
E(Tn)︸ ︷︷ ︸

Part P1

+

λ
(
KL(∆(Tn)||An(A

(−n)
� )T )︸ ︷︷ ︸

Part P2

+KL(Ψ(Tn)||X(n))︸ ︷︷ ︸
Part P3

))
(7)

where ∆(Tn) = [Tn11, ...,Tnj1, ...,TnI(−n)
1], Ψ(Tn) =

[TT
n11, ...,T

T
nj1, ...,T

T
nI(−n)

1], and λ is the weighting pa-
rameter for generalized KL-divergence regularization.

We use the alternating minimization to solve (7). SWIFT
iteratively updates: 1) Optimal Transports Problems. For
each mode-n matricization, SWIFT computes at most a set
of I(−n) optimal transport problems. By exploiting the spar-
sity structure and avoiding explicitly computing transport
matrices we can significantly reduce the computation cost.
2) Factor Matrices. The CP factor matrices are involved
inside the Khatri-Rao product and needs excessive amount
of computation. However, by rearranging the terms involved
in (7), we can efficiently update each factor matrix. Next, we
provide efficient ways to update optimal transport and factor
matrices in more details.

Solution for Optimal Transport Problems
For mode-n, Tn = [Tn1, ...,Tnj , ...,TnI(−n)

] ∈
RIn×InI(−n)

+ includes a set of I(−n) different optimal trans-
port problems. The optimal solution of j-th optimal transport
problem for mode n is T∗nj = diag(uj)Kndiag(vj), where
Kn = e(−ρCn−1) ∈ RIn×In+ ,uj ,vj ∈ RIn+ . This requires
computing I(−n) transport matrices with size In × In in (7),
which is extremely time-consuming. To reduce the amount of
computation, SWIFT proposes the following three strategies:

1) Never explicitly computing transport matrices (T∗n):
Although we are minimizing (7) with respect to Tn, we never
explicitly compute T

∗
n. In stead of directly computing the

optimal transport matrices T
∗
n, we make use of the constraint

T∗nj1 = diag(uj)Knvj = uj ∗ (Knvj) where ∗ denotes
element-wise product. As a result, the following proposition
effectively updates objective function 7.

Proposition 2 ∆(Tn) =
[Tn11, ...,Tnj1, ...,TnI(−n)

1] = Un ∗ (KnVn) min-
imizes (7) where Un = (X̂(n))

Φ � (
Kn

(
X(n) �

(KT
nUn)

)Φ)Φ, Vn =
(
X(n) � (KT

nUn)
)Φ, Φ = λρ

λρ+1 , and

� indicates element-wise division. See Section appendix for
proof.

2) Exploiting Sparsity Structure in X(n) ∈ RIn×I(−n)

+ :
We observe that there are many columns with all zero ele-
ments in X(n) due to the sparsity structure in the input data.
There is no need to compute transport matrix for those zero
columns, therefore, we can easily drop zero value columns in
X(n) and its corresponding columns in Un,Vn, and X̂(n)

from our computations. We useNNZn to denote the number
of non-zero columns in X(n). By utilizing this observation,
we reduce the number of times to solve the optimal trans-
port problems from I(−n) to NNZn, where we usually have
NNZn � I(−n) for sparse input.

3) Parallelization of the optimal transport computa-
tion: The NNZn optimal transport problems for each fac-
tor matrix X(n) can be solved independently. Therefore,
parallelization on multiple processes is straightforward for
SWIFT.

Solution for Factor Matrices
All the factor matrices are involved in Part P2 of Objective (7)
and present in N different KL-divergence terms. The objec-
tive function with respect to factor matrix An for mode n
is:

minimize
An≥0

N∑
i=1

KL
(

∆(Ti) ||Ai(A
(−i)
� )T

)
(8)

where ∆(Ti) ∈ RIi×I(−i)

+ , Ai ∈ RIi×R+ , A(−i)
� ∈ RI(−i)×R

+ .
Updating factor matrix An in (8) is expensive due to varying
positions of An in the N KL-divergence terms. Specifically,
An is involved in the Khatri-Rao product A(−i)

� , as defined
in (1), for every i 6= n. On the other hand, when i = n, An

is not involved in A
(−i)
� .

Efficient rearranging operations. In order to solve (8)
efficiently, we introduce operator Π, which performs a se-
quence of reshape, permute and another reshape operations,
such that, when applied to the right-hand side of (8), An

is no longer involved inside the Khatri-Rao product for all
i 6= n. Formally,

Π(Ai(A
(−i)
� )T , n) = An(A

(−n)
� )T ∈ R

In×I(−n)

+ ∀ i 6= n. (9)

To maintain equivalence to (8), we apply the same op-
eration to the left-hand side of (8), which leads us to the
following formulation:

minimize
An≥0

KL

(


Π(∆(T1), n)
.
.

Π(∆(Ti), n)
.
.

Π(∆(TN ), n)


∣∣∣∣∣
∣∣∣∣∣



An(A
(−n)
� )T

.

.

An(A
(−n)
� )T

.

.

An(A
(−n)
� )T


)
,

(10)
where Π(∆(Ti), n) ∈ RIn×I(−n)

+ for all i. Due to the fact
that KL-divergence is computed point-wisely, the above for-
mula is equivalent to (8), with the major difference that An is
at the same position in every KL-divergence term in (10), and
is no longer involved inside the Khatri-Rao product terms;
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Algorithm 1: SWIFT
Input :X ∈ RI1×I2×...×IN+ , Cn, NNZn n =

1, ..., N ,
target rank R, λ, and ρ

Output :An ∈ RIn×R+ n = 1, ..., N

1 Kn = e(−ρCn−1) n = 1, ..., N ;
2 Initialize An n = 1, ..., N randomly;
3 while stopping criterion is not met do
4 for n = 1,...,N do
5 // Optimal Transport Update (Section );
6 Φ = λρ

λρ+1 ;
7 Un = ones(In, NNZn)� In;
8 for s=1,...,Sinkhorn Iteration do

9 Un = (X̂(n))
Φ �

(
Kn

(
X(n) � (KT

nUn)
)Φ)Φ

;

10 end

11 Vn =
(
X(n) � (KT

nUn)
)Φ

;

12 ∆(Tn) = Un ∗ (KnVn);
13 end
14 for n=1, ..., N do
15 // Factor Matrix Update (Section );
16 Update An based on (10);
17 end
18 end

therefore, it can be much more efficiently updated via mul-
tiplicative update rules (Lee and Seung 2001). More details
regarding operator Π, and multiplicative update rules for An

are provided in the appendix.
In every iteration of SWIFT, we first update N different

optimal transport problems and then update N factor matri-
ces. Algorithm 1 summarizes the optimization procedure in
SWIFT.

Proposition 3 SWIFT is based on Block Coordinate De-
scent (BCD) algorithm and guarantees convergence to a
stationary point. See detailed proofs in the appendix.

Details regarding complexity analysis are provided in ap-
pendix.

Experimental Results
Experimental Setup
Datasets and Evaluation Metrics
1) BBC News (Greene and Cunningham 2006) is a publicly
available dataset from the BBC News Agency for text classifi-
cation task. A third-order count tensor is constructed with the
size of 400 articles by 100 words by 100 words. X (i, j, k) is
the number of co-occurrences of the j-th and the k-th words
in every sentence of the i-th article. We use the pair-wise
cosine distance as the word-by-word and article-by-article
cost matrices with details provided in the appendix. The
downstream task is to predict the category (from business,
entertainment, politics, sport or tech) of each article and we
use accuracy as the evaluation metric.

2) Sutter is a dataset collected from a large real-world
health provider network containing the electronic health
records (EHRs) of patients. A third-order binary tensor is
constructed with the size of 1000 patients by 100 diagnoses
by 100 medications. The downstream task is to predict the on-
set of heart failure (HF) for the patients (200 out of the 1000
patients are diagnosed with HF) and use PR-AUC (Area Un-
der the Precision-Recall Curve) to evaluate the HF prediction
task.

We chose these two datasets because of different data types
(count in BBC, binary in Sutter). Note that the cost matri-
ces are derived from the original input by cosine similar-
ity without any additional external knowledge. Hence the
comparisons are fair since the input are the same.

Baselines We compare the performance of SWIFT with
different tensor factorization methods with different loss func-
tions and their variants:
• The first loss function minimizes sum square loss and has

4 variants: 1) CP-ALS (Bader and Kolda 2007); 2) CP-
NMU (Bader and Kolda 2007); 3) Supervised CP (Kim
et al. 2017); and 4) Similarity based CP (Kim et al. 2017).
The first one is unconstrained, the second one incorporates
non-negativity constraint, the third one utilizes label infor-
mation, and the last one uses similarity information among
features (similar to SWIFT).

• The second loss function is Gamma loss (CP-Continuous
(Hong, Kolda, and Duersch 2020)) which is the start of the
art method (SOTA) for non-negative continuous tensor.

• The third loss function is Log-loss (CP-Binary (Hong,
Kolda, and Duersch 2020)) which is SOTA binary tensor
factorization by fitting Bernoulli distribution.

• The fourth loss function is Kullback-Leibler Loss (CP-
APR (Chi and Kolda 2012)) which fits Poisson distribution
on the input data and is suitable for count data.

Classification Performance of SWIFT
To evaluate low-rank factor matrices, we utilize the down-
stream prediction tasks as a proxy to assess the perfor-
mance of SWIFT and the baselines, similar to the existing
works (Ho, Ghosh, and Sun 2014; Yin et al. 2019; Afshar
et al. 2020; Yin et al. 2020a). We performed 5-fold cross
validation and split the data into training, validation, and test
sets by a ratio of 3:1:1.

Outperforming various tensor factorizations: Table 1
summarizes the classification performance using the factor
matrices obtained by SWIFT and the baselines with varying
target rank (R ∈ {5, 10, 20, 30, 40}). We report the mean and
standard deviation of accuracy for BBC News, and that of PR-
AUC Score for Sutter dataset over the test set. For BBC News,
SWIFT outperforms all baselines for different target ranks
with relative improvement ranging from 1.69% to 9.65%. For
Sutter, SWIFT significantly outperforms all baselines for all
values of R with relative improvement ranging from 5.10%
to 11.31%.

Outperforming various classifiers: We further compare
the performance of SWIFT against widely-adopted classi-
fiers, including Lasso Logistic Regression, Random Forest,
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R=5 R=10 R=20 R=30 R=40

BBC News
Dataset

CP-ALS .521 ± .033 .571 ± .072 .675 ± .063 .671 ± .028 .671 ± .040
CP-NMU .484 ± .039 .493 ± .048 .581 ± .064 .600 ± .050 .650 ± .031
Supervised CP .506 ± .051 .625 ± .073 .631 ± .050 .665 ± .024 .662± .012
Similarity Based CP .518 ± .032 .648 ± .043 .638 ± .021 .662 ± .034 .673 ± .043
CP-Continuous .403 ± .051 .481 ± .056 .528 ± .022 .559 ± .024 .543 ± .043
CP-Binary .746 ± .058 .743 ± .027 .737 ± .008 .756 ± .062 .743 ± .044
CP-APR .675 ± .059 .768 ± .033 .753 ± .035 .743 ± .033 .746 ± .043
SWIFT .759 ± .013 .781 ± .013 .803 ± .010 .815 ± .005 .818 ± .022

Sutter
Data

CP-ALS .327 ± .072 .333 ± .064 .311 ± .068 .306 ± .065 .332 ± .098
CP-NMU .300 ± .054 .294 ± .064 .325 ± .085 .344 ± .068 .302 ± .071
Supervised CP .301 ± .044 .305 ± .036 .309 ± .054 .291 ± .037 .293 ± .051
Similarity Based CP .304 ± .042 .315 ± .041 .319 ± .063 .296 ± .041 .303 ± .032
CP-Continuous .252 ± .059 .237 ± .043 .263 ± .065 .244 ± .053 .256 ± .077
CP-Binary .301 ± .061 .325 ± .079 .328 ± .080 .267 ± .074 .296 ± .063
CP-APR .305 ± .075 .301 ± .068 .290 ± .052 .313 ± .082 .304 ± .086
SWIFT .364 ± .063 .350 ± .031 .350 ± .040 .369 ± .066 .374 ± .044

Table 1: The first part reports the average and standard deviation of accuracy on the test set as for different value of R on BBC
NEWS data. The second part depicts the average and standard deviation of PR-AUC Score on test data for Sutter dataset. Both
experiments are based on five-fold cross validation. We used Lasso Logistic Regression as a classifier.

Accuracy on BBC PR-AUC on Sutter
Lasso LR .728 ± .013 .308 ± .033
RF .6281 ± .049 .318 ± .083
MLP .690 ± .052 .305 ± .054
KNN .5956 ± .067 .259 ± .067

SWIFT (R=5) .759 ± .013 .364 ± .063
SWIFT (R=40) .818 ± .020 .374 ± .044

Table 2: Average and standard deviation of accuracy on BBC
NEWS and PR-AUC score on Sutter data sets by performing
Lasso LR, RF, MLP, and KNN on raw data sets.

Multi-Layer Perceptron, and K-Nearest Neighbor, using raw
data. The input for BBC and Sutter to these classifiers are
obtained by matricizing the input tensors along the article
mode and the patient mode, respectively. Table 2 summarizes
the results, and it clearly shows that SWIFT using Lasso LR
classifier even with R=5 outperforms all the other classifiers
compared.

Classification Performance on Noisy Data
To measure the performance of SWIFT against noisy input,
we inject noise to the raw input tensor to construct the noisy
input tensor. For the binary tensor input, we add Bernoulli
noise. Given the noise level (p), we randomly choose zero
elements, such that the total number of selected zero elements
equals to the number of non-zero elements. Then, we flip the
selected zero elements to one with probability p. We follow
the similar procedure for the count tensor input, except that
we add the noise by flipping the selected zero value to a count
value with probability p, and the added noise value is selected
uniformly at random between 1 and maximum value in the

Figure 1: The average and standard deviation of accuracy of
different baselines as a function of the noise level on BBC
NEWS. SWIFT outperforms other baselines by improving
accuracy up to 15%.

tensor input.
Performance on BBC data with Noise: Figure 1 presents

the average and standard deviation of categorizing the arti-
cles on the test data with respect to different levels of noise
(p ∈ {0.05, 0.1, 0.15, 0.20, 0.25, 0.30}). For all levels of
noise, SWIFT outperforms all baselines by improving accu-
racy up to 15% over the best baseline especially for medium
and high noise levels. Similar results are also achieved on
Sutter dataset, as shown in the appendix.

Scalability of SWIFT
In this section, we assess the scalability of SWIFT in compar-
ison to the other 7 CP algorithms introduced earlier. Figure 2
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Figure 2: The running time of one iteration in seconds on
BBC News and Sutter with R = 40.

depicts the average and standard deviation of running time of
one iteration in seconds. In this experiment, we set R = 40.
In order to have fair comparisons, we switched off the par-
allelization of the optimal transport computation for SWIFT
since none of the baselines can be run with parallelization. As
shown in Figure 2, SWIFT is as scalable as other baselines,
suggesting that the great improvement of the performance
are achieved without sacrificing the efficiency. We further
compare against a direct implementation of Wasserstein ten-
sor factorization. Results are summarized in the appendix,
which show that SWIFT is up to 293x faster than the direct
implementation. This verifies that the strategies introduced
in Section are the keys to SWIFT being scalable and perfor-
mant.

Interpretability of SWIFT
To demonstrate the interpretability of results produced by
SWIFT we perform computational phenotyping using Sutter
dataset.

Computational phenotyping is a fundamental task in
healthcare. It refers to extracting meaningful and interpretable
medical concepts (patient clusters) from noisy electronic
health records (EHRs) (Richesson et al. 2016). Tensor factor-
ization techniques are powerful tools for extracting meaning-
ful phenotyping (Ho, Ghosh, and Sun 2014; Yin et al. 2018,
2020b; Zhao et al. 2019; Afshar et al. 2020; Yin et al. 2020a).
Here we extract heart failure (HF) phenotypes using Sutter
dataset. We use the same tensor as we described in the pre-
vious section and run SWIFT by selecting R = 40 since it
achieves the highest PR-AUC in comparison to other values
of R. A2(:, r),A3(:, r) represent the membership value of
diagnosis and medication features in r-th phenotype.

Results: Table 3 lists three examples of the discovered phe-
notypes. The weight next to phenotype index indicates the
lasso logistic regression coefficient for heart failure prediction
(i.e.,21.93, 19.58 and -16.22 in Table 3). “Dx” indicates diag-
noses and “Rx” represents medications. All phenotypes are
clinically meaningful, endorsed and annotated by a medical
expert. The first phenotype is about Atrial Fibrillation which

Atrial Fibrillation (Weight= 21.93)
Dx-Essential hypertension [98.]
Dx-Disorders of lipid metabolism [53.]
Dx-Cardiac dysrhythmias [106.]
Rx-Calcium Channel Blockers
Rx-Alpha-Beta Blockers
Rx-Angiotensin II Receptor Antagonists
Cardiometablic Disease (Weight= 19.58)
Dx-Diabetes mellitus without complication [49.]
Dx-Essential hypertension [98.]
Dx-Disorders of lipid metabolism [53.]
Rx-Diagnostic Tests
Rx-Biguanides
Rx-Diabetic Supplies
Mental Disorder (Weight= -16.22)
Dx-Anxiety disorders [651]
Dx-Menopausal disorders [173.]
Dx-Depressive disorders [6572]
Rx-Benzodiazepines
Rx-Selective Serotonin Reuptake Inhibitors (SSRIs)
Rx-Serotonin Modulators

Table 3: Three phenotypes examples learned on Sutter dataset
with SWIFT. The weight value for each phenotype represents
the lasso logistic regression coefficient for the heart failure
prediction task. “Dx” represents for diagnoses and “Rx” indi-
cates for medications. All phenotypes are considered clini-
cally meaningful by a clinical expert.

captures patients with hypertension and cardiac dysrhyth-
mias that are associated high blood pressure medications.
Cardiometabolic disease is another phenotype that captures
diabetes patients with hypertension. These two phenotypes
have high positive weights (21.93 and 19.58 respectively) for
predicting HF diagnosis. The third phenotype is depressive
and menopausal disorders, Serotonin and Benzodiazepines
appeared in this phenotype are medications that are com-
monly prescribed to patients with these conditions in clinical
practice. This phenotype has a negative association with HF
(weight = -16.22). The remaining phenotypes positively asso-
ciated with HF are listed in the appendix.

Conclusion
In this paper, we define the Wasserstein distance between two
tensors and propose SWIFT, an effective tensor factorization
model based on the defined tensor Wasserstein distance. To
efficiently learn the Wasserstein tensor factorization, we intro-
duce introduce several techniques, including exploitation of
the sparsity structure of the input tensor, efficient rearrange-
ment by utilizing tensor properties, and parallelization of
the optimal transport computation. Experimental results de-
pict that SWIFT consistently outperforms baselines in down-
stream classification tasks for both binary and count tensor
inputs. In the presence of noise, SWIFT also outperforms
baselines by a large margin.
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Peyré, G.; Cuturi, M.; et al. 2019. Computational optimal
transport. Foundations and Trends® in Machine Learning
11(5-6): 355–607.

Qian, W.; Hong, B.; Cai, D.; He, X.; Li, X.; et al. 2016. Non-
Negative Matrix Factorization with Sinkhorn Distance. In
IJCAI, 1960–1966.

Richesson, R. L.; Sun, J.; Pathak, J.; Kho, A. N.; and
Denny, J. C. 2016. Clinical phenotyping in selected na-
tional networks: demonstrating the need for high-throughput,
portable, and computational methods. Artificial intelligence
in medicine 71: 57–61.

Rolet, A.; Cuturi, M.; and Peyré, G. 2016. Fast dictionary
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