
CompoundFS: Compounding I/O Operations in Firmware File Systems

Yujie Ren, Jian Zhang*, Sudarsun Kannan

Rutgers University, *ShanghaiTech University

Abstract

We introduce CompoundFS, a firmware-level file system that

combines multiple filesystem I/O operations into a single com-

pound operation to reduce software overheads. The overheads

include frequent interaction (e.g., system calls), data copy,

and the VFS overheads between user-level application and

the storage stack. Further, to exploit the compute capability

of modern storage, CompoundFS also provides a capability

to offload simple I/O data processing operations to the device-

level CPUs, which further provides an opportunity to reduce

interaction with the filesystem, move data, and free-up host

CPU for other operations. Preliminary evaluation of Com-

poundFS against the state-of-the-art user-level, kernel-level,

and firmware-level file systems using microbenchmarks and

a real-world application shows up to 178% and 75% perfor-

mance gains, respectively.

1 Introduction

With the advent of ultra-fast storage technologies such as

NVMe SSD and 3D-Xpoint, the software bottlenecks are

slowly dominating the hardware cost [2, 4, 17, 35]. To re-

duce the software overheads, there has been a renewed in-

terest across industry and academia, developing solutions

that aim at thinning the software storage stack. Most solu-

tions (software and firmware) aim to reduce OS interaction

across the data and control plane without compromising cor-

rectness, consistency, crash-consistency, or security guaran-

tees [12, 21, 25, 31, 32, 36].

Prior software-level solutions range from application-

customized storage stack to reduce generic filesystem over-

heads [7], full user-level filesystems [12, 25, 36], and hybrid

user and kernel-level filesystems [20,23]. Hardware solutions

include firmware file systems [21], key-value stores (e.g., KV-

SSDs) [32], and compute accelerated (e.g., FPGA) in-device

storage [31] allowing applications to bypass the kernel for

direct-access. Several nonvolatile memory (NVM) specific

hybrid user and kernel-level filesystems such as ZoFS [12],

FLEX [36], and SplitFS [20] for memory-based storage have

been proposed.

Limitations of Current Work. While current proposals

reduce OS interaction and system call costs, they either do

not eliminate major software bottlenecks or fully exploit the

compute capability of modern storage hardware. The soft-

ware bottlenecks include: (1) frequently crossing application

and storage stack boundaries, and (2) high data movement

overhead between application and filesystem. The boundary-

crossings include application core switching to the file system

running as a separate server process [12, 23, 25] or inside the

kernel [20, 23, 28], or in the firmware [21]. Some user-level

filesystems must trap into the OS for concurrent filesystem

access across applications [23, 28]. Finally, most prior ap-

proaches cannot exploit storage-level compute capability, or

require applications to be fully redesigned [31].

Contribution. To overcome these challenges, we design

CompoundFS, a direct-access firmware-level filesystem that

reduces interaction and data copy overheads between applica-

tions and the filesystem and utilizes the device-level compute

capabilities. For direct-access, CompoundFS adopts the de-

sign principle of prior firmware filesystems [21]. To reduce

overheads, CompoundFS introduces Compound Operations

(hereafter referred to as CompoundOps). CompoundOps

combine multiple POSIX-style I/O operations into a sin-

gle enhanced I/O operation (e.g., file open-and-read, read-

modify-write). The CompoundOps are issued by the applica-

tion and executed as one operation inside storage firmware.

Consequently, CompoundOps reduce interaction and data

copy overheads between application and filesystem. Fur-

ther, in CompoundFS, we extend CompoundOps with sim-

ple device-level compute operations such as checksum and

compression that reduce host CPU use and also avoid re-

peated data movement (e.g., write-and-checksum). Incorpo-

rating CompoundOps requires simple and intuitive changes

to POSIX-based applications.

CompoundFS currently supports a simple scheduling and

all-or-nothing model for crash-consistency (all operations in a

CompoundOps either succeed or fail). Further, CompoundFS

support for CompoundOps is currently limited to a single

inode. Our ongoing work is addressing challenges for order-

ing CompoundOps across application(s) threads and crash-

consistency, a better I/O scheduling mechanisms for efficient

management of device-CPUs (discussed in Section 3), and

support for multi-inode CompoundOps.

Preliminary evaluation of CompoundFS with

CompoundOps on an emulated infrastructure using In-

tel DC Optane memory shows substantial reduction in

application and file system interaction, system call cost, data

overheads, and device-level computation benefits, all leading

to performance gains of 178% and 75% in microbenchmarks

and real-world LevelDB application, respectively.

2 Background and Motivation

Next, we present a brief background on direct-access

filesystem approaches and other efforts to offload compu-

tation to storage. We then discuss the limitations and provide

empirical evidence of these limitations.

256
(DAX)

4096
(DAX)

256
(SplitFS)

4096
(SplitFS)

Value size (bytes)

0

200

400

600

800

Th
ro

ug
hp

ut
 (M

B/
s)

Write rand.
Read rand.

Overwrite

(a) Throughput vs. Value size

256
(DAX)

4096
(DAX)

256
(SplitFS)

4096
(SplitFS)

Value size (bytes)

0
20
40
60
80

100
120
140

Ru
n

tim
e

pe
rc

en
ta

ge
(%

) Kernel
DB Application

Shared library

(b) Runtime Breakdown

256
(DAX)

4096
(DAX)

256
(SplitFS)

4096
(SplitFS)

Value size (bytes)

0

20

40

60

80

100

Ru
n

tim
e

pe
rc

en
ta

ge
 (%

) Data allocation (OS)
Data copy (OS)
Filesystem update (OS)
Lock (OS)

Data allocation (user)
Data copy (user)
CRC32 (user)

(c) Function Cost Split (Value Size)

Figure 1: OS Overhead Analysis on LevelDB. Figures show (a) throughput (compression disabled), (b) user-level vs. OS time breakdown (in %), and

(c) time consumption of dominant user-level and kernel functions.

2.1 Direct-access Filesystem (DirectFS).

Several DirectFS systems have been proposed to re-

duce system call overheads, provide partial or full crash-

consistency guarantees, and POSIX compatibility. For ex-

ample, state-of-the-art approaches such as Strata [23], and

more recently SplitFS [20], divide the filesystem across the

userspace and the OS. Approaches such as Moneta-D [9]

and Arrakis [28] split filesystem across the library, kernel,

and firmware. User-level approaches like [12, 25] deploy a

microkernel-like trusted server reducing OS interaction. An al-

ternative approach to achieving direct-access is by deploying a

filesystem inside storage firmware as used by prior hardware-

centric approaches such as DevFS [21] and Insider [31]. Apart

from providing direct access, firmware filesystems can exploit

hardware capabilities such as device-level CPUs, power-loss

fail-safe capacitors, device-level I/O queues for parallelism,

and others [21].

2.2 Storage-level Computation

Exploiting storage-level compute capability has been ex-

plored for the past four decades. Seminal systems such as

CASSM [33], RARES [24], and Active-Storage [6, 30] pro-

posed adding one or more processors to a disk for oper-

ations such as database scan and search. Recent systems

such as Smart-SSD [11], BlueDBM [19], and Samsung’s KV-

SSD [32] deploy query processing engine, big data applica-

tions, and key-value store engines inside SSDs. Alternatively,

the use of low-power FPGAs to accelerate storage perfor-

mance is gaining traction. LSM-FPGA [37] offloads LSM

store’s compaction engine to the storage. Quero et al. offload

sorting operations to SSD to improve application performance

and SSD lifetime [29], whereas Biscuit allows developers to

write custom applications for processing inside a raw storage

device. [14]. To accelerate persistent key-value stores, PO-

LARDB [8] offloads and distributes table scan tasks from host

CPU to an FPGA-centric smart storage device. Caribou [16]

explores the design of near-data processing that supports key-

value engines. YourSQL [18] filters the data by offloading

data scanning of a query to user-programmable solid-state

drives.

2.3 Limitations of Prior Systems.

DirectFS: While DirectFS reduce system call costs (be-

tween application and OS), these approaches are limited by

one of the following. First, prior approaches do not necessar-

ily reduce boundary-crossings between application address

space and the storage stack. The storage stack could be run-

ning as a separate server process [12, 23, 25], or inside the

kernel [20, 23, 28] for control plane operations (e.g., meta-

data update), or even inside the device firmware [21]. Second,

data movement between application and storage stack is not

effectively reduced.

Storage-level Compute: Most prior storage-level compute

research has been designed purely for data processing cus-

tomized to an application without using filesystems. They lack

crash-consistency capabilities, support for POSIX, or require

OS interaction [14, 29]. Approaches like DevFS [21] lack

storage-level compute capability and may even require a full

redesign of the storage stack [31]. In contrast, CompoundFS,

in addition to supporting filesystems, provides a generic, sim-

ple extension to POSIX for exploiting to storage-level com-

pute. Further, CompoundFS compounds I/O operations and

reduces data movement cost, substantially reducing latency

and improving throughput even with simple device-CPUs.

Using accelerators for scaling specific operations (e.g., scan)

in the above state-of-the-art-systems [8,16,18] could possibly

improve the performance of CompoundFS further.

2.4 Analysis

To understand the software overheads, in Figure 1, we

briefly analyze widely-used LevelDB, which is a persistent

key-value store application. We study the throughput (Fig-

ure 1a), the runtime breakdown (Figure 1b), and the cost of

dominant operations across the user and kernel-levels (Fig-

ure 1c). For our study, we use the popular db_bench [3] bench-

mark, and evaluate random write, random read, and overwrite

operations. We use 4-client threads and vary the value sizes

from 256B to 4KB. The key size (16 bytes) and the num-

ber of key-value pairs (100K) are kept constant. We use a

512GB DC Optane persistent memory with 64 cores and 32

GB DRAM to analyze state-of-the-art ext4-DAX (a kernel

filesystem) and SplitFS [20] (a hybrid user- and kernel-level

filesystem).

First, as shown in Figure 1a, the write throughput is signifi-

cantly lower than the read throughput because write suffers

from high compaction cost, a behavior well studied in the

past [22]. Next, as shown in Figure 1b, LevelDB suffers sig-

nificant kernel-level overhead, spending close to 65% of the

runtime when using 4K value size. To understand the over-

heads inside the OS, Figure 1c shows the breakdown of time-

consuming user- and kernel-level functionalities. As shown

in Figure 1c, the data copy overheads (between the user and

OS buffers) and across data structures inside the OS consume

9% of the time. In contrast, filesystem metadata updates and

locking consume 15% and 16%, respectively. Surprisingly,

these overheads are high in SplitFS (implemented over ext4-

DAX), which converts data plane operations to NVM load

and store operations.

We observe that LevelDB performs several metadata-heavy

operations, such as file creation, rename, close, and sync oper-

ations, thereby increasing user-to-kernel data movement. We

also notice that SplitFS suffers from high kernel-level locking

and kernel-level allocation overheads due to its use of pre-

paging. In the user-level, the checksum (CRC) overheads fol-

lowed by data copy costs are high. LevelDB (and several other

applications) use CRC for application-level crash-consistency

during logging and compaction to avoid frequent fsync for

each key by first writing the payload and then the CRC of the

payload.

Based on these observations, we posit the following: (1)

system call and data copy overheads between application and

storage stack in both control and data plane impacts perfor-

mance and must be reduced; (2) applications spend a signifi-

cant time pre- or post-processing I/O data (e.g., CRC) before

read and write operation that could be offloaded to a storage

device with computation capability.

3 Design of CompoundFS

We present the general architecture of CompoundFS, a

firmware filesystem to reduce system call and data copy over-

heads by combining multiple operations and creating a com-

pound operation. Additionally, CompoundFS can also offload

I/O data pre- and post-processing to storage hardware freeing

up the host CPUs. We also discuss the crash-consistency and

scheduling challenges.

Figure 2 shows the high-level design of CompoundFS,

which consists of a user-level library (UserLib) and a

firmware-level filesystem component (StorageFS). For tra-

ditional use (without CompoundOps), CompoundFS allows

unmodified POSIX-based applications to benefit from direct

storage access similar to prior filesystems such as DevFS.

CompoundFS adds simple extensions to traditional POSIX

APIs to (1) combine two or more POSIX operations into

one CompoundFS operation, and (2) offload some pre- and

post-processing computations to StorageFS. We first provide

a brief overview of UserLib and StorageFS and then discuss

Application (Thread 1)

Op1 open(File1) -> fd1

Op3* write_and_CRC(fd1,buff, off=10,

sz=1K, checksum_pos=head)

Application (Thread 2)

Op2+ read_modify_write(fd2, buf, off=30, sz=5)

Op4 read(fd2, buf, off=30, sz=5)

UserLib (in Host)

Device CPU Threads

Super

Block

Inode

Cache

Dentry

Cache

Data

Cache

Super

Block

Bitmap

Block

Inode

Block

Data

Block

In-mem Structure

On-disk Structure

Journal

…TxB TxE
Meta-

data
NVM Data

Block Addr

Cred

Table

CPUID

Cred

CPUID CPUID

Cred Cred

Op1 Op2+ Op3*

Per-inode I/O Queue Per-inode Data Buffer

Converting POSIX I/O syscalls to

CompoundFS compoundOps

StorageFS

(In Device)

Op4

Figure 2: CompoundFS High-level Design. The filesystem data

structure is partitioned into global and per-file structures. The per-file struc-

tures are created during file setup. CompoundFS metadata structures are sim-

ilar to other kernel-level filesystems. Op2+ shows a CompoundOps, Op3*

shows a CompoundOps with processing.

our current design for combining multiple operations and

offloading computation.

User-space Library (UserLib). UserLib intercepts POSIX

as well as our extended CompoundOps and converts them to

StorageFS understandable (NVMe-like) I/O commands [35].

To exploit the hardware-level parallelism in modern I/O de-

vices that can support and process requests from 64K I/O

queues, during file open, UserLib requests the OS for a DMA

memory region for creating inode-queues, and registers them

with StorageFS. For subsequent data plane operations, such

as read, write, and fsync, UserLib adds these commands to the

inode-queues and rings a doorbell, which is then processed

by StorageFS.

Storage File System (StorageFS). The high-level design of

StorageFS is similar to other firmware-level file systems [21].

StorageFS provides a simpler filesystem with in-memory

and on-disk metadata structures such as super-block, bitmap

blocks, inode, and data blocks. StorageFS also supports data

and metadata journaling using a dedicated journal space on

the device as shown in Figure 2. Our current design adapts

and significantly extends the PMFS [13] filesystem.

PMFS is a kernel-level file system designed for NVMs to

bypass the page cache. It relies on the VFS layer using tradi-

tional system calls that incur data movement between user and

kernel space, and the host-CPUs for file system processing.

While the page cache bypassing design aligns with the goal of

CompoundFS, PMFS must be extended to avoid dependence

on the VFS, system calls, and crash-consistency techniques

that are tailored for StorageFS.

We modify PMFS to a command-based architecture. The

I/O operations are packed as commands, and the commands

encapsulate a command ID (e.g., read/write/append) and other

related parameters of a command (e.g., I/O buffer, size). To

eliminate system call and the VFS dependency, UserLib reg-

isters a shared circular buffer with StorageFS during an ap-

plication’s initialization from which StorageFS can directly

process. One key low-level point is that UserLib uses a sub-

mission head to point to the next available entry in the com-

mand buffer. StorageFS maintains a completion head pointing

to the current entry in the circular buffer under process; this

is similar to the new IO_Uring [5] interface recently added

to the Linux kernel. StorageFS fetches I/O commands from

inode-queues, processes request by updating data and meta-

data updates in device memory, followed by on-disk journal-

ing for crash-consistency, and finally, checkpointing them (see

§4.2).

Emulation. Due to a lack of programmable storage, we

emulate CompoundFS as a device driver with dedicated

cores that use kernel threads to process requests. During the

CompoundFS mounting, StorageFS finds the superblock, fol-

lowed by the root directory. In addition, StorageFS also re-

serves a region of firmware memory for performing I/O. For

security, CompoundFS uses a model similar to DevFS [21]

by maintaining a host CPUID to credential mapping updated

by the host OS and checked during each I/O operation.

Avoiding System Calls and Data Copy. For avoiding sys-

tem calls, UserLib writes I/O commands and input/output

buffer to the per-inode DMA buffer. StorageFS uses the DMA

buffer to perform I/O operations directly, thereby avoiding

system call overheads. However, in addition to system call

overheads, reducing data copy overheads (moving data back-

and-forth between the filesystem and user-space buffers) is

critical for I/O bound applications. We next discuss the design

of CompoundOps that combine multiple I/O operations into

one compound operation.

4 Realizing CompoundFS Operations

We envision and currently support two forms of

CompoundOps: (1) I/O-only CompoundOps that com-

bine two or more traditional POSIX operations into one

data-plane operation; (2) data pre- and post-processing

CompoundOps. We first briefly discuss the mechanics of sup-

porting CompoundOps followed by the details of currently

supported operations.

4.1 Mechanics

Unlike vectored-I/O, CompoundOps could have one or

more different POSIX (micro) operations that can be com-

bined together and also support simple data pre- and post-

processing. First, we start by extending the NVMe command

structures. Current NVMe commands support simple block

operations. Prior work such as DevFS extended the simple

NVMe commands with POSIX-like filesystem operations

(e.g., read, write, open, close). CompoundFS goes one step

beyond to extend the NVMe commands to support multiple

operations. We extend the opcode (operation code), return

code, the I/O buffer pointers to support a list (using array) of

operations, in addition to an additional field on the number of

operations. In our current design, we restrict all the operations

to a single inode, and our ongoing research is exploring the

use of CompoundOps across different files.

4.1.1 Compound I/O Operations.

First, we aim to create simple CompoundOps that combine

two or more traditional POSIX operations into a compound

operation, thereby reducing interaction between applications

and StorageFS. We compound operations based on two prin-

ciples. The first principle involves combining operations that

applications and developers use in pairs. Combining these op-

erations can substantially reduce system call overheads. The

second principle involves I/O operations that require simple

data manipulation (e.g., compression). Offloading such opera-

tions to device-level CPU reduces data movement across host

and device and the system call cost, also freeing up host-level

CPUs.

We target operations that are generally used in pairs in ap-

plications; for example, open-write, open-read (open a file

and read data blocks), open-write (open a file and write data

blocks), write-close (write and close a file), and read-modify-

write (discussed in this paper). Providing a simple API to

programmers, one that does not require extensive changes

to the application’s logic or complex input argument is criti-

cal. Take the example of a read-modify-write operation that

can be used for implementing overwrite operations (e.g., in

LSM-based key-value stores). The read-modify-write is used

by an application, which combines the arguments of a read

and write operation as shown in Figure 2. Upon successful

execution, the StorageFS returns the number of bytes writ-

ten. To implement a read-modify-write, a combined NVMe

command is added to the inode-queue buffer, and StorageFS

is notified. StorageFS acquires an inode-level lock, iterates

through the opcode array, and the corresponding input or out-

put buffers, and the I/O size. Note that, before starting to

execute a CompoundOps, CompoundFS must also check the

permission of each operation. Our current simplistic design

returns an error if the permission check of even one operation

fails, and each device-CPU must complete the CompoundOps

before switching to other operations.

4.1.2 Compound Operations with Processing.

To utilize the compute capability in modern storage devices

(with 4 to 8 wimpy CPUs), we extend the CompoundOps

to support simple data pre- and post-processing. Enabling

storage-level compute not only reduces host CPU involve-

ment but also reduces interaction between application and

storage stack, and data transfer. For example, persistent key-

value stores such as LevelDB, RocksDB, Redis, and several

others, store data and the checksum when writing new up-

dates to log and during compaction [26] mainly to avoid

expensive (fsync) operations for each key-value pair. Unlike

fsync, using checksums provides an optimistic application-

level crash-consistency for user data by writing data and its

checksum and not requiring an immediate page cache flush

or enforcing strict data ordering [10]. In the case of system

failure, the stored checksum and the newly computed check-

sum of persisted data is compared to identify data corruption,

which is a critical part of the filesystem crash-consistency

mechanism.

However, with checksums, the data (payload) and CRC

is written as separate write operations [3], because: (1) a

write may store fewer than the bytes it was issued for, in

which case the checksums do not match during read, (2) the

CRC is used as a commit for the preceding write, and (3) the

CRC is written at different locations. CompoundFS, to reduce

such overheads combines these operations into one opera-

tion. Currently, CompoundFS supports write_and_checksum,

read_and_checksum, compress_and_write, and compress_-

and_read (used for reducing the storage space). Applica-

tions explicitly issue a compress_and_write using UserLib,

which adds the request to the inode-queue and is processed

by StorageFS similar to simple CompoundOps described ear-

lier. CompoundFS returns an error or return code for each

operation along with the return code list.

4.2 Atomicity and Crash-Consistency

Traditional OS-level file systems guarantee atomicity and

crash-consistent durability properties. While file systems such

as DevFS are designed to satisfy these properties for simple

POSIX style operations, supporting them for CompoundOps

introduces a new spectrum of challenges. We discuss the chal-

lenges and our initial design ideas, which we aim to realize in

our on-going research.

First, regarding atomicity and consistency, because

CompoundOps combines multiple POSIX-styled operations,

a simple approach is to provide an all-or-nothing model

where an entire CompoundOps is atomic. For example, one

in-progress CompoundOps to an inode (i.e. a single directory

or file) would stall all other operations to that same inode.

Such atomicity could impact concurrency. More specifically,

an application can hold an inode-level rwlock (i.e., a read-

write semaphore), which would completely prevent any other

updates to the directory. One approach that we are currently

exploring is to allow individual operations to proceed in par-

allel, but requiring conflict resolution for the final commit.

Other possible extensions include enforcing users to control

CompoundOps atomicity with user-level locks.

Next, regarding crash-consistency, combining multiple

POSIX operations with data pre- and post-processing intro-

duces crash-consistency and ordering challenges. Regarding

the crash-consistency, a CompoundOps could only succeed

partially (e.g., a write operation could fail in read_modify_-

write). While one approach is to adopt an all-or-nothing model

(as done currently in CompoundFS), reverting partially com-

pleted operations could be useful in some cases (e.g., read

operation in a read_modify_write), whereas realizing partial

reverts could be complicated.

Next, ordering threads performing CompoundOps (e.g.,

read-modify-write) and traditional POSIX operation (e.g.,

write) could be challenging, specifically in terms of perfor-

mance. Should a thread (T1) performing simple POSIX op-

eration (e.g., write) ordered behind a thread (T2) performing

CompoundOps (read-modify-write), or could interpose T ′
1s

write with T ′
2s read_modify_write? Our current implemen-

tation treats CompoundOps as one large operation with an

inode-level lock. However, we are exploring ways to extend

the journaling mechanism to support a flexible (partial) crash-

consistency or redesign journaling for CompoundOps by lend-

ing ideas from prior work on databases to support composite

transactions [15].

4.2.1 CompoundFS Scheduling Challenges

The number of I/O operations (simple operations as well

as CompoundOps) would most likely exceed the number

of available device-level CPUs, which demands efficient

device-CPU scheduling and management. Further, introduc-

ing CompoundOps with data processing (e.g., CRC, com-

pression) brings new challenges for avoiding starvation or

workload imbalance across device-CPUs performing both

simple and CompoundOps. Traditional block-level I/O sched-

ulers (e.g., Linux blk-queue) are a misfit for CompoundOps

operations because blk-queue does not consider computation.

While our current implementation uses first-come-first-serve

scheduling, we are exploring the benefits and implications of

OS-level CPU fairness schedulers such as Linux CFS [1].

5 Evaluation

To understand the benefits and implications, we evaluate

CompoundFS using micro-benchmarks and an application

(LevelDB). Our evaluation answers the following questions:

(1) How effective are CompoundOps in improving the I/O

performance by reducing the interaction and data copy over-

heads between applications and the storage stack?

(2) What is the performance impact of offloading compute

to device-CPUs?

(3) How sensitive are CompoundFS benefits to device-CPU

speeds?

5.1 Experimental Setup

We use a dual-socket, 64-core, 2.4GHz Intel(R) Xeon(R)

Gold platform with 32GB DRAM, 512GB DC Optane persis-

tent memory, and 1TB NVMe. To emulate StorageFS, we use

persistent memory with four 128 GB NVM DIMMs, which

can provide a maximum of 8GB/sec read and 3.8GB/sec write

bandwidth [17]. To emulate PCIe latency, we add 900ns soft-

ware delay [27] between the time a request is added to hosts

inode-queue and marked ready with a doorbell for the device

to process. We compare CompoundFS against kernel-level

ext4-DAX [34], state-of-the-art hybrid user and kernel-level

SplitFS [20], and firmware-level DevFS [21].

5.2 Microbenchmarks

To understand the preliminary benefits of CompoundFS

with CompoundOps, we model a microbenchmark that per-

forms read-modify-write and write-and-checksum operations

256 4096
0

200

400

600

800

1000

value size

T
h
ro

u
g
h
p
u
t
(M

B
/s

) ext4-DAX

SplitFS

DevFS

CompoundFS

CompoundFS-slowcpu

(a) Read Modify Write

256 4096
0

200

400

600

800

1000

value size

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

(b) Write and Checksum

512 4096
0

20

40

60

80

db_bench value size (500k keys)

T
h
ro

u
g
h
p
u
t(

M
B

/s
)

(c) LevelDB Random Writes

512 4096
0

10

20

30

40

db_bench value size (500k keys)

L
a
te

n
c
y
 (

u
s
/o

p
)

ext4-DAX

SplitFS

DevFS

CompoundFS

CompoundFS-slowcpu

(d) LevelDB Random Reads

Figure 3: CompoundFS Performance with Microbenchmark and LevelDB.

on a large 16GB file varying I/O size to 256-bytes and 4K-

bytes. Figure 3a shows the throughput of read-modify-write

benchmark that reads, modifies, and writes a block. We

compare CompoundFS and CompoundFS-slowcpu (slowed-

down device-CPUs running at 1.2GHz) against ext4-DAX,

SplitFS, and DevFS. Figure 3b shows the throughput of

write-and-checksum benchmark in the y-axis.

CompoundOps Performance. First, for the

read-modify-write workload, ext4-DAX suffers from

two system calls and the related data copy between the user

library and the kernel. This impacts throughput considerably,

especially for small I/O sizes. Next, SplitFS performs better

than ext4-DAX by converting read and write operations

to load and store instructions on staged memory-mapped

files [20]. However, with SplitFS, we see a huge surge in the

kernel activity with an increase in workload size. We suspect

three primary causes: (1) increase in the user-level staged

mmap files increase OS activity (for example, searching

for free blocks); (2) pre-paging with MAP_POPULATE;

(3) high filesystem internal data copy. Next, DevFS avoids

system call costs to bypass the OS. However, the data copy

problem between host and device (read and write) remains

the same. Note that the host CPU waits for the device to

complete the I/O. In contrast, CompoundFS avoids two

system calls and converts two data copy operations into one,

resulting in significant performance gains. Finally, despite

reducing the device-CPU frequency to half of the host-CPU

frequency, CompoundFS-slowcpu achieves up to 109% gains

over ext4-DAX, 68% over SplitFS, and 38% over DevFS.

CompoundOps with data processing. We next model the

payload (data) write followed by CRC write found in mod-

ern workloads, such as persistent key-value stores [3]. Note

that data and CRC are written separately for correctness and

durability, as discussed earlier. All approaches other than

CompoundFS lack the capability to exploit storage hard-

ware to process data (generating checksum), resulting in

two system calls and data copy overheads in addition to per-

forming checksum in the host. CompoundFS combines ap-

pend and checksum to one operation, offloads the operation

for StorageFS to process (and freeing up host CPUs), and

overcoming the data copy cost. Consequently, CompoundFS

improves performance over ext4-DAX, SplitFS, and De-

vFS by up to 178%, 144%, and 105%, respectively. Finally,

CompoundFS-slowcpu reduces gains to 71%, 50%, and 25%

over ext4-DAX, SplitFS, and DevFS, respectively.

5.3 Real-World Application

We next study the performance implications of

CompoundFS using LevelDB [3], a persistent key-value store.

Figure 3c and Figure 3d show the write and read random

throughput along the y-axis. We compare CompoundFS

against ext4-DAX, SplitFS, and DevFS. For CompoundFS,

we replace LevelDB’s dual payload and checksum write

operations with one checksum_and_write operation. First, for

the random write workload, as observed in the microbench-

marks, even with our preliminary design, CompoundFS is

able to achieve up to 75% performance improvement. For the

blocking read operations, the data block and checksum are

read at once. While both DevFS and CompoundFS avoid the

system call cost and show performance improvement over

DAX, the benefits of CompoundFS over DevFS are minimal.

Our future work will explore more applications and pursue

other opportunities for optimizations such as designing

SplitFS-like hybrid user- and firmware-level design.

6 Conclusion

In this paper, we propose CompoundFS, a firmware-level

filesystem that provides direct access to storage without

compromising file system guarantees or POSIX support.

To reduce data copy overheads between applications and

the storage stack (e.g., filesystem), CompoundFS proposes

CompoundOps, that combines one or more POSIX opera-

tions into a compound operation. CompoundOps also exploits

device-level storage compute capability. Our ongoing work

is currently focusing on crash-consistency and scheduling

challenges. Results from our preliminary design show more

than 75% performance gains for real applications.

Acknowledgements

We thank our Shepherd, Jeanna Matthews, and anonymous

reviewers for their insightful feedback. We also thank Rutgers

Panic Lab for giving us access to systems with DC Optane per-

sistent memory. This work is supported by NSF CNS 1850297

award. The views and conclusions contained herein are those

of the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either ex-

pressed or implied, of NSF.

References

[1] Completely Fair Scheduler. https://www.

kernel.org/doc/html/latest/scheduler/

sched-design-CFS.html.

[2] Intel-Micron Memory 3D XPoint. http://intel.ly/

1eICR0a.

[3] LevelDB Source Code. https://github.com/

google/leveldb.

[4] Revolutionary Memory Technology.

https://www.intel.com/content/www/

us/en/architecture-and-technology/

intel-optane-technology.html.

[5] Ringing in a new asynchronous I/O API. https://lwn.

net/Articles/776703/.

[6] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active

Disks: Programming Model, Algorithms and Evaluation.

SIGPLAN Not., 33(11):81–91, October 1998.

[7] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark

Nelson, Gregory R Ganger, and George Amvrosiadis.

File systems unfit as distributed storage backends:

lessons from 10 years of Ceph evolution. In Proceed-

ings of the 27th ACM Symposium on Operating Systems

Principles, pages 353–369, 2019.

[8] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei

Li, Wenjie Wu, Linqiang Ouyang, Peng Wang, Yijing

Wang, Ray Kuan, Zhenjun Liu, Feng Zhu, and Tong

Zhang. POLARDB Meets Computational Storage: Effi-

ciently Support Analytical Workloads in Cloud-Native

Relational Database. In 18th USENIX Conference on

File and Storage Technologies (FAST 20), pages 29–41,

Santa Clara, CA, February 2020. USENIX Association.

[9] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eis-

ner, Arup De, Joel Coburn, and Steven Swanson. Provid-

ing Safe, User Space Access to Fast, Solid State Disks.

SIGARCH Comput. Archit. News, 40(1), March 2012.

[10] Vijay Chidambaram, Thanumalayan Sankaranarayana

Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. Optimistic Crash Consistency. In Proceed-

ings of the Twenty-Fourth ACM Symposium on Operat-

ing Systems Principles, SOSP ’13, pages 228–243, New

York, NY, USA, 2013. ACM.

[11] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik

Park, Kwanghyun Park, and David J. DeWitt. Query

Processing on Smart SSDs: Opportunities and Chal-

lenges. In Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data, SIG-

MOD ’13, pages 1221–1230, New York, NY, USA, 2013.

ACM.

[12] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and

Haibo Chen. Performance and Protection in the ZoFS

User-Space NVM File System. In Proceedings of the

27th ACM Symposium on Operating Systems Principles,

SOSP ’19, page 478–493, New York, NY, USA, 2019.

Association for Computing Machinery.

[13] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-

murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,

and Jeff Jackson. System Software for Persistent Mem-

ory. In Proceedings of the Ninth European Conference

on Computer Systems, EuroSys ’14, pages 15:1–15:15,

New York, NY, USA, 2014. ACM.

[14] B. Gu, A. S. Yoon, D. Bae, I. Jo, J. Lee, J. Yoon, J. Kang,

M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang. Bis-

cuit: A Framework for Near-Data Processing of Big

Data Workloads. In 2016 ACM/IEEE 43rd Annual Inter-

national Symposium on Computer Architecture (ISCA),

pages 153–165, June 2016.

[15] Abdelkader Hameurlain and Roland R. Wagner, editors.

Transactions on Large-Scale Data- and Knowledge-

Centered Systems XXXVII, volume 10940 of Lecture

Notes in Computer Science. Springer, 2018.

[16] Zsolt István, David Sidler, and Gustavo Alonso. Caribou:

Intelligent Distributed Storage. Proc. VLDB Endow.,

10(11):1202–1213, August 2017.

[17] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao

Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan

Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and

Steven Swanson. Basic Performance Measurements of

the Intel Optane DC Persistent Memory Module, 2019.

[18] Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk

Kang, Sangyeun Cho, Daniel D. G. Lee, and Jaeheon

Jeong. YourSQL: A High-Performance Database Sys-

tem Leveraging in-Storage Computing. Proc. VLDB

Endow., 9(12):924–935, August 2016.

[19] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks,

John Ankcorn, Myron King, Shuotao Xu, and Arvind.

BlueDBM: Distributed Flash Storage for Big Data Ana-

lytics. ACM Trans. Comput. Syst., 34(3):7:1–7:31, June

2016.

[20] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,

Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.

SplitFS: Reducing Software Overhead in File Systems

for Persistent Memory. SOSP ’19: Symposium on Op-

erating Systems Principles, New York, NY, USA, 2019.

ACM.

[21] Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H.

Arpaci-Dusseau, Yuangang Wang, Jun Xu, and Gopinath

Palani. Designing a True Direct-access File System with

DevFS. In Proceedings of the 16th USENIX Conference

on File and Storage Technologies, FAST’18, pages 241–

255, Berkeley, CA, USA, 2018. USENIX Association.

[22] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-

drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-

designing LSMs for Nonvolatile Memory with Nov-

eLSM. In 2018 USENIX Annual Technical Conference

(USENIX ATC 18), pages 993–1005, Boston, MA, July

2018. USENIX Association.

[23] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon

Peter, Emmett Witchel, and Thomas Anderson. Strata:

A Cross Media File System. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP ’17,

2017.

[24] Chyuan Shiun Lin, Diane CP Smith, and John Miles

Smith. The Design of a Rotating Associative Memory

for Relational Database Applications. ACM Transac-

tions on Database Systems (TODS), 1(1):53–65, 1976.

[25] Jing Liu, Andrea C Arpaci-Dusseau, Remzi H Arpaci-

Dusseau, and Sudarsun Kannan. File Systems as Pro-

cesses. In 11th {USENIX} Workshop on Hot Topics in

Storage and File Systems (HotStorage 19), 2019.

[26] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-

iharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and

Remzi H Arpaci-Dusseau. Wisckey: Separating keys

from values in ssd-conscious storage. ACM Transac-

tions on Storage (TOS), 13(1):1–28, 2017.

[27] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,

Yury Audzevich, Sergio López-Buedo, and Andrew W.

Moore. Understanding PCIe Performance for End Host

Networking. In Proceedings of the 2018 Conference

of the ACM Special Interest Group on Data Communi-

cation, SIGCOMM ’18, page 327–341, New York, NY,

USA, 2018. Association for Computing Machinery.

[28] Simon Peter, Thomas Anderson, and Timothy Roscoe.

Arrakis: The operating system as control plane. In Proc.

11th USENIX Conf. Oper. Syst. Des. Implement, vol-

ume 38, pages 44–47, 2013.

[29] Luis Cavazos Quero, Young-Sik Lee, and Jin-Soo Kim.

Self-sorting SSD: Producing sorted data inside active

SSDs. In 2015 31st Symposium on Mass Storage Sys-

tems and Technologies (MSST), pages 1–7. IEEE, 2015.

[30] Erik Riedel, Garth A. Gibson, and Christos Faloutsos.

Active Storage for Large-Scale Data Mining and Mul-

timedia. In Proceedings of the 24rd International Con-

ference on Very Large Data Bases, VLDB ’98, pages

62–73, San Francisco, CA, USA, 1998. Morgan Kauf-

mann Publishers Inc.
[31] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER:

Designing In-Storage Computing System for Emerging

High-Performance Drivei. In 2019 USENIX Annual

Technical Conference (USENIX ATC 19), pages 379–

394, Renton, WA, July 2019. USENIX Association.

[32] Samsung. Samsung Key Value SSD. https:

//www.samsung.com/semiconductor/global.

semi.staticSamsung_Key_Value_SSD_enables_

High_Performance_Scaling-0.pdf.

[33] Stanley Y. W. Su and G. Jack Lipovski. CASSM: A Cel-

lular System for Very Large Data Bases. In Proceedings

of the 1st International Conference on Very Large Data

Bases, VLDB ’75, Framingham, Massachusetts, 1975.

[34] Matthew Wilcox and Ross Zwisler. Linux DAX.

https://www.kernel.org/doc/Documentation/

filesystems/dax.txt.

[35] NVM Express Workgroup. NVMExpress Spec-

ification. https://nvmexpress.org/resources/

specifications/.

[36] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven

Swanson. Finding and Fixing Performance Pathologies

in Persistent Memory Software Stacks. In Proceedings

of the Twenty-Fourth International Conference on Ar-

chitectural Support for Programming Languages and

Operating Systems, ASPLOS ’19, pages 427–439, New

York, NY, USA, 2019. ACM.

[37] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu,

Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng

He, Feifei Li, Wei Cao, Zhongdong Huang, and Jianling

Sun. FPGA-Accelerated Compactions for LSM-based

Key-Value Store. In 18th USENIX Conference on File

and Storage Technologies (FAST 20), pages 225–237,

Santa Clara, CA, February 2020. USENIX Association.

	Introduction
	Background and Motivation
	Direct-access Filesystem (DirectFS).
	Storage-level Computation
	Limitations of Prior Systems.
	Analysis

	Design of CompoundFS
	Realizing CompoundFS Operations
	Mechanics
	Compound I/O Operations.
	Compound Operations with Processing.

	Atomicity and Crash-Consistency
	CompoundFS Scheduling Challenges

	Evaluation
	Experimental Setup
	Microbenchmarks
	Real-World Application

	Conclusion

