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Fig. 1: We present a multi-UAV system for 3D human reconstruction in the wild. Our framework coordinates the motion of multiple
aerial cameras to optimally reconstruct the dynamic target’s 3D body pose while avoiding obstacles and occlusions. We deploy the system
in challenging real-world conditions and target motions such as jogging and playing soccer.

Abstract—

Aerial vehicles are revolutionizing applications that require
capturing the 3D structure of dynamic targets in the wild, such
as sports, medicine and entertainment. The core challenges
in developing a motion-capture system that operates in
outdoors environments are: (1) 3D inference requires multiple
simultaneous viewpoints of the target, (2) occlusion caused by
obstacles is frequent when tracking moving targets, and (3)
the camera and vehicle state estimation is noisy. We present
a real-time aerial system for multi-camera control that can
reconstruct human motions in natural environments without
the use of special-purpose markers. We develop a multi-robot
coordination scheme that maintains the optimal flight formation
for target reconstruction quality amongst obstacles. We provide
studies evaluating system performance in simulation, and
validate real-world performance using two drones while a target
performs activities such as jogging and playing soccer.
Supplementary video: https://youtu.be/jxt91vx0cns

I. INTRODUCTION

3D reconstruction of scenes with stereo cameras, RGB-D
sensors and monocular cameras is a topic intensively studied
in the computer vision and robotics communities [1]–[3].
However, most works focus on static environments, and
can only reconstruct static objects. Until recently, capturing
dynamic scenes could only be achieved using body markers
and high-precision motion capture systems [4], [5], or by
markerless systems that heavily rely on skeleton models [6].
Pan-optic studios, on the other hand, rely on visual data from
a large number of static cameras to precisely capture motions
of multiple targets [7]–[11]. However, they require expensive
structures and are confined to small indoor areas.

Aerial camera technologies can significantly extend the
capabilities of recording setups to handle dynamic targets in
natural outdoor environments. Several works allow drones
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to detect, track and follow targets in real-time using single-
camera systems [12]–[19]. We also find a rich history of work
on multi-camera aerial systems that allow users to estimate
poses of moving targets. For instance, [20] uses multiple
drones to capture the pose of a human wearing markers.
[21] explicitly optimizes for body pose reconstruction, but in
obstacle-free environments. Most related to our work, [22]
presents an aerial motion capture system that uses multi-robot
formation controller [23] for data collection. The multi-robot
controller avoids obstacles while maintaining formation, but
it plans for a short time horizon (1.5s).

Despite the recent progress in multi-drone recording systems,
existing approaches are still not able to simultaneously
handle all major challenges related to 3D dynamic pose
reconstruction in natural environments without markers. A
robust system for 3D inference must be able to coordinate the
simultaneous recording of various viewpoints of the target
even within the presence of obstacles, which can cause image
occlusions and robot collisions. In addition, the robots need
to navigate smoothly to avoid state estimation noise. Finally,
when filming a dynamic target in complex environment, the
robot needs to anticipate future actor motions and compute
long horizon plans for more optimal motions.

As seen in Figure 1, we tackle these challenges by building
upon our previous work in multi-drone cinematography [24],
to which a new formation control strategy is introduced for
the human reconstruction problem. The proposed system can
plan over long horizons multi-robot trajectories for human
reconstruction while avoiding occlusions and obstacles. Our
contributions are three-fold:

1) Multi-camera coordination: We formulate a multi-
camera coordination scheme with the goal of maximizing
the reconstructed 3D pose quality of dynamic targets. We
develop a scalable two-stage system with long planning time
horizons and real-time performance that uses a centralized



planner for formation control and a decentralized trajectory
optimizer that runs on each robot;

2) System scaling and error ablations: We provide
extensive simulation experiments validating system
performance under different operating conditions such as
scaling over multiple drones, and reconstruction error analysis
for different magnitudes of camera pose uncertainty.

3) Real-world experiments: We deploy the system in
real-world settings using two robots while tracking an actor
performing activities such as jogging and playing soccer. We
empirically show the improvement in reconstruction quality
caused by our adaptive formation scheme.

II. RELATED WORK

Aerial Cinematography and Active Tracking: There is a
significant body of work in academia and in industry within
the domain of single-drone cinematography. For instance,
[12], [13], [15] compute smooth aerial camera plans given
user-defined artistic guidelines. As well, commercial drones
from Skydio [25] and DJI [26] can track and film actors in
complex cluttered environments. Recently, there is growing
interest in coordinating multiple UAVs to add viewpoint
diversity, with pioneering work that proposes online path
planning with inter-drone collision avoidance for indoor
settings [27]. [28]–[32] focus on coordinating multi-drone,
human-guided shot execution under various constraints, such
as smoothness, battery life, and mutual camera visibility.
Our previous work [24] increases practicality for multi-UAV
tracking of unscripted targets by removing the need for
predefined shots while maximizing 3D shot diversity online.

Aerial Motion Capture: Traditionally, human motion
capture is achieved by tagging targets with body
markers, where recent progress lies in accurate markerless
reconstruction using a large number of static visual cameras
[9]. Subsequent works investigate mobile UAVs as an
alternative to overcome the complexity of this static setup,
with [33]–[35] focusing on optimal camera plans for a single
UAV. We find works that plan optimal viewpoints with
multiple vehicles [21], [36]; however, they do not consider
obstacle avoidance. Most related to our work, [23] introduces
a decentralized multi-UAV coordination framework for actor
position estimation that is extended as a data collection system
for outdoor human shape estimation [22]. The system plans
for a short horizon (1.5s) to avoid obstacles while maintaining
formation around target. However, in our previous work [12],
we have shown that planning with longer horizons minimizes
the likelihood of myopic trajectories for better target tracking
in complex environments. In this work, we present a multi-
UAV motion capture system that plans smooth trajectories
over a long time horizon (10s) to maintain optimal flight
formation for target reconstruction among obstacles.

III. PROBLEM DEFINITION

Our overall goal is to control a team of aerial cameras
to reconstruct the 3D pose of a dynamic human moving

through a cluttered environment. Let θ(t) ∈ RP×3 be a
vector containing the target’s 3D coordinates for P joints
at time t. Our mathematical objective is to minimize the
reconstruction error Erecon calculated with respect to the true
target joints over time:

Erecon =

T∑
t=1

||θ̂(t)− θ(t)||2 (1)

In order to minimize this objective (Eq. 1), we capture
the scene using a set of aerial cameras, and calculate their
trajectories using an optimization framework. Similarly to
[12], we employ a weighted set of cost functions that balance
robot safety and motion smoothness against visual occlusions
of the actor from obstacles. In addition, we introduce a new
objective to encode multi-camera collaboration that strives to
keep an optimal drone formation over time.

Let ξqi : [0, tf ] → R3 × SO(2) be the trajectory of the
i-th UAV, i.e., ξqi(t) = {x(t), y(t), z(t), ψq(t)}, and Ξ =
{ξq1, ..., ξqn} be the set of trajectories from n UAVs. Let
ξa : [0, tf ]→ R3 be the trajectory of the actor, i.e., ξa(t) =
{x(t), y(t), z(t)}, which is inferred using onboard cameras.
Let grid G : R3 → R be a voxel occupancy grid that maps
every point in space to a probability of occupancy. LetM(G) :
R3 → R be the signed distance values of a point to the nearest
obstacle. Each objective is represented as follows:

1) Smoothness: Penalizes jerky motions that may lead to
camera blur and unstable flight. Calculated as the sum of costs
from individual trajectories: Jsmooth (Ξ) =

∑
i Jsmooth (ξqi);

2) Occlusion: Penalizes occlusion of the actor by obstacles
in the environment for each camera: Jocclusion (Ξ) =∑
i Jocclusion (ξqi, ξa,M);

3) Obstacle: Penalizes proximity to obstacles that are unsafe
for each UAV: Jobstacle (Ξ) =

∑
i Jobstacle (ξqi,M);

4) Formation: Ensures that the camera formation remains at
the optimal configuration for actor reconstruction. Calculated
over the entire set of trajectories: Jform (Ξ, ξa) .

We then compose the overall cost function as a linear
combination between each component, with relative weights
λ. The solution Ξ∗ is then tracked by each UAV:

J (Ξ) =
[
1 λ1 λ2 λ3

] 
Jsmooth (Ξ)
Jocclusion (Ξ)
Jobstacle (Ξ)
Jform (Ξ)


Ξ∗ = arg min J (Ξ)

(2)

IV. APPROACH

We now detail the methods we use for camera coordination
in the multi-UAV system. As displayed in Equation 1, our
overall objective function involves the minimization of 4
sub-objectives, which may often conflict with one another.
Our goal is to formulate an algorithm that works in real time
in unscripted scenes, and scales to more UAVs without a
large computational penalty.



Fig. 2: System overview: a centralized formation planner computes
discrete camera positions for optimal target reconstruction. Next,
each UAV optimizes smooth trajectories to follow. Finally, the
collected multi-view footage and camera poses are used offline to
reconstruct a sequence of the target’s joints in 3D.

To address the time complexity issue, we break down our
method into three main subsystems operate together. First, a
centralized motion planner (Sec. IV-A) coordinates desired
positions for all cameras simultaneously. Next, on each UAV,
a decentralized motion planner (Sec. IV-B) computes the final
trajectories for the specific UAV. Finally, an offline skeletal
reconstruction module (Sec. IV-C) processes images from all
cameras to output the actor’s pose vector over time. Fig. 2
depicts the system diagram.

A. Centralized Formation Planning

Our centralized formation planning system parametrizes
trajectories as waypoints, i.e. ξ ∈ RT×3, where T is the
number of time steps. Actor trajectory ξa is forecasted given
current actor pose using a Kalman Filter with a constant-
velocity model. We assume the UAV heading direction ψ(t)
is set to always point the drone from ξqi(t) towards the
actor in ξa(t), which can be achieved independently of the
aircraft’s translation by rotating the UAV’s body and camera
gimbal. We extend our previous multi-drone cinematography
work [24] and plan formation trajectories using a state-space
parametrized in spherical coordinates {ρ, θ, φ} centered on
the actor’s position (Fig. 3a):

ξqi(t) = ξa(t) + ρ

cos(θi)cos(φi)sin(θi)cos(φi)
sin(φi)

 (3)

Fig. 3: (a) Spherical camera coordinates relative to actor. (b) Top-
down view of formation showing formation yaw θform and desired
yaw angle difference ∆θform.

Next, we mathematically formulate the cost functions that
the centralized formation planner optimizes for the formation
trajectory set Ξ:

i) Formation: To minimize the pose reconstruction error (Eq.
1), the ideal camera formation should maximize the angular
distance between the multiple cameras. We define the optimal
formation for n UAVs (Fig. 3b) as points with equidistant
yaw angles relative to the target, where ∆θform = 2π

n , and
with a special case of ∆θform = π

2 for n = 2. The desired
tilt angle φform and radius ρform are equal for all UAVs. The
cost is calculated as:

Jform (Ξ) =

T∑
t=1

n∑
i=1

||ξi(t)− ξi form(t)|| (4)

Fig. 4: Visualization of
occupancy and occlusion
avoidance costs in spherical
grid Gts, from [24].

ii) Safety: To maintain
safety, we must reason about
the role of obstacles in the
environment. First, we transform
the environment’s occupancy grid
into a time-dependent spherical
domain centered around the
target G → Gts ∈ [0, 1], as shown
in Fig. 4 and Eq. 5.

Jobstacle (Ξ) =

T∑
t=1

n∑
i=1

∫ rmax

0

Gts(ξqi(t)) d(volume) (5)

iii) Occlusion avoidance: In order to maintain target visibility
at all times, we calculate the occlusion cost as a measure
of occupancy along a line li(τ) = τξqi(t) + (1 − τ)ξa(t)
between UAV and target:

Jocclusion (Ξ) =

T∑
t=1

n∑
i=1

∫ 1

0

Gts(li(τ)) dτ (6)

Next, we find the optimal sequence of angles for the UAV
formation that minimizes the sum of costs. Instead of solving
for each UAV path sequentially as in our previous work
[24], in this work we assume a fixed drone formation, and
only find the optimal yaw angle sequence over T time steps:
Θ∗form = {θ1, ..., θT }.

We define a state space S with all possible formation yaw
values, where |S| = T × D, where D is the number of
discrete values over the interval [−π, π]. We build a cost
map C : S → R|S| that contains the cost of all states, and a
cost-to-go map V : S → R|S|. In order to make transitions
between cells dynamically feasible for the real vehicle, we
only allow expansions to neighboring cells in the next ring.
Given that we operate in a discrete state-space with a relatively
small branching factor and deterministic transitions, a single
backwards dynamic programming pass yields the optimal
solution in little time. Finally, we build the full formation
yaw sequence Θ∗form by selecting neighboring cells with
the least cost-to-go at consecutive time steps, starting at the
formation’s initial yaw θ0. Algorithm 1 details the process.

B. Decentralized Trajectory Optimization

After calculating the formation angles Θ∗form using the
centralized planner, we optimize and smoothen individual



Algorithm 1: Compute formation Θ∗
form = {θ1, ..., θT }

1 C ← J(S); . update formation cost map
2 VT ← C; . initialize cost-to-go at time T

. Begin backwards pass
3 for t = T − 1, T − 2, ..., 1 do
4 for i = 1, ..., D do
5 V i

t ← arg min
i

V i
t+1 + Ci; . neighbors

6 end
7 end

. Begin forward pass
8 Θ∗

form(0) = θ0;
9 for t = 1, ..., T do

10 N = neighbors(Θ∗
form(t− 1)); . connected cells

11 Θ∗
form(t) = arg min

N
Vt;

12 end
13 return Θ∗

form

Fig. 5: Centralized formation planning where formation rotates
counter-clockwise to avoid trees. Formation cost map is updated for
all time steps, with red as high cost. We apply dynamic programming
to solve for the full formation yaw sequence Θ∗

form, shown in blue.

UAV trajectories at a finer time discretization. This second
step is computed on each UAV’s local computer using a
decentralized planner. While the original waypoints were
spaced every 2 seconds over a 10-second horizon, here
we achieve finer resolutions with 0.5 s granularity in local
planning. We use the local planner described in [12], which
uses covariant gradient descent to produce locally optimal
trajectories while again considering the costs of smoothness,
obstacle and occlusions avoidance, and desired formation
position of each UAV individually. In addition, each local
planner receives the expected waypoints of all remaining
vehicles, and avoids positioning its trajectory within 3m of
other UAVs. We run the local planner at 5 Hz, and use a PID
controller for trajectory tracking at 50 Hz.

C. Offline Skeletal Reconstruction

Once camera images from all UAVs are collected, we post-
process the data in an offline phase to generate a sequence of
3D target skeleton poses. We use AlphaPose, a human skeletal
keypoint detector [37]–[39], to extract 2D body keypoints
from each image. Next, we linearly triangulate each keypoint
using each robot’s camera pose and image coordinates to
obtain for the keypoint’s location in world frame.

Fig. 6: Experimental Setup: (Left) Photo-realistic simulator with
an animated character and drone formation. (Right) Ground truth
skeleton extracted from simulator (blue) and estimated skeleton with
our proposed system (red).

V. EXPERIMENTS

Here we detail the simulated and real-world experiments to
validate our multi-UAV 3D motion capture system.

A. Simulation Experiments

Experimental Setup: We quantitatively evaluate our
proposed system in a photo-realistic environment, Microsoft
AirSim [40] via a custom ROS [41] interface, and directly
query ground-truth skeleton points from Unreal Engine. Fig.
6 shows our simulated experimental setup.

(a) Reconstruction Error vs. Formation Tilt Angle

(b) Reconstruction Error vs. # Robots

Fig. 7: a) Reconstruction Quality vs. Tilt Angle: We observe better
reconstruction and resistance to noise with lower tilt angle, with an
angle of 0o to 30o giving similar performance. b) Reconstruction
Quality vs. Number of Robots: With no noise, performance is
comparable from n = 2 to 5. We observe better resistance to noise
as number of robots increases, with marginally decreasing benefit.

Sim E1) Reconstruction quality across tilt angles: Our first
experiment’s objective is to quantify the benefit of maintaining
low formation tilt angle φdes for human reconstruction. To
do so, we generated 75 seconds of data of an actor walking



Fig. 8: System hardware: DJI M210 drone, Intel NUC computer,
Ubiquiti mesh nodes and Zenmuse X4S camera gimbal.

with two drones at each tilt angle between 0o to 60o at
increments of 15o. Fig. 7a shows lower tilt angle yields better
reconstruction. This is expected because, firstly at a high tilt
angle, most parts of the target’s body are occluded and a slight
error in image coordinate can result in large 3D reconstruction
error. Secondly, it is more likely for the keypoint detector
to misidentify limbs at a higher angle, possibly due to lack
of training data at such angles. As our camera pose is often
noisy for our in-the-wild reconstruction application, we also
examine how susceptible each tilt angle is to camera pose
noise. Within the same noise level, we observe tilt angles of
0o to 30o provide comparable reconstruction quality.

Sim E2) Reconstruction quality using more robots: Next,
we examine the marginal benefits that more robots bring to
reconstruction accuracy. We record 75 seconds of a target
walking with with n = [2, 3, 4, 5] drones at a formation tilt
angle φdes = 15o. Figure 7b shows that with no noise, average
error is near 0 for all configurations, with a slight decrease at
5 drones. As expected, increasing the number of simultaneous
viewpoints helps significantly with noisy camera poses, with
decreasing marginal benefits as number of drones increase.
At high noise level, the 5-drone configuration reduces error
by ∼ 30% from the two-drone setup.

B. Real-World Experiments

Experimental Setup: For real world experiments, we
used two DJI M210 drones, one shown in Figure 8. We
subsequently refer to these as drone 1 and drone 2. All
processing is done onboard an Intel NUC with 8GB of RAM
and an Intel Core i7-8550U processor. Drones communicate
with each other with a Ubiquiti WiFi mesh access point [42]
via the Data Distribution Service networking middleware [43].
The leader drone (drone 1) runs the centralized planner and
sends estimated actor odometry and formation trajectory to
drone 2 for local decentralized planning. Both drones share
current odometry and final optimized trajectory for safety.

An independently controlled DJI Zenmuse X4S gimbal
camera records footage. Video frames are processed using an
off-the-shelf Intel’s OpenVINO MobileNetV2-like pedestrian
detector for actor detection.

Our centralized formation planner solves a 10s horizon plan

Fig. 9: Real-life flight among obstacle. Our adaptive formation
rotates clockwise avoiding the mound to maintain 90o from each
other and a low tilt angle to actor for optimal reconstruction.

with D = 8 possible discrete formation yaws. The planner
runs at 10Hz with a computation time of ∼ 1.3ms.

We conduct real-world experiments in a pre-mapped outdoors
test site. Range is at ρdes = 10m for safety and formation
tilt is set at φdes = 15o, which from our simulated results
renders good reconstruction.

Real E1) Formation obstacle avoidance: We tested the
system by recording a moving actor with two drones in a
pre-mapped environment. Fig. 9 shows an example trial of
our proposed system where the two-drone formation rotated
clockwise to avoid colliding with the mound. The drones
are therefore able to maintain a low viewing angle while
keeping safe. While the central planner runs at 10Hz, we
show three representative timesteps of the experiment for
clarity. The central planner’s output at keyframes for drones
1 and 2 are colored in blue and orange respectively. Each
UAV then optimizes the coarse formation path with its own
local planner for a final smooth, obstacle-free trajectory.

Real E2) Adaptive versus fixed formation: For the
same initial formation angle, we compare the reconstruction
performance with and without our adaptive formation
planning. In the fixed trial, the two drones go upward and
deviate from the desired tilt angle to avoid mound, resulting
in a tilt angle of ∼ 60o. The high tilt angle results in highly
inconsistent reconstruction, due to the increased likelihood
of keypoint detection error with examples circled in Fig. 10.
Our proposed adaptive formation planning keeps drones at
a low tilt angle, significantly improving the reconstruction
quality while avoiding obstacles.

Real E3) Reconstructing highly dynamic targets: We
evaluate the robustness of our proposed system by
reconstructing an actor performing abrupt motion changes
and highly dynamic movement: jogging and playing soccer.
Figure 11 shows the reconstruction of an actor playing
soccer. As seen in the supplementary video, both UAVs were



Fig. 10: Reconstruction comparison with and without adaptive
formation planning. The formation planning keeps camera at a
low tilt angle and significantly improves reconstruction. Without
formation planning, the UAVs goes upward to avoid mound. The
skeletal keypoint detection fails often for footage collected with
fixed formation, resulting in poor reconstruction.

Fig. 11: 3D reconstruction of a highly dynamic real-life actor
playing soccer. Our system is able to keep up with abrupt motion
changes and provide good reconstruction. Inlet figures show the
reprojection of reconstructed 3D skeleton overlaid onto UAV images.

able to maintain view of the target while keeping desired
reconstruction formation angle. Inlet images in Figure 11 show
the reprojection of the target joints on the UAV’s images,
with reprojected joints close to actual position.

VI. CONCLUSION AND DISCUSSION

In this paper, we present a collaborative multi-UAV system
for 3D human pose reconstruction in the wild. First, we
develop a multi-camera coordination scheme to maximize
3D reconstruction quality of dynamic targets while avoiding
obstacles and occlusions. Our approach consists of two
steps: 1) a centralized formation planner to compute best
camera formation and 2) a decentralized trajectory optimizer
to calculate smooth trajectories. We validate our system
in simulated and real-world experiments, and show that
it successfully reconstructs targets performing dynamic
activities, such as jogging and playing soccer. Additionally,
we provide insights into how reconstruction quality changes
with our system under different operating conditions, such as
number of drones, camera pose uncertainty and tilt angles.

We find multiple directions for future work in our multi-

UAV system. We are actively working towards the goal of
capturing high-fidelity 4D reconstruction of groups of actors
and animals in their natural settings, with research thrusts in
onboard multi-actor detection and tracking [44], [45], adaptive
multi-agent role reconfiguration to maintain visibility of actors
when group splits [46], and human mesh reconstruction [47].
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