ASSOCIATION

N
usenix \
.' THE ADVANCED
COMPUTING SYSTEMS

PFSCK: Accelerating File System Checking and
Repair for Modern Storage

David Domingo and Sudarsun Kannan, Rutgers University

https://www.usenix.org/conference/fast21/presentation/domingo

This paper is included in the Proceedings of the
19th USENIX Conference on File and Storage Technologies.
February 23-25, 2021
978-1-939133-20-5

Open access to the Proceedings
of the 19th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

+



pFSCK: Accelerating File System Checking and Repair for Modern Storage

David Domingo, Sudarsun Kannan

Rutgers University

Abstract

We propose and design pFSCK, a parallel file system check-
ing and recovery (C/R) tool designed to exploit compute and
storage parallelism in modern storage devices. pFSCK en-
ables fine-grained parallelism at the granularity of inodes
and directory blocks without impacting the C/R’s correct-
ness. pFSCK first employs data parallelism by identifying
functional operations in each stage of the checking logic and
then isolating dependent operations and shared data struc-
tures. However, full isolation of shared structures is infeasible
and requires serialized updates. To reduce serialization bot-
tlenecks, pFSCK introduces pipeline parallelism, allowing
multiple stages of C/R to run concurrently without impacting
correctness. Further, pFSCK provides per-thread I/O cache
management, dynamic thread placement across C/R stages,
and a resource-aware scheduler to reduce the impact of C/R
on other applications sharing CPUs and the file system. Eval-
uation of pFSCK shows more than 2.6x gains over e2fsck
(Ext file system C/R) and more than 1.8x over XFS’s C/R that
provides coarse-grained parallelism.

1 Introduction

Modern ultra-fast storage devices such as SSDs, NVMe,
and byte-addressable NVM storage technologies offer higher
bandwidth capabilities and lower latency than hard-disks pro-
viding better opportunities for exploiting CPU parallelism.
While the I/O access performance has increased, storage hard-
ware and software errors have continued to grow coupled with
newer and exploratory high-performance designs impacting
file system reliability [10, 12, 18,21,27,46]. For decades, file
system checking and repair tools (referred to as C/R hence-
forth) have played a pivotal role in increasing the reliability
of software storage and availability of systems by identifying
and correcting file system inconsistencies [41].

A significant body of prior work has shown that, in the
event of a system crash or failure in data centers, C/Rs are
typically used as the first remedial solution to system recovery.
Prior work [21,27] and discussions with file system main-
tainers and IT teams of organizations show that C/Rs are run
across various scenarios. This includes problems during re-
boot due to hardware or software errors [11,21,27], periodic
maintenance, or during mandatory security upgrades [37].
When C/Rs are run on a disk partition in an offline fashion,
the partition’s data is unavailable. Some C/Rs support online
checking, but it is crucial that they do not interfere with other
applications that use the same device. Thus, improving C/R
performance and flexibility is critical for system availability
and reducing performance impact on other applications.

File system C/R tools work by identifying and fixing the
structural inconsistencies of file system metadata. The incon-
sistencies could be in inodes, data and inode bitmaps, links,
or directory entry structures. Well-known and widely used
tools such as e2fsck (file system checker for Ext4) [2] divide
C/R across multiple stages (commonly referred to as passes),
with each pass responsible for checking a file system structure
(e.g., directories, files, links). However, C/Rs are known to
be notoriously slow, showing a linear increase in C/R time
with an increase in file and directory count [24,38-41], at
times lasting hours [37] or even weeks [11]. Although mod-
ern flash and NVM technologies provide lower latency and
bandwidth, current C/R tools fail to exploit such hardware ca-
pabilities or multi-core CPU parallelism. While modern C/Rs
have attempted to increase parallelism, they adopt coarse-
grained approaches, such as parallelizing C/R across logical
volumes or logical groups, which are insufficient to acceler-
ate C/R on file systems with data imbalance across logical
groups [20,24,39,42].

To overcome such limitations, we propose pFSCK, a par-
allel C/R that exploits CPU parallelism and modern storage’s
high bandwidth to accelerate file system C/R in offline and on-
line forms, thereby reducing system downtime and improving
data (and system) reliability and availability [10, 20,21, 39].
While pFSCK borrows ideas from prior task parallelism re-
search [35,45], it must solve several challenges specific to
C/R, which includes increasing scalability in the presence of
complex file system layouts and shared file system structures
(e.g. universal bitmaps) without impacting correctness, adapt-
ing to various file system configurations, and reducing C/R
impact on other applications. pFSCK introduces fine-grained
parallelism, i.e., parallelism at the granularity of inodes and
directory blocks, resulting in a significantly faster execution
than traditional C/Rs. pFSCK first employs data parallelism
by breaking up the work done at each pass, redesigning data
structures for scalability, and allowing multiple threads to
perform checks in parallel. Although data parallelism acceler-
ates checking, updates to global data structures (e.g., bitmaps)
within each pass are designed to match the file system’s lay-
out (e.g., block bitmap in an Ext4 file system) and must be
synchronized to ensure checking correctness. As a result, with
increasing thread counts, the cost of synchronization and seri-
alization can quickly outweigh the performance gains. Hence,
pFSCK introduces pipeline parallelism to parallelize C/R
along with the logical flow (i.e. across multiple passes).

Supporting data and pipeline parallelism within pFSCK
requires addressing several challenges. First, certain consis-
tency checks must be ordered for correctness. For example, a

USENIX Association

19th USENIX Conference on File and Storage Technologies 113



directory cannot be certified to be error-free by the directory
checking pass until all its files are verified as consistent by the
inode checking pass. To address these ordering constraints,
we take inspiration from modern hardware processors that
support out-of-order execution but with in-order instruction
commit. We isolate the global data structures and perform
all necessary operations in parallel but certify correctness
only when the results are merged. Second, static partitioning
of CPU threads across different C/R passes is suboptimal
because the time to process different metadata (e.g., file, di-
rectory, links) varies significantly (e.g., checking a directory
can take substantially longer than a file). Hence, we propose
pFSCK scheduler, a dynamic thread scheduler that moni-
tors progress across different passes of pFSCK and uses the
pending work ratio for thread assignment.

Third, I/O optimizations such as I/O caching and read-
ahead mechanisms in current C/Rs are not designed for multi-
threaded parallelism, which we address by designing thread-
aware 1/O caching, thereby substantially reducing I/O wait-
times. Finally, to exploit multi-core parallelism in ways that
do not affect the performance of other co-running applica-
tions that share CPUs or access the same disks checked by
C/R (online checking), we design a resource-aware pFSCK
scheduler that dynamically scales the C/R threads across
passes by monitoring the total CPU utilization of the system.

The combination of pFSCK’s above techniques signifi-
cantly reduces C/R runtime. For example, using pFSCK’s
data parallelism and pipeline parallelism on a 1TB NVMe
(and 2TB SSD) reduces C/R runtime for a file- and directory-
intensive disk configurations by up to 2.6x and 1.6x, respec-
tively compared to widely used e2fsck and by up to 1.8x
over the XFS C/R tool. Further, pFSCK’s scheduler increases
gains by 1.1x. When sharing the CPUs between pFSCK and
RocksDB, the resource-aware mechanism minimizes pFSCK
performance degradation to 1.07x and limits RocksDB’s
performance overheads by 1.05x. The online C/R perfor-
mance improves by up to 1.7x over the vanilla e2fsck. Finally,
pFSCK improves I/O throughput by up to 2.7x with a nominal
increase in memory use by 1.3x over e2fsck (from 2.7 GB in
e2fsck to 3.5 GB) to manage task structures for threads.

2 Background and Motivation

We first give a brief background on current hardware trends,
C/R tools, and then discuss prior approaches that accelerate
C/R and their limitations.

2.1 Hardware and Software Trends

Modern ultra-fast storage devices such as SSDs and NVMe
provide not only high bandwidth (8-16 GB/s) but also two
orders of reduction in storage access latency (< 20usec) com-
pared to traditional hard drives [31,49]. At the other end, fast
storage class memories such as Intel’s DC Optane [5] and
other byte-addressable persistent memory technologies are
evolving with access latency < lusec. In recent years, several
new file systems have evolved to exploit these hardware bene-

fits. A huge body of prior and ongoing research is developing
optimized file systems to support fast storage hardware. This
includes file systems for SSDs [34], NVMes [44], open-source
efforts to optimize traditional Ext4 and XFS file systems for
NVMs [48], and other research efforts [30,33,50]. However,
reducing data corruption and errors with these file systems
would require a few years of production use [9,28]. While
file system C/R tools will play a crucial role in these file sys-
tems, they are yet to be optimized to extract hardware storage
benefits and multi-core parallelism.

2.2 File System Checking and Repair

Since the dawn of file systems, consistency has always
been an issue. Though storage mechanisms such as journal-
ing, copy-on-write, log-structured writes, and soft updates
have been developed to mitigate potential file system incon-
sistencies, they are limited as they cannot fix errors that arise
from software bugs or corruptions manifested in the past by
events such as a failing disk, bit flips, overheating, or corre-
lated crashes [13—15,29,51]. In these cases, popular C/R tools,
such as e2fsck and xfs_repair [42], are used to detect and fix
corruptions and errors by traversing the file system’s layout
and checking for inode consistency, directory consistency, file
and directory connectivity, directory entry consistency, and
consistent reference counts of inodes and blocks
C/R usage. The frequency and resulting runtime of file sys-
tem C/Rs vary significantly in the real-world setting. While
there is a lack of well-documented C/R best practices, our
discussions with file system C/R maintainers, infrastructure
teams, and other public discussions show that C/R tools such
as e2fsck and xfs_repair remain critical for data reliability in
current large-scale and personal computing systems as they
are generally run during after system errors [7,21,27,29],
hardware or kernel upgrades, or even after mandatory secu-
rity updates. Infrequent C/R and storage maintenance can
increase system downtime to as high as three hours [37] and,
in extreme cases, weeks on petabyte-scale file systems [11].

2.3 Related Work

Increasing disk capacities, overall file system size, and file
counts have made C/Rs notoriously run longer, leading to
longer downtime and forcing developers and users to reduce
C/R usage at the risk of data loss [1, 7,8, 25, 36]. We next
discuss the state-of-the-art C/R optimizations for offline (un-
mounted file systems) and online C/Rs and their limitations.
Offline C/Rs. Widely used open-source tools such as Ext4
file system’s e2fsck parallelize C/R across multiple disks
(e2fsck), where XFS file system’s xfs_repair parallelizes C/R
across disk and volume logical groups. Other approaches
like Ffsck [41] and Chunkfs [26] have proposed accelerat-
ing C/R speed up by modifying file systems to provide a
better balance across logical groups. For example, Chunkfs
utilizes disk bandwidth by partitioning the file system into
smaller, isolated groups that can be repaired individually and
in parallel. In contrast, Ffsck [41] rearranges metadata blocks

114 19th USENIX Conference on File and Storage Technologies

USENIX Association



to reduce the seek cost and optimize file system traversal.
SQCK [19] enhances C/R by utilizing declarative queries
for consistency checking across file system structures. While
prior approaches have advanced C/R innovations, they suffer
from several weaknesses. First, most prior techniques fail to
exploit multi-core parallelism and high storage bandwidths.
Second, prior parallelization efforts are mostly coarse-grained
(e2fsck, xfs_repair, Chunkfs). For instance, as we show in
Section § 6, for an XFS file system that parallelizes across
logical groups, imbalance in the number of files across log-
ical groups and lack of parallelism for directory metadata
checking leads to high overheads. Finally, techniques such
as SQCK and Ffsck demand intrusive changes to file sys-
tem metadata, block placement, or the need to rebuild C/R,
hindering widespread adoption.

Online C/Rs. The last decade has seen an active push to
develop online C/R techniques to identify and fix errors while
applications concurrently use the file system in order to reduce
system downtime and allow for the proactive identification of
potentially harmful corruptions. Proprietary online C/Rs such
as WAFL file system’s Iron [32] (a NetApp-based C/R tool for
WAFL file system) performs incremental live C/R by apply-
ing invariants such as checking all blocks before any software
use and checking ancestor blocks (directory) before any data
or metadata block (inode block). To scale C/R to petabytes,
WAFL-Iron expects the presence of block-level checksums,
RAID, and, most importantly, good storage practices by cus-
tomers. Alternatively, Recon protects file system metadata
from buggy operations by verifying metadata consistency
at runtime [16]. Doing so allows Recon to detect metadata
corruption before committing it to disk, preventing error prop-
agation. Recon does not perform a global scan and cannot
identify or fix errors originating from hardware failures. C/Rs
such as e2fsck, traditionally meant for offline use, allow for
partial online checking by utilizing LVM-based snapshotting
and scanning for errors on the snapshot while the file system
is still in use [3]. However, if errors need to be fixed, the C/R
must be used offline. In this paper, we also study and evaluate
open-source and widely-used online e2fsck against online
pFSCK that exploit storage and compute parallelism.

C/R Correctness. To ensure the correctness and crash-
consistency of C/Rs itself and recover more reliably in light
of system faults, Rfsck-lib [17] provides C/Rs with robust
undo logging. pFSCK’s fine-grained parallelism goals are
orthogonal to Rfsck-lib; however, incorporating Rfsck-1ib can
further improve pFSCK’s reliability.

3 Motivation and Analysis

In the pursuit of accelerating C/Rs, we first decipher the
performance bottlenecks of the widely-used Ext4 file sys-
tem’s e2fsck C/R tool. We first provide an overview of e2fsck
and then examine e2fsck’s runtime for different file system
configurations. For brevity, we study xfs_repair in Section § 6.

1209 =3 Pass1 8
CZ3 Pass 2
100 - Pass 3

=3 Pass 4
801 X3 Pass5

60 -

Time (seconds)
Time (minutes)

40

SZEE
o LEF b P
10 20 30 40 50
File Count (millions)
(a) File Count
Sensitivity:
Runtime of e2fsck as
total file count increases

Figure 1: Runtime of C/R for an 1TB file system with varying
counts of files or directories

2 /]
%%
N
0 - T S
5 10 15 20 25
Directory Count (millions)
(b) Directory Count
Sensitivity: Runtime of e2fsck
as total directory count
increases

3.1 e2fsck Overview

E2fsck uses five sequential passes for C/R: the first pass (re-
ferred to as Pass-1) checks the consistency of inode metadata;
Pass-2 checks directory consistency; Pass-3 checks directory
connectivity; Pass-4 checks reference counts; finally, Pass-5
checks data and metadata bitmap consistency.

3.2 Setup and Runtime Analysis

To analyze and decipher the cost of C/R runtime, we run
e2fsck on file systems with varying configurations. We con-
duct our analysis on a 64-core Dual Intel® Xeon Gold 5218
running at 2.30GHz, 64GB of DDR memory, a 1'TB NVMe,
and a 2TB Micron 5200 SATA SSD running Ubuntu 18.04.1.
We fill the file system using fs_mark, an open-source, file
system benchmark tool [47]. We mainly focus on file systems
without corruptions but study images with corruptions in Sec-
tion § 6. To get a finer understanding of how e2fsck scales
with file system configurations, we study the sensitivity of
C/R’s runtime for multiple file system variables such as file
count and directory count.

File-intensive file systems. First, to understand how the file
count affects runtime, we generate multiple file-intensive file
system configurations with a 95 : 1 file to directory ratio.
Pass-1, which checks the consistency of inodes structures,
dominates e2fsck runtime, followed by Pass-2, which checks
directory block consistency. Figure 2 shows the function-wise
breakdown in Pass-1 that checks the consistency of file inodes
as well as tracks directory blocks encountered to be exam-
ined in the next pass. We notice a function dcigettext (a
seemingly innocuous) language translator used for error han-
dling gets (incorrectly) used for every inode check, causing
notable C/R slowdown. ! Other steps such as check_blocks
that checks blocks referenced by an inode, next_inode that
reads next inode blocks from disk, mark_bitmap that updates
global bitmaps to track the metadata encountered, and icount
store that stores inode references also increase in runtime.
Despite fewer directories, Pass-2’s (directory checking) run-
time increases because the number of directory blocks to

I'We reported this to e2fsck developers, and the fix has been upstreamed.

USENIX Association

19th USENIX Conference on File and Storage Technologies 115



120

=3 dcigettext
100 1 2 check blocks
X3 next inode
80 1 X2 icount store

[eeel mark bitmap
60 q

401

1=

PN
10 20
File Count (millions)

Time (seconds)

Figure 2: e2fsck Pass-1 Time Breakdown. Time spent within
inode checking pass (Pass-1) as the total file count increases.

store directory entries increases. For all file counts, time spent
in Pass-1 and Pass-2 account for over 95% of the runtime.
Finally, for a small directory count, Pass-3, which checks con-
nectivity and reachability of directories from the root, has
lower runtime. Increasing the file size when keeping file count
constant does not increase C/R runtime significantly (not
shown for brevity).

Directory-intensive file system. In Figure 1b, we decipher
the runtime of a directory-heavy file system configuration
with 1 : 1 file to directory ratio. To ensure that each directory
requires the same amount of work, we create a single file in
each directory. First, the cost of fetching, identifying direc-
tory blocks, and adding them to a global block list (db_list)
increases Pass-1’s cost along with reference counting. As ex-
pected, with an increase in directory count, Pass-2’s runtime
significantly increases due to an increase in the number of di-
rectory blocks. Additionally, the directory blocks store check-
sums, and the checksum is recomputed and verified against
the one stored in the directory blocks for consistency. Similar
to the file-intensive file systems, for all directory counts, over
90% of the runtime is spent within Pass-1 and Pass-2.

3.3 Compute time and I/O utilization

To understand the computational vs. I/O bottlenecks, we
analyzed the time spent by e2fsck on compute time vs. the
time spent waiting for I/O to complete. Our analysis shows
that in modern storage devices like NVMe, the I/O wait time
for file-intensive and directory-intensive configurations are
only 3% and 20% of the overall execution time. We also notice
poor storage throughput utilization, which is just 270 MB/s
on an NVMe device with 2 GB/s and 512 MB/s sequential
and random read bandwidth, respectively. This clearly shows
that (1) computation is the main bottleneck as it dominates
overall execution time, and (2) C/Rs such as e2fsck fail to
benefit from modern storage device bandwidths.

Summary. To summarize, our analysis of widely-used
C/R tools such as e2fsck (and xfs_repair later in § 6) show
high runtime overheads mainly due to single-threaded or lack
of fine-grained parallelism. The linear complexity of C/R
runtime is unsuitable as disk capacities and file system size
trends upward, potentially taking hours, or even days, to check
datacenter-scale file systems. Besides, C/R’s repair during file
system inconsistencies could further increase C/R runtime.

4 pFSCK Goals and Insights

pFSCK aims to address the limitations of current file sys-
tem C/Rs by exploiting fine-grained multi-core parallelism
and higher disk bandwidth. We first discuss our goals and
insights, followed by pFSCK’s design and implementation.

4.1 Goals

The main goal is to make the file system C/R faster. We
want to increase the speed at which file system metadata is
scanned and inconsistencies are identified without compro-
mising repairing capabilities. In this pursuit, pFSCK strives to
achieve the following goals: (1) adapt to different file system
configurations, regardless of file system size, utilization, or
configurations, such as a file-intensive or directory-intensive
file system, (2) support efficient C/R for both online and of-
fline forms, and finally, (3) adapt to varying system resource
utilization to reduce the performance impact on any concur-
rently running applications.

4.2 Design Insights

Insight 1: Maximize potential bandwidth through mul-
tiple cores and data parallelism. To overcome the bottle-
necks of current C/R tools that employ serial or coarse-grained
parallelization techniques at the disk, volume, or logical group-
level, pFSCK introduces fine-grained data parallelism. As
shown in Section § 3.2, since Pass-1 and Pass-2 account for
over 90% of the runtime for both file- and directory-intensive
file systems, pFSCK focusses its efforts on these two passes.
Our approach divides finer file system structures such as in-
odes, directory blocks, and dirents across a pool of worker
threads in a single pass that performs C/R concurrently. While
seemingly simple, achieving data parallelism requires data
structure isolation across threads to reduce synchronization
bottlenecks.

Insight 2: Enable pipeline parallelism by reducing
inter-pass dependencies. Though data parallelism acceler-
ates C/R, each pass (e.g., directory checking) must wait for
the previous pass (e.g., inode check) to complete. Specifi-
cally, in C/R, several inter-pass global data structures are used
to build a consistent view of the file system and identify in-
consistencies (ex. bitmaps). As a consequence, updates to the
shared global structures must be serialized, thereby increasing
contention to shared structures with increasing thread count
and limiting the CPU scalability. To reduce serialization over-
heads, pFSCK designs pipeline parallelism that breaks the
rigid wall across passes allowing multiple passes to be exe-
cuted concurrently. pFSCK manages per-pass thread pools,
isolates inter-pass shared structures using divide and merge
approaches, delineates checking from actual certification of
an inode, and reduces I/O wait times.

Insight 3: Adapt to file system configurations with dy-
namic thread scheduling. Both data and pipeline parallelism
requires assigning threads across different passes. Static or
equal partitioning of CPU threads is suboptimal due to a lack
of information about metadata types (files, directories, links)

116 19th USENIX Conference on File and Storage Technologies

USENIX Association



and work across passes. Simple checks such as information
about the number of files vs. directory inodes are insufficient
because directory processing is complex and time-consuming
(see §3). To overcome the above challenge, we design a
C/R thread scheduler that dynamically assigns and migrates
threads across passes to process different file system objects
as they are discovered.

Insight 4: Reduce system impact through resource uti-
lization awareness. File system C/Rs could potentially run
with other applications sharing CPUs while performing check-
ing on separate disks. Given pFSCK’s goal is to exploit avail-
able CPUs, it could potentially impact other co-running ap-
plications. Similarly, C/R could run on disks that are also
actively used by other applications to store data. To reduce
the overall system impact on co-running applications as well
as pFSCK, we equip pFSCK’s scheduler with resource aware-
ness to dynamically identify the number of cores to use at any
single point in time to minimize the potential impact on other
co-running applications and pFSCK’s performance.

S Design and Implementation

We discuss pFSCK’s design and implementation of data
parallelism, pipeline parallelism, dynamic thread scheduler,
and resource-aware scheduling. We aim to extend the widely
used e2fsck without requiring file system layout changes and
reuse features such as snapshot-based online C/R.

5.1 Data Parallelism

pFSCK’s data parallelism aims to divide work across
worker threads in each pass at the granularity of inodes for
parallelizing C/R. However, pFSCK must ensure efficient
parallelism without compromising file system integrity or
correctness through a functional separation of C/R passes
and per-thread contexts that isolate global data structures for
reducing synchronization cost.
Fine-grained Inode-level Parallelism. For fine-grained in-
ode parallelism, pFSCK uses the superblock information to
identify the total number of inodes in a file system and evenly
divides the inodes across C/R workers. To reduce worker
management costs, we use a thread-pool framework from our
prior work to assign tasks across workers [31].
Functional Parallelism for Reducing Synchronization
Overheads. Only dividing inodes for C/R across workers
is insufficient. To benefit from fine-grained parallelism, reduc-
ing synchronization cost across workers in each pass without
impacting correctness is critical.

pFSCK breaks each C/R pass into four main functional
steps that comprise 95% of the work and reduces synchroniza-
tion across these steps. These steps include (1) file system
metadata checks, (2) global file system metadata update, (3)
accounting, and finally, (4) intermediate result sharing. The
metadata check verifies the integrity of metadata structures
(for example, inode checksums and block references). Next,
the global file system metadata updates include changes to
file system-level bitmaps that maintain the checker’s view of

Structure Role pFSCK’s access

dir_info_list maintains directory infor- | splits into per-
mation/relationships thread lists
db_list maintains directory | splits into per-

blocks for Pass-2 to | thread lists and
check merges

tracks valid inodes using locks
tracks directory inodes using locks
tracks regular file inodes | using locks

inode_used_bitmap
inode_dir_bitmap
inode_reg_bitmap

block_found_bitmap | tracks used data blocks using locks
icount tracks inode reference | using locks
counts

Table 1: Global structures, their role, and access method.

the file system in order to detect inconsistencies. For example,
the block bitmap as shown in Table 1 is marked to track which
block references have been seen to detect duplicate block ref-
erences where more than one inode claims the same block(s).
Third, C/R-level accounting involves updating counters that
track statistics such as file types. Finally, intermediate result
sharing involves creating data structures and lists that hold
information to be processed by the next pass. Such structures
include directory info lists and directory block lists that store
directory information and the location of their blocks so it
can be checked in the directories pass.

While synchronization between file system metadata
checks (step 1) and global metadata update steps (step 2) is
essential, synchronization between the first two steps and the
last two steps, C/R counter/statistics update (step 3) intermedi-
ate result sharing (step 4) can be avoided by allowing threads
to maintain per-thread stats and generate data structures in iso-
lation. The results of steps 3 and 4 can be aggregated before
the next pass, reducing synchronization costs significantly.
Thread Contexts for Isolation. In current C/Rs such as
e2fsck (and xfs_repair), we find significant use of global data
structures inside and across passes. To reduce sharing and in-
crease concurrency, we introduce per-thread contexts similar
to OS thread contexts. These contexts store information that
allow threads to operate in parallel. First, per-thread block
caches, buffers (heap allocations), and iterators of file system
objects allow for parallel file system traversal. Second, per-
thread intermediate data structures and counters are used for
gathering high-level file system state in parallel. For example,
each inode pass (Pass-1) thread has its own db_1list (direc-
tory block list) and dir_info list (directory information list)
that gathers information about directories and exports these to
the directory pass (Pass-2) threads for processing. Lastly, per-
thread counters are used to track file type statistics in parallel.
However, we observe that due to frequent access of global
bitmaps across passes (for almost every operation), pFSCK is
forced to use synchronization through locking. While disag-
gregating these bitmaps into per-thread structures is feasible,
it would demand significant changes to the e2fsck framework.
Table 1 shows the shared structures and their role in e2fsck.
Thread Colocation for Improved Locality. To increase lo-
cality and better utilize processor cache state, in each pass,
pFSCK attempts to co-locate threads within the same pass to

USENIX Association

19th USENIX Conference on File and Storage Technologies 117



\
I
|
|
|
|

( ¢ ) Synchronous
Dependent

( b) Pipeline Parallelism Checks
Figure 3: Parallelism in pFSCK. (a) Threads within each pass
allows for data to be operate in parallel (data parallelism). (b) Multi-
ple thread pools allows each pass of pFSCK to operate simultanously
(pipeline parallelism). (c) Any dependent checks needed to be car-
ried out synchronously is delayed within its own logical pass.

the same cores and memory sockets to avoid bouncing lock
variables and shared structures across processor caches. To
enable thread colocation, pFSCK maintains the CPU number
each thread has used and a list of cores used by a particular
pass. pFSCK first attempts to place the thread to the previ-
ously used core (if available), and if unavailable, uses other
available cores which were used in the same pass.

Reducing I/O Wait Time with Per-thread Prefetchers
and Cache. Though current C/Rs such as e2fsck cache
and prefetch file system blocks, the caching and prefetch-
ing mechanisms are inflexible and lack thread awareness.
First, e2fsck uses a small, static fully-associative LRU-based
cache (with 8 blocks) and prefetches just inode blocks. E2fsck
does not prefetch directory data blocks, which could be non-
contiguous, unlike inode blocks. Second, because threads ac-
cess blocks at different offsets, sharing a cache across threads
results in conflicting evictions, increasing I/O overheads.

To overcome such limitations, we design and implement a
per-thread caching mechanism to avoid false eviction of cache
entries across threads. For avoiding the non-contiguity prob-
lem of directory blocks, we implement an adaptive prefetch-
ing mechanism (similar to Linux filesystem prefetching) —
decrease prefetching window if previously prefetched direc-
tory blocks are not used due to lack of sequential access.

5.2 Pipeline Parallelism

While data parallelism achieves concurrency for process-
ing file system objects within a pass, fully isolating per-pass
shared data structures and global data structures is not feasible
without substantial changes to either the file system layout
or the C/R. As a result, data parallelism does not fully bene-
fit from increasing the CPU count. As our results show, the
benefits can considerably degrade performance at higher core
counts due to increasing synchronization overheads.

To reduce synchronization time and increase CPU effec-
tiveness, pipeline parallelism breaks the limitation that C/R
passes must be sequentially executed. pFSCK'’s pipeline par-
allelism allows a subsequent C/R pass (Pass;+1) to start even
before the completion of an earlier pass (Pass;) in a pipelined
fashion (i.e., checking directories in directory checking pass

even before the inode checking pass has completed).
5.2.1 Per-Pass Thread Pools and Work Queues.

First, to facilitate concurrent execution of passes, we use
per-pass thread pools. As shown in Figure 3, the inode and
directory checking passes maintain a separate thread pool and
a dedicated work queue filled with file system objects needing
to be checked. As each pass operates, any intermediate work
generated is placed in the next pass’s work queue. For ex-
ample, the inode checking pass, when encountering an inode
representing a directory, queues its blocks to the directory
checking pass’s work queue to enable concurrent C/R.

5.2.2 Delayed Certification for Concurrency.

Allowing multiple passes to run in parallel using pipeline

parallelism requires reordering logical checks for correctness.
For example, with pFSCK’’s pipeline parallelism, the directory
data blocks can be checked by the directory checking pass
(Pass-2) in parallel with inode checking pass (Pass-1) check-
ing all the inodes (files and subdirectories) in the directory.
While the two passes can proceed in parallel, a directory can
be marked as consistent only after the inode checking pass
verifies the consistency of its subdirectories and files. There
are two main constraints for certifying a directory by the C/R:
(1) all inodes referenced by the dirents of this directory are
valid, and (2) the parent directory referenced by this directory
is valid.
Providing Ordering Guarantee. To address the challenge
of ordering guarantee, pFSCK delays certain checks until
the prior pipeline pass is complete. For example, the inode
checking pass within the pipeline is responsible for creat-
ing directory structures used in the directory C/R pass. The
directory pass examines subdirectories and checks whether
the subdirectory’s parent (represented by double dot ..) maps
back to the directory. However, because the inode and di-
rectory checking passes run in parallel, not all the inodes of
the subdirectories would have been checked when the parent
directories are checked. For handling the scenarios above,
pFSCK delays certification by encapsulating the relationship
needing to be verified into task structures that are added to
a separate work queue. This task queue is then processed
only after all inodes have been checked (e.g., after the inode
checking pass completes) as shown in Figure 3. Delayed cer-
tifications are infrequent in file-intensive configurations and
frequent in the directory-intensive configuration. pFSCK’s
delayed certification increases concurrency between Pass-1
and Pass-2, consequently improving performance.

To summarize, combining pipeline with data parallelism
reduces I/O wait time and improves pFSCK’s performance
across different file system configurations, as our results show
in Section § 6.

5.3 Dynamic Thread Scheduler

C/R runtime can vary significantly depending on the config-
uration of the file system. For example, C/R on a file system
with a larger ratio of smaller files could result in a substantially

118 19th USENIX Conference on File and Storage Technologies

USENIX Association



longer runtime compared to a file system with few-but-larger
files due to more metadata needing to be checked. Similarly,
heterogeneity in terms of inode types (files, directories, links)
can impact runtime, and the exact configuration remains un-
known until the inodes are iterated over in the inode checking
pass (Pass-1). Additionally, each pass within C/R has differing
degrees of access to shared structures. Therefore, statically as-
signing threads across each pass could be ineffective. Hence,
to adapt to file system configurations, pFSCK implements a
C/R-aware scheduler, pFSCK-sched, supported by extending
the thread pools to allow for migration of threads between the
passes. Also, pFSCK-sched maintains an idle thread pool to
hold any threads not scheduled to run for any of the passes.
Thread Assignment and Migration of Worker Threads.
In pFSCK, we enable dynamic assignment of threads across
each pass by implementing a scheduler that actively monitors
progress and migrates threads across the passes. The sched-
uler periodically scans through the work queues of each pass
to identify the work distribution ratio across the pipelined
passes and uses this ratio to assign threads across them.

Figure 4 shows an example of pFSCK-sched across the
first two passes. Initially, all the CPU threads are assigned to
the first pass (inode checking pass) given that pFSCK only
knows total inodes from the file system superblock and not
the types of inodes. When an inode C/R thread identifies a
group of directory inodes, it places the directory inodes and
their corresponding directory blocks to the work queue of
directory C/R pass. If no threads are present in the thread pool
used for the directory pass, threads from the inode pass are
migrated to the directory pass. To calculate the number of
threads to be reassigned, a dedicated scheduler thread finds
the total work to be done across all passes using the following
model.

Let W, a1 be the amount of work needing to be done. Let g;
be the length of the work queue for pass i. Let n; be the number
of discrete elements needing to be processed for each entry
in the work queue. Let w; be some weight that normalizes the
work to be done for each element in pass i. Let C be the core
budget and #; be the number of threads to assign for pass i.

N

Wioal = Y qiniwi (H
i=0

l e vvtotal

As shown in Equation (1), the total work to be done is a
summation of outstanding work across each pass, which is a
product of the work queue length (g;), the number of objects
encapsulated within each queue entry (n;), and a normalizing
weight (w;). As shown in Equation (2), with the total amount
of work needing to be done, the scheduler can determine
the ideal number of threads to assign to a pass (;) based on
the total core budget (C) and the relative amount of work
calculated for each pass. Note that the normalizing weights
are essential for accounting for the differences in the time
to process different file types (directories vs. inodes). Our

per-pass work queues

Directories Pass

Idle Thread
Pool

G

| o (3) Take threads from
(1) Sample Work Queues (2) Redistribute Threads idle thread pool if

more cores available

Figure 4: Dynamic Thread Scheduling. A dedicated scheduler
thread periodically samples work queues among all the passes and redis-
tributes threads based on the proportion of outstanding work.

Thread Pool

jads

Scheduler Thread

analysis of different file system configurations (discussed
in § 3) shows that in pFSCK (and in e2fsck), the average CPU
cycles spent on processing one directory is 1.8x - 2.3x higher
than processing an inode, mainly due to directory checksum
calculations. Overall, we find it is beneficial to use higher
weights for directory checking queues.

5.4 System Resource-Aware Scheduling

File system C/Rs could potentially coexist or even share
CPUs with other applications using the same or another file
system (or disk). In the pursuit of exploiting parallelism,
pFSCK must reduce the impact on other applications. To
address this goal, we introduce pFSCK-rsched, a system
resource-aware pFSCK scheduler.

5.4.1 Efficient CPU Sharing

First, we discuss a case where the C/R runs alongside other
applications but performs C/R on a separate, unmounted disk.
To reduce the impact of C/R overheads on other applications,
pFSCK-rsched maintains a scheduler thread. Initially, the
pFSCK-rsched workers are scheduled with SCHED_IDLE
priority that mostly schedules a process on any idle CPUs [6].
As the scheduler periodically runs, pFSCK-rsched first deter-
mines a CPU core budget to identify the maximum number
of threads it could use at any point in time by identifying the
number of CPUs in active use across the system, the num-
ber of idle cores available, and the number of cores used by
pFSCK-rsched. Based on the effective number of cores being
used by pFSCK-rsched, pFSCK-rsched increases pFSCK’s
core budget if it was utilizing less than the available idle cores
or shrinks pFSCK’s core budget if pFSCK uses more than
the idle cores, reducing contention with other applications.
After determining the core budget, the scheduler identifies the
work ratio across the passes using the per-pass work queues
and redistributes an ideal number of threads across each pass.
When adding threads to a pass, threads are taken from the
idle thread pool and assigned to the per-pass thread pool. If
threads need to be removed due to a decrease in the core bud-
get, threads are signaled and reassigned to the idle thread pool.
In § 6, we discuss the performance benefits and implications
of pFSCK-rsched when co-running and sharing CPUs with
another application (RocksDB).

USENIX Association

19th USENIX Conference on File and Storage Technologies 119



5.4.2 Efficient CPU and File System Sharing

Given the renewed focus for supporting online C/R [32],
C/R tools like e2fsck, originally intended for offline use, can
be used online with the help of Linux’s Logical Volume Man-
ager (LVM). LVM’s snapshot feature captures file system state
by employing a copy-on-write approach to preserve the origi-
nal version of modified blocks. [23]. This enables C/R tools
to be used in a proactive manner, scanning for pre-existing
errors without having to bring the system down.

Towards online C/R with LVM, an empty snapshot volume
is first initialized. If any blocks are modified by another appli-
cation, LVM copies the original blocks to the snapshot before
updating the blocks in place on the original volume. When
C/R reads blocks that are found to have been modified, the
reads are redirected to the snapshot which holds the origi-
nal blocks. Reads of unmodified blocks are redirected to the
original volume. While snapshot initialization is inexpensive,
applications incur extra overhead of synchronous data copying
and I/O redirection reducing the available storage bandwidth
for C/R. This is especially the case when file system blocks
are being frequently modified the other application.

In the case of pFSCK, fine-grained parallelism accelerates
online C/R even when applications share the same file system
(and disks). Futher, pFSCK’s resource awareness reduces the
impact on co-running applications by reducing CPU (and I/O
contention), allowing the application to run faster. We further
discuss the benefits of pFSCK for online C/R in § 6.

5.5 Verifying Correctness and Optimizations

Correctness. To ensure the correctness of the C/R, pFSCK
with fine-grained parallelism employs a series of steps. First,
although the checks are done in parallel, an inode is not
marked complete unless prior passes in the pipeline are com-
plete (e.g., a directory inode is marked complete only after all
the child inodes (directory entries) are checked. Second, the
C/R threads synchronize upon detecting errors. The thread
that detects an inconsistency notifies other threads to stall
and attempts to fix errors with (e.g., incorrect inode, blocks
claimed by multiple inodes) or without user input (e.g., in-
consistent bitmap), after which parallel execution is resumed.
While tools such as C/Rs allow partial and full checks and
checkpoint intermediate states, more robust tools could be
added to increase C/R crash-consistency [17].
Optimizations. As additional optimizations to both e2fsck
and pFSCK, we restrict the overheads of language localiza-
tion as discussed in § 3.2, utilize Intel’s hardware accelera-
tion for checksum calculations, as well as improve the cache-
readahead mechanism. We evaluate the benefits of these opti-
mizations in § 6 (referred to as e2fsck-opt in graphs).
pFSCK support for other file systems and C/R tools.
While pFSCK currently extends e2fsck (on Ext file system),
the fine-grained inode-level data and pipeline parallelism and
efficient scheduling can be applied to other C/R tools, such
as xfs_repair and fsck.f2fs that implement multiple passes to

Name Description

e2fsck original FSCK for EXT file systems
e2fsck-opt optimized e2fsck
xfs_repair XFS file system checker
pFSCK proposed file system checker
Table 2: C/R systems evaluated.
[ Name | Description |
datapara Only data parallelism enabled

Pipeline + data parallelism equally
distributing threads across passes
Same as above but manually selects
optimal thread assignment
Pipeline + data parallelism with dy-
namic thread assignment

Sched configuration with system-
level resource-awareness

datapara-+pipeline-split-equal

datapara+pipeline-split-optimal

sched

rsched

Table 3: pFSCK incremental system design

check on files, directories, links, and others. We will explore
designing a generic C/R in our future work.

6 Evaluation

We evaluate pFSCK to answer the following questions:
* Does pFSCK’s data parallelism reduce C/R runtime by

increasing CPU parallelism?

* How effective is pFSCK’s pipeline parallelism in achiev-
ing concurrent execution of C/R passes?

* How effective is pFSCK’s dynamic thread placement for
different file system configurations?

» Can pFSCK’s resource-aware scheduler effectively min-
imize the performance impact on other applications?

* How does pFSCK perform for online C/R?

* How does pFSCK perform in light of file system errors?

6.1 Experimental Setup

We use a machine equipped with a 64-core Dual Intel®
Xeon Gold 5218 running at 2.30GHz, 64GB of DDR memory,
a 1TB NVMe, and a 2TB Micron 5200 SATA SSD running
Ubuntu 18.04.1. We run pFSCK on various file system con-
figurations with varying thread counts. As seen in Table 2,
we compare against vanilla e2fsck, e2fsck-opt (optimized
e2fsck with reduced language localization overheads and In-
tel hardware-accelerated checksumming), and xfs_repair. Ta-
ble 3 shows pFSCK’s incremental design approaches.

File system configurations. The number of files and direc-
tories in a file system can be variable and dependent on appli-
cations, and there is no publicly available data. Our analysis
of workloads like RocksDB (a key-value store), video server,
web server, and mail server (using filebench), and two shared
servers in our organization show that the file count dominate
(99% files to 1% directories). To understand the impact of
pFSCK’s design on file and directory-intensive configurations,
we use a I'TB NVMe with an 840GB file system utilizing 50
million inodes and a 2TB file system on SATA SSD utiliz-
ing 100 million inodes. We evaluate pFSCK’s impact on a
file-intensive (99% files), a medium directory-intensive (25%

120 19th USENIX Conference on File and Storage Technologies

USENIX Association



directories), and an extreme directory-intensive (50% directo-
ries) configuration.

6.2 Data Parallelism

To understand the performance improvements and impli-
cations of pFSCK’s fine-grained inode-level data parallelism
that partitions inodes across threads in each pass but running
the passes serially, we evaluate a file-intensive configuration
(in Figure 5a), a directory-intensive configuration with 25%
directories (in Figure 5b), and an extreme directory-intensive
configuration with 50% directories (in Figure 5c). The x-axis
shows four C/R approaches: the vanilla e2fsck, our optimized
e2fsck (e2fsck-opt), xfs_repair with coarse-grained paral-
lelism, and finally, our proposed pFSCK with data parallelism
(pFSCK[datapara]). For xfs_repair and pFSCK][datapara], we
also vary the thread counts from 2 to 16 threads.

File-intensive configuration. First, as shown in Figure 5a,
our optimized e2fsck-opt outperforms the vanilla e2fsck by
optimizing the CRC mechanism and avoiding language lo-
calization overheads. Next, xfs_repair parallelizes C/R in the
granularity of coarse-grained allocation groups, which is inef-
fective. There are 16 allocation groups for our XFS filesystem
configuration (by default). While xfs_repair checks the sanity
of allocation groups in parallel, the directory metadata within
the allocation groups are not checked in parallel. Specifically,
when files are small, xfs_repair cannot check directory entries
and link counts in parallel, with a substantial increase in C/R
time. Besides, varying inode counts across allocations groups
further impact performance (increasing allocation groups did
not improve performance). Both e2fsck and pFSCK outper-
form xfs_repair for all cases. Finally, pFSCK[datapara] with
fine-grained inode-level parallelism, reduces the runtime of
the first pass (inode checking) by 2.1x and directory checking
pass (Pass-2) by 1.8x, resulting in an overall C/R speedup of
1.9x for four threads over the vanilla e2fsck and 1.52x over
e2fsck-opt. Beyond four threads, pFSCK’s data parallelism
scaling is hindered by high serialization and lock contention
to update shared structures such as the used/free block bitmap.

Directory-intensive Configurations. As shown in Fig-
ure 5b and 5c, the trends are similar for the directory-intensive
file system. Even with 50% directories, pFSCK’s Pass-1 and
Pass-2 runtime reduces by 1.8x and 1.3x, respectively. pFSCK
achieves an overall C/R speedup of 1.4x, 1.24x, and 1.8x over
e2fsck, e2fsck-opt, and xfs_repair that does not parallelize
directory metadata checking. For the 25% directory-intensive
configuration, the gains are 2x over e2fsck. However, the syn-
chronization overheads of global structures prevents pFSCK’s
data parallelism from scaling beyond 4 cores.

6.3 Pipeline Parallelism and Scheduling.

Next, we evaluate the benefits of combining data and
pipeline parallelism and the need for a dynamic thread place-
ment for a file-intensive configuration in Figure 6a and two
directory-intensive configurations in Figures 6b and 6c. With
pipeline parallelism, C/R passes run concurrently, and the

threads of each pass add work for the next pass in a producer-
consumer fashion. The x-axis shows the increase in the num-
ber of threads used for the C/R. We compare four cases: (1)
pFSCK][datapara], which only uses data parallelism running
one pass at a time; (2) pFSCK[pipeline-split-equal], which
statically divides an equal number of threads for each of the si-
multaneously executing passes (e.g., two threads are assigned
to the inode checking pass (Pass-1) and two threads to di-
rectory checking pass (Pass-2) in a 4-thread configuration);
(3) pFSCK|pipeline-split-optimal ], which represents the best
manually selected thread configuration; and (4) pFSCK-sched,
which employs pFSCK’s dynamic thread scheduler to dynam-
ically assign threads based on the amount of outstanding work
done within each pass. Single-threaded e2fsck and e2fsck-opt
are marked as a baselines. Because e2fsck and pFSCK out-
perform xfs_repair in all cases, we do not show xfs_repair.

File-intensive Configuration. First, unlike the data
parallelism-only approach, the pipeline parallelism approach
improves performance when increasing thread count. Next,
pipeline-split-equal approach splits threads equally across
passes. For low thread counts (2 and 4 threads), the perfor-
mance gains over data parallelism approach is minimal. This
is because, for a file-intensive configuration, most work is
done in the inode checking pass (Pass-1), static and equal
division of threads across passes under-utilizes threads as-
signed in the directory checking pass. Increasing the thread
count (along the x-axis) only marginally improves perfor-
mance by increasing parallelism in the inode checking pass.
In contrast, when employing a manually selected thread con-
figuration using pFSCK’s pipeline-split-optimal and assign-
ing three-fourth of the threads to the inode checking pass,
performance increases by up to 1.3x compared to data par-
allelism only. The concurrent work across passes also re-
duces the synchronization cost of data parallelism scaling
beyond four threads. Finally, pFSCK’s scheduler (pFSCK-
sched) avoids the tedious manual process of optimal thread
placement for different file system configurations by auto-
matically migrating threads based on the relative amount of
outstanding work to be completed across each pass. In fact,
the dynamic thread placement improves performance by 1.1x
compared to pipeline-split-optimal, resulting in an overall
speedup of 2.6x compared to vanilla e2fsck.

Directory-intensive Configurations. Unlike the file-
intensive configuration, for the extreme directory-intensive
configuration (50% directories), both inode and directory
checking passes demand substantial work, resulting in the
need to frequently coordinate across the passes. We observe
that automatic thread placement with pFSCK-sched controls
the number of threads across passes, reducing contention
within each pass while thread migration helps in accelerating
inode checking (Pass-1) without accumulating a substantial
number of directory inodes to be checked (in Pass-2). pFSCK
employs delayed certification of directories (directory with
subdirectory) as discussed in 5.2.2 which limits scalability.

USENIX Association

19th USENIX Conference on File and Storage Technologies 121



O xfs_repair O pFSCK[datapara]
:Sg X efsck O efsck -opt 450
6 120 400
140 100 350
<120 9 300 0) ) 0) 0) )
Q
Eioo £ 8 g 250
£ 80 £ 60 <200
£ 60 c 40 £ 150
< 40 ] o 100
20 S 50
20 6 5 31 I 0l 0 I < B B B B B
o 0 0
2 4 8 16 | 2 4 16 | 2 4 8 16
Threads Threads Threads
(a) File-intensive FS. (b) Directory-intensive FS with 25% directory. (c) Directory-intensive FS with 50% directory.
Figure 5: Data Parallelism impact. The configurations use a total of 50 million inodes.
O pFSCK[datapara] N pFSCK[pipeline-split-equal]
120 B pFSCK[pipeline-split-optimal] & pFSCK-sched 350
120 X efsck Oefsck -opt 300
100 X X X X X 100 X X X X X
— 250
3% § % 8 200
2 60 S 60 © Q © k3
2 fa g 150
5 40 s S 100
2 NN N &
0 | 2 4 8 16 0
| 2 4 16 Threads I 2 4 8 16
Threads Threads
(a) File-intensive FS. (b) Directory-intensive FS with 25% directory. (c) Directory-intensive FS with 50% directory.
Figure 6: Comparison of pipeline parallelism and scheduler
O pFSCK[datapara] K pFSCK[pipeline-split-equal] o 2.0 o 4
B pFSCK [pipeline-split-optimal] X efsck @ @ e2fsck e A=k ==k ==-A
- e2fsck-opt kel
300 O efsck -opt E 159 o4 prsckesched 2 BA‘_/__..___‘.___..___.
X =) =}
240 1.0 224
- g heek—k——A| B
Q180 I ONNNEZOL Y = T e e AT —
& 180 2os54{ .7 21
o s
£ 120 % F--o--0--0--0
= = 004 T T T — =04 . . T .
2 60 1 2 4 8 16 1 2 4 8 16

4
Threads

Figure 7: C/R on 2TB SSD with File-intensive FS.

s)

w

& 800 3 800

g @ e2fsck g

~ —& e2fsck-opt ~

g 600 1 A pfsck-sched A g 600 7 /A—‘_"-"“—““
E - z ¢ e--e——e-—a
g0y 24001g _o--0--o--o
m - ————— o

Y 200{®---8---0--0---8 g 200

I o

2 oL , . , - £ o0 . ,
< 1 2 4 8 16 < 1 2 4 8 16

Thread Count
(a) File-intensive FS

Thread Count
(b) Directory-intensive FS

Figure 8: I/0 Bandwidth

Overall, the performance improves by up to 2.7x and 1.6x over
e2fsck for 25% and 50% directory-intensive configurations.

Low-bandwidth SSD. Lastly, to understand gains on
slower SATA-based SSDs (350MB/s sequential bandwidth)
for a large 2TB configuration, Figure 7 shows pFSCK per-
formance on a file-intensive configuration. pFSCK shows
speedups of up to 2.1x and 1.73x over vanilla e2fsck and
e2fsck-opt despite the lower bandwidth of SSDs compared to
NVMe. In summary, pFSCK’s pipeline parallelism reduces
serialization bottlenecks of data parallelism, and the dynamic
thread placement reduces work imbalance, leading to signifi-
cant performance gains in fast NVMe and SSD devices.

Thread Count
(a) File-intensive FS

Thread Count
(b) Directory-intensive FS

Figure 9: Memory Usage.
6.4 Storage Throughput and Memory Usage

We analyze the effective storage bandwidth use and in-
crease in memory capacity with pFSCK for the file-intensive
and extreme directory-intensive (50% directories) configura-
tions. For brevity, we compare single-threaded e2fsck, e2fsck-
opt, and multi-threaded pFSCK-sched.

6.4.1 Storage Throughput

Figures 8a and 8b show the storage bandwidth utiliza-
tion for file-intensive and directory-intensive configurations
in MB/s. First, our optimized e2fsck (e2fsck-opt) reduces the
overhead between synchronous reads improving bandwidth
utilization by 1.3x over e2fsck. In contrast, pFSCK increases
I/0 throughput for the file-intensive configuration by 1.9x
and 2.7x for 8 and 16 threads, respectively, over e2fsck. I/O
throughput utilization for directory-intensive file system im-
proves by 1.7x, showing the benefits of pFSCK to utilize
available disk bandwidth effectively.

The improvement in I/O bandwidth utilization comes from
a combination of an pFSCK’s threading, ability to prefetch
directory blocks, better caching, and scheduling, which can
dynamically migrate threads across passes based on the pend-
ing work. For the file-intensive configuration in Figure 8a, the
scheduler allows threads to read inode blocks in Pass-1 and
migrates extra threads to Pass-2 to read directory blocks in

122

19th USENIX Conference on File and Storage Technologies

USENIX Association



parallel, bumping up the bandwidth utilization. In Figure 8b,
the I/O bandwidth utilization is better with most threads oper-
ating in the directory checking pass (Pass-2). However, due to
serializing access to global shared structures (e.g., db_list)
listed in Table 1, I/O bandwidth increase does not translate to
higher performance with increasing thread count.

6.4.2 Memory Usage

In Figure 9, we compare the memory (DRAM) capacity
use. First, for file-intensive configuration in Figure 9a, the
overall memory utilization is below 1GB for all approaches.
Both e2fsck and e2fsck-opt show the same memory usage. Re-
garding e2fsck and e2fsck-opt memory utilization, which also
applies to pFSCK, the memory use stems from data structures
used for tracking directory information such as a do_list
which hold a list of all directory data blocks, dirinfo_list,
which tracks relationships between directories, dx_dirinfo
list which keeps track of all directory HTREE blocks, as well
as a dictionary structure used to verify consistency among
the dirents within a directory. For pFSCK-sched, the memory
usage increases by a nominal 300MB (2.1x). pFSCK’s mem-
ory increase is mainly due to maintaining task queues. Apart
from inode checking tasks for Pass-1, the threads discover
directories and create directory block tasks for Pass-2 threads
to process. Note that each task structure (in the queue entry)
represents a fixed-size range of blocks to process. The queues
are currently dynamically allocated and unrestricted but can
be restricted to reduce memory increase. The range of blocks
each task is assigned can also be increased to reduce the num-
ber of tasks being generated. Consequently, increasing the
thread count does not or marginally increases memory use.

Next, for the directory-intensive configuration in Figure
9b, e2fsck and e2fsck-opt uses 2.6GB of memory. Similar
to the file-intensive configuration, the main source of mem-
ory consumption is from data structures used for tracking
directory information. With an extreme increase in directory
count, the memory consumption of these data structures is
significantly amplified. pFSCK’s memory usage is compara-
ble, only using 3.5GB, resulting in a 1.3x increase. Similar
to the file-intensive configuration, the increase in memory
usage is due to task structures being generated and added to
task queues. With an extreme increase in directory count, the
memory overheads of task structures also increase.

In general, memory usage is a function of file system uti-
lization/configuration and not thread count. We argue that
pFSCK'’s performance gains in today’s system outweigh the
nominal memory increase in today’s systems with large mem-
ory capacity. Further, we believe memory use can be reduced
through pFSCK’s code optimizations.

6.5 System Resource-Aware Scheduler

File system C/Rs could run concurrently with other appli-
cations, where the C/R and applications can either operate
on the same or separate file systems while sharing the same
CPUs. To understand the effectiveness of pFSCK’s resource-

g
o
g
<)

ZA e2fsck
RocksDB
om &= pFSCK-rsched

-
o
.
5]

o
n

Normalized Performance
_(2 =
w o

Normalized Performance
-
o

o
)

Q
(a) Offline C/R.

Figure 10: Impact of resource-aware pFSCK for offline and
online C/R. Results shown for file-intensive configuration.

aware scheduler (pFSCK-rsched) in reducing the impact on
other applications, we pick a popular multi-threaded and per-
sistent I[/O-intensive key-value store, RocksDB [4], which is
used as a backend for several real-world applications [22,43].
We evaluate pFSCK-rsched in an offline setting, where C/R
is performed on a file system separate from the file system
RocksDB is using, and an online setting, where online (live)
C/R is performed on a file system that is concurrently being
updated by RocksDB. For both offline and online settings, we
evaluate the performance of the following cases: (1) e2fsck-
no-cpu-sharing, where RocksDB and the vanilla e2fsck do
not share CPU cores; (2) e2fsck-cpu-sharing, where CPUs are
shared between RocksDB and the vanilla e2fsck; (3) pFSCK-
rsched-no-cpu-sharing, which employs pFSCK-rsched with-
out sharing CPUs with RocksDB; and finally, (4) pFSCK-
rsched-cpu-sharing which employs pFSCK-rsched sharing
CPUs with RocksDB. We run RocksDB with 12 threads and
facilitate CPU sharing by running pFSCK-rsched with 12
threads and restricting the affinity of all threads to 16 cores,
resulting in the overlapping of 8 cores. Similarly, for e2fsck,
we restrict the affinity of all threads to 12 cores, resulting in an
overlap of 1 core. Due to space constraints, we show only the
results for checking a file-intensive file system configuration.

6.5.1 Offline C/R with CPU Sharing.

Figure 10a shows the offline approach performance us-
ing separate file systems for each C/R and RocksDB. The
x-axis shows e2fsck and pFSCK-rsched approaches without
and with CPU sharing. In the y-axis, the results are normal-
ized to the performance of e2fsck running with RocksDB
without sharing CPUs (e2fsck-no-cpu-sharing).

First, when sharing CPUs, the runtime of vanilla e2fsck
and RocksDB is significantly impacted (shown as e2fsck-
cpu-share) compared to e2fsck-no-cpu-share due to fre-
quent context switches which take away effective CPU time
from RockDB; e2fsck’s performance degrades by 1.2x and
RocksDB’s performance degrades by 1.5x compared to the
no-sharing approach. In contrast, with pFSCK’s resource-
aware scheduler, CPU sharing between the pFSCK-rsched
and RocksDB (pFSCK-rsched-cpu-sharing) has minimal im-
pact for both pFSCK and RocksDB. The resource-awareness

USENIX Association

19th USENIX Conference on File and Storage Technologies 123



350 O e2fsck 8 e2fsck-opt DpFSCK-sched

E 100 §
) H@H H@ﬂ HH

100 1000 10000 100000
Block Corruptions

Figure 11: Repair runtime for varying corruption count.

capability adaptively downscales the number of threads being
utilized to carry out C/R, reducing CPU context switches away
from RocksDB and minimizing related overheads. Athough
pFSCK-rsched and RocksDB intially overlap 8 out of the
16 cores, pFSCK-rsched is able to downscale threading to
around 4-6 threads, allowing RocksDB to consistently utilize
12 out of the total 16 cores. As a result, pFSCK-rsched and
RocksDB show minimal performance degradation of 1.07x
and 1.05x, respectively, compared to the no CPU sharing case.
6.5.2 Online C/R with CPU Sharing.

Figure 10b shows the results when each C/R and RocksDB
share the CPU as well as the file system. As discussed earlier
in 5.4.2, pFSCK utilizes the LVM-based snapshots to capture
file system changes and perform C/R on a stable version of
the file system represented by the snapshot. Similar to offline
C/R evaluation, we normalize the results to the performance
of e2fsck running with RocksDB without sharing CPUs.

First, when overlapping e2fsck and RocksDB, performance

significantly degrades by 1.4x and 1.6x, respectively. The
degradation is mainly due to frequent CPU context switching
between e2fsck and RocksDB. However, this main source of
performance degradation increases the time the snapshot must
remain active, resulting in further performance degradation
due to LVM snapshot overheads. Next, with pFSCK-rsched,
the performance degradation when co-running pFSCK-rsched
with RocksDB is minimal. This is due to pFSCK-rsched’s
resource-aware thread assignment (similar to offline setting)
which mitigates performance impact and context switching
overheads by scaling the number of threads pFSCK uses.
Because performance impact from context switching is mini-
mized, the amount of time the snapshot must active is mini-
mized, mitigating any further performance degradation due
to LVM snapshot overheads. The performance degradation
compared to the baseline (no CPU or file system sharing) for
both pFSCK-rsched and RocksDB is 1.2x. Although higher
than the offline approach, most of it is due to disk sharing and
the resulting LVM snapshotting overheads.
Summary. pFSCK-rsched’s resource awareness effectively
adapts to the number of available CPU cores (and threads) for
C/R and maximizes their utilization for better performance in
both an offline and online setting. The performance impact
on co-running application is also minimized.

6.6 Performance with Errors

To evaluate pFSCK’s performance with file system errors,
we use e2fsprogs’s fuzzing tool, e2fuzz, to introduce random

block corruptions to a file-intensive configuration. In Figure
11, we introduce up to 100K corruptions in the x-axis and
compare e2fsck, e2fsck-opt, and pFSCK-sched that uses eight
threads. Note that prior studies real-world systems show that
the scale of corruptions can be just a few bits or bytes, and
the hardware and software corruptions could significantly
vary, ranging from silent bit corruptions to FTL metadata
corruptions and shorn or incomplete writes [12, 18,27].

First, even for 100 corruptions, pFSCK-sched speeds up
C/R by up to 2.7x and 1.6x over e2fsck and e2fsck-opt, respec-
tively. However, for 10K corruptions, pFSCK-sched performs
similarly to e2fsck-opt and speeds up C/R by only 1.1x com-
pared to e2fsck. pFSCK’s speedup reduces with increasing
corruption counts because long and serially executed error-
fixing operations start to dominate the overall runtime for all
C/Rs including pFSCK. Further, for pFSCK-sched, we ob-
serve that if the corruption count is greater than 10K, synchro-
nization overheads start to further diminish performance gains
from parallelism. To mitigate diminishing returns from thread
synchronization, pFSCK tracks the number of errors encoun-
tered and reverts to serial checking after discovering a 10K
errors. This allows pFSCK to perform similarly to e2fsck-opt
for higher error counts, experiencing only slight performance
deterioration due to initial thread synchronization. Our fu-
ture work will focus on exploring ways to parallelize fixes to
accelerate C/R for highly corrupted file systems.

7 Conclusion & Future Work

With a goal of accelerating file system checking and re-
pair tools, we propose pFSCK, a parallel C/R tool that ex-
ploits CPU parallelism and the high bandwidth of modern
storage devices to accelerate C/R time without compromis-
ing correctness. pFSCK explores fine-grained parallelism by
assigning threads to inodes, blocks, or directories and effi-
ciently performing C/R using data parallelism within each
pass and pipeline parallelism across multiple passes. In addi-
tion, pFSCK enables efficient thread management techniques
to adapt to varying file system configurations as well as mini-
mize performance impact on other applications. As a result,
pFSCK shows more than 2.6x gains over e2fsck and 1.8x
over xfs_repair that provides coarse-grained parallelism. In
light of pFSCK’s limitations, future work will explore accel-
erating pFSCK for hard disks while mitigating costly seeks
due to random accesses, reducing memory overheads through
more efficient data structures and rate-limiting, and finally
accelerating fixes for disks with higher corruption counts.

Acknowledgements

We thank the anonymous reviewers and Dean Hildebrand
(our shepherd) for their insightful comments and feedback.
We thank the members of Rutgers Systems Lab for their valu-
able input. This material was partially supported by funding
from NSF grant CNS-1910593. We also thank Rutgers Panic
Lab for helping with the storage infrastructure.

124 19th USENIX Conference on File and Storage Technologies

USENIX Association



References

[1]

[2
[3]

—

[4
[5
[6

= = O

[7

—

[9

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

Disk check takes too long to check. linuxquestions.org. https:
//www.linuxquestions.org/questions/linux-hardware-18/
disk-check-takes-too-long-to-check-510584/.

e2fsck: fsck for ext4. https://linux.die.net/man/8/e2fsck.

e2scrub: online fsck for ext4.
749106/.

Facebook RocksDB. http://rocksdb.org/.
Intel-Micron Memory 3D XPoint. http://intel.ly/leICROa.

https://lwn.net/Articles/

Linux sched() man page.
man7/sched.7.html.

http://man7.org/linux/man-pages/

StackExchange - Extremely long time for an ext4 fsck.
https://unix.stackexchange.com/questions/78785/
extremely-long-time-for-an-ext4-fsck, Mar 2013.

File system check (fsck) is slow and running for a very long time.
https://access.redhat.com/solutions/2210281, Sep 2016.

Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gre-
gory R Ganger, and George Amvrosiadis. File systems unfit as dis-
tributed storage backends: lessons from 10 years of ceph evolution.
In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 353-369, 2019.

Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel, Thanu-
malayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Correlated crash vulnerabilities. In Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation, OSDI’ 16, pages 151-167, Berkeley, CA, USA,
2016. USENIX Association.

William (Bill) E. Allcock. Parallel File Systems at HPC Centers: Us-
age,Experiences, and Recommendations. https://www.nersc.gov/
assets/Uploads/W0l-DataIntensiveComputingPanel.pdf.

Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, Garth R. Goodson, and Bianca Schroeder. An analysis
of data corruption in the storage stack. ACM Trans. Storage, 4(3),
November 2008.

Lakshmi N Bairavasundaram, Andrea C Arpaci-Dusseau, Remzi H
Arpaci-Dusseau, Garth R Goodson, and Bianca Schroeder. An analysis
of data corruption in the storage stack. ACM Transactions on Storage
(TOS), 4(3):8, 2008.

Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy,
and Jiri Schindler. An analysis of latent sector errors in disk drives.
Proceedings of the 2007 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems - SSIGMETRICS
07, 2007.

Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Optimistic crash con-
sistency. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 228-243. ACM, 2013.

Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun Ben-
jamin, Ashvin Goel, and Angela Demke Brown. Recon: Verifying file
system consistency at runtime. ACM Transactions on Storage (TOS),
8(4):1-29, 2012.

Om Rameshwar Gatla, Muhammad Hameed, Mai Zheng, Viacheslav
Dubeyko, Adam Manzanares, Filip Blagojevi¢, Cyril Guyot, and Robert
Mateescu. Towards robust file system checkers. In 16th USENIX
Conference on File and Storage Technologies (FAST 18), pages 105—
122, Oakland, CA, February 2018. USENIX Association.

John  Goerzen. Silent data  corruption is
https://changelog.complete.org/archives/
9769-silent-data-corruption-is-real/.

real.

Haryadi S Gunawi, Abhishek Rajimwale, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. Sqck: A declarative file system checker.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Sqck: A declarative file system checker.
In Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, pages 131-146, Berkeley, CA,
USA, 2008. USENIX Association.

Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Casey Golliher,
Swaminathan Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng,
Nematollah Bidokhti, Caitie McCaffrey, Gary Grider, Parks M. Fields,
Kevin Harms, Robert B. Ross, Andree Jacobson, Robert Ricci, Kirk
Webb, Peter Alvaro, H. Birali Runesha, Mingzhe Hao, and Huaicheng
Li. Fail-slow at scale: Evidence of hardware performance faults in large
production systems. In /6th USENIX Conference on File and Storage
Technologies (FAST 18), pages 1-14, Oakland, CA, 2018. USENIX
Association.

Ethan Hamilton. Rocksdb is eating the
database world. https://rockset.com/blog/
rocksdb-is-eating-the-database-world/.

Michael Hasenstein. The logical volume manager (lvm). White paper,
2001.

Val Henson, Zach Brown, and Arjan van de Ven. Reducing fsck time
for ext2 file systems. 04 2019.

Val Henson, Amit Gud, Arjan van de Ven, and Zach Brown. Chunkfs:
Using divide-and-conquer to improve file system reliability and re-
pair. In Proceedings of the Second Conference on Hot Topics in Sys-
tem Dependability, HotDep’06, pages 7-7, Berkeley, CA, USA, 2006.
USENIX Association.

Val Henson, Arjan van de Ven, Amit Gud, and Zach Brown. Chunkfs:
Using divide-and-conquer to improve file system reliability and repair.
In HotDep, 2006.

Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder.
Evaluating file system reliability on solid state drives. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages 783-798, Ren-
ton, WA, July 2019. USENIX Association.

Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder.
Evaluating file system reliability on solid state drives. In 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19), pages
783-798, 2019.

Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder.
Evaluating file system reliability on solid state drives. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages 783-798, Ren-
ton, WA, July 2019. USENIX Association.

Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. Splitfs: reducing software
overhead in file systems for persistent memory. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, pages
494-508, 2019.

Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Redesigning lsms for non-
volatile memory with novelsm. In Haryadi S. Gunawi and Ben-
jamin Reed, editors, 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018, pages 993—
1005. USENIX Association, 2018.

Ram Kesavan, Harendra Kumar, and Sushrut Bhowmik. WAFL iron:
Repairing live enterprise file systems. In 16th USENIX Conference on
File and Storage Technologies (FAST 18), pages 33—48, Oakland, CA,
February 2018. USENIX Association.

Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A Cross Media File System. In
Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP 17, 2017.

Changman Lee, Dongho Sim, Joo-Young Hwang, and Sangyeun Cho.
F2FS: A New File System for Flash Storage. In Proceedings of the
13th USENIX Conference on File and Storage Technologies, FAST’ 15,
Santa Clara, CA, 2015.

USENIX Association

19th USENIX Conference on File and Storage Technologies

125


https://www.linuxquestions.org/questions/linux-hardware-18/disk-check-takes-too-long-to-check-510584/
https://www.linuxquestions.org/questions/linux-hardware-18/disk-check-takes-too-long-to-check-510584/
https://www.linuxquestions.org/questions/linux-hardware-18/disk-check-takes-too-long-to-check-510584/
https://linux.die.net/man/8/e2fsck
https://lwn.net/Articles/749106/
https://lwn.net/Articles/749106/
http://rocksdb.org/
http://intel.ly/1eICR0a
http://man7.org/linux/man-pages/man7/sched.7.html
http://man7.org/linux/man-pages/man7/sched.7.html
https://unix.stackexchange.com/questions/78785/extremely-long-time-for-an-ext4-fsck
https://unix.stackexchange.com/questions/78785/extremely-long-time-for-an-ext4-fsck
https://access.redhat.com/solutions/2210281
https://www.nersc.gov/assets/Uploads/W01-DataIntensiveComputingPanel.pdf
https://www.nersc.gov/assets/Uploads/W01-DataIntensiveComputingPanel.pdf
https://changelog.complete.org/archives/9769-silent-data-corruption-is-real/
https://changelog.complete.org/archives/9769-silent-data-corruption-is-real/
https://rockset.com/blog/rocksdb-is-eating-the-database-world/
https://rockset.com/blog/rocksdb-is-eating-the-database-world/

[35]

[36]

[37]

[38]

[39]

[40

[41]

[42]

[43]

Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design
of a task parallel library. OOPSLA 09, page 227-242, New York, NY,
USA, 2009. Association for Computing Machinery.

W.Li, Y. Yang, J. Chen, and D. Yuan. A cost-effective mechanism for
cloud data reliability management based on proactive replica checking.
In 2012 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (ccgrid 2012), pages 564-571, 2012.

HPC-Users Mailing List. Outages in HPC Systems. https:
//maillists.uci.edu/pipermail/hpc-users/2019-December/
000095.html.

M. Lu, T. Chiueh, and S. Lin. An incremental file system consistency
checker for block-level cdp systems. In 2008 Symposium on Reliable
Distributed Systems, pages 157-162, Oct 2008.

Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Marshall Kirk Mckusick. Ffsck: The fast file-system
checker. Trans. Storage, 10(1):2:1-2:28, January 2014.

Marshall K. McKusick. Improving the performance of fsck in freebsd.
slogin:, 38(2), 2013.

Marshall Kirk McKusick, Willian N Joy, Samuel J Leffler, and Robert S
Fabry. Fsck- the unixf file system check program. Unix System
Manager’s Manual-4.3 BSD Virtual VAX-11 Version, 1986.

Mtanski. mtanski/xfsprogs github.com/mtanski/xfsprogs/preadv2/repair.
https://github.com/mtanski/xfsprogs/tree/preadv2/
repair, Feb 2015.

Arjun Narayan and Peter Mattis. Why we built cockroachdb
on top of rocksdb. https://www.cockroachlabs.com/blog/
cockroachdb-on-rocksd/.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Jiaxin Ou, Jiwu Shu, and Youyou Lu. A high performance file sys-
tem for non-volatile main memory. In Proceedings of the Eleventh
European Conference on Computer Systems, pages 1-16, 2016.

Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-
hout. Arachne: Core-aware thread management. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’ 18, pages 145-160, Berkeley, CA, USA, 2018. USENIX
Association.

Omar Sandoval. A survey of bugs in the Btrfs filesys-
tem. https://courses.cs.washington.edu/courses/cse551/
15sp/projects/osandov.pdf.

Ric Wheeler.
fsmark/.

fs_mark. https://sourceforge.net/projects/

Matthew Wilcox and Ross Zwisler. Linux DAX. https://www.
kernel.org/doc/Documentation/filesystems/dax.txt.

Jian Xu and Steven Swanson. Nova: A log-structured file system for
hybrid volatile/non-volatile main memories. In Proceedings of the 14th
Usenix Conference on File and Storage Technologies, FAST’ 16, Santa
Clara, CA, 2016.

Jian Xu and Steven Swanson. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In Proceedings of the
14th Usenix Conference on File and Storage Technologies, FAST’ 16,
2016.

Mai Zheng, Joseph Tucek, Feng Qin, Mark Lillibridge, Bill W. Zhao,
and Elizabeth S. Yang. Reliability analysis of ssds under power fault.

ACM Trans. Comput. Syst., 34(4):10:1-10:28, November 2016.

126

19th USENIX Conference on File and Storage Technologies

USENIX Association


https://maillists.uci.edu/pipermail/hpc-users/2019-December/000095.html
https://maillists.uci.edu/pipermail/hpc-users/2019-December/000095.html
https://maillists.uci.edu/pipermail/hpc-users/2019-December/000095.html
https://github.com/mtanski/xfsprogs/tree/preadv2/repair
https://github.com/mtanski/xfsprogs/tree/preadv2/repair
https://www.cockroachlabs.com/blog/cockroachdb-on-rocksd/
https://www.cockroachlabs.com/blog/cockroachdb-on-rocksd/
https://courses.cs.washington.edu/courses/cse551/15sp/projects/osandov.pdf
https://courses.cs.washington.edu/courses/cse551/15sp/projects/osandov.pdf
https://sourceforge.net/projects/fsmark/
https://sourceforge.net/projects/fsmark/
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt

	Introduction
	Background and Motivation
	Hardware and Software Trends
	File System Checking and Repair
	Related Work

	Motivation and Analysis
	e2fsck Overview
	Setup and Runtime Analysis
	Compute time and I/O utilization

	pFSCK Goals and Insights
	Goals 
	Design Insights

	Design and Implementation
	Data Parallelism
	Pipeline Parallelism
	Per-Pass Thread Pools and Work Queues.
	Delayed Certification for Concurrency.

	Dynamic Thread Scheduler
	System Resource-Aware Scheduling
	Efficient CPU Sharing
	Efficient CPU and File System Sharing

	Verifying Correctness and Optimizations

	Evaluation
	Experimental Setup
	Data Parallelism
	Pipeline Parallelism and Scheduling.
	Storage Throughput and Memory Usage
	Storage Throughput
	Memory Usage

	System Resource-Aware Scheduler
	Offline C/R with CPU Sharing.
	Online C/R with CPU Sharing.

	Performance with Errors

	Conclusion & Future Work

