CompoundFS: Compounding I/0 Operations in Firmware File Systems

Yujie Ren, Jian Zhang*, Sudarsun Kannan

Rutgers University, “ShanghaiTech University

Abstract

We introduce CompoundFS, a firmware-level file system that
combines multiple filesystem I/O operations into a single com-
pound operation to reduce software overheads. The overheads
include frequent interaction (e.g., system calls), data copy,
and the VFS overheads between user-level application and
the storage stack. Further, to exploit the compute capability
of modern storage, CompoundFS also provides a capability
to offload simple 1/O data processing operations to the device-
level CPUs, which further provides an opportunity to reduce
interaction with the filesystem, move data, and free-up host
CPU for other operations. Preliminary evaluation of Com-
poundFS against the state-of-the-art user-level, kernel-level,
and firmware-level file systems using microbenchmarks and
a real-world application shows up to 178% and 75% perfor-
mance gains, respectively.

1 Introduction

With the advent of ultra-fast storage technologies such as
NVMe SSD and 3D-Xpoint, the software bottlenecks are
slowly dominating the hardware cost [2, 4, 17, 35]. To re-
duce the software overheads, there has been a renewed in-
terest across industry and academia, developing solutions
that aim at thinning the software storage stack. Most solu-
tions (software and firmware) aim to reduce OS interaction
across the data and control plane without compromising cor-
rectness, consistency, crash-consistency, or security guaran-
tees [12,21,25,31,32,36].

Prior software-level solutions range from application-
customized storage stack to reduce generic filesystem over-
heads [7], full user-level filesystems [12,25,36], and hybrid
user and kernel-level filesystems [20,23]. Hardware solutions
include firmware file systems [21], key-value stores (e.g., KV-
SSDs) [32], and compute accelerated (e.g., FPGA) in-device
storage [31] allowing applications to bypass the kernel for
direct-access. Several nonvolatile memory (NVM) specific
hybrid user and kernel-level filesystems such as ZoFS [12],
FLEX [36], and SplitFS [20] for memory-based storage have
been proposed.

Limitations of Current Work. While current proposals
reduce OS interaction and system call costs, they either do
not eliminate major software bottlenecks or fully exploit the
compute capability of modern storage hardware. The soft-
ware bottlenecks include: (1) frequently crossing application
and storage stack boundaries, and (2) high data movement
overhead between application and filesystem. The boundary-
crossings include application core switching to the file system
running as a separate server process [12,23,25] or inside the

kernel [20,23,28], or in the firmware [21]. Some user-level
filesystems must trap into the OS for concurrent filesystem
access across applications [23, 28]. Finally, most prior ap-
proaches cannot exploit storage-level compute capability, or
require applications to be fully redesigned [31].

Contribution. To overcome these challenges, we design
CompoundFS, a direct-access firmware-level filesystem that
reduces interaction and data copy overheads between applica-
tions and the filesystem and utilizes the device-level compute
capabilities. For direct-access, CompoundFS adopts the de-
sign principle of prior firmware filesystems [21]. To reduce
overheads, CompoundFS introduces Compound Operations
(hereafter referred to as CompoundOps). CompoundOps
combine multiple POSIX-style I/O operations into a sin-
gle enhanced 1/0 operation (e.g., file open-and-read, read-
modify-write). The CompoundOps are issued by the applica-
tion and executed as one operation inside storage firmware.
Consequently, CompoundOps reduce interaction and data
copy overheads between application and filesystem. Fur-
ther, in CompoundFS, we extend CompoundOps with sim-
ple device-level compute operations such as checksum and
compression that reduce host CPU use and also avoid re-
peated data movement (e.g., write-and-checksum). Incorpo-
rating CompoundOps requires simple and intuitive changes
to POSIX-based applications.

CompoundFS currently supports a simple scheduling and
all-or-nothing model for crash-consistency (all operations in a
CompoundOps either succeed or fail). Further, CompoundFS
support for CompoundOps is currently limited to a single
inode. Our ongoing work is addressing challenges for order-
ing CompoundOps across application(s) threads and crash-
consistency, a better I/O scheduling mechanisms for efficient
management of device-CPUs (discussed in Section 3), and
support for multi-inode CompoundOps.

Preliminary evaluation of CompoundFS with
CompoundOps on an emulated infrastructure using In-
tel DC Optane memory shows substantial reduction in
application and file system interaction, system call cost, data
overheads, and device-level computation benefits, all leading
to performance gains of 178% and 75% in microbenchmarks
and real-world LevelDB application, respectively.

2 Background and Motivation

Next, we present a brief background on direct-access
filesystem approaches and other efforts to offload compu-
tation to storage. We then discuss the limitations and provide
empirical evidence of these limitations.

[
o
o

BN Write rand. HEEE Overwrite

100

—_ M Kernel B Shared library — RIS Data allocation (OS) ~ HEEM Data allocation (user)
%7 X120 - X B Data copy (OS) [T Data copy (user)
@ Read rand. b1 ENS DB Application > 801 BSE Filesystem update (OS) MEEN CRC32 (user)
2 600 2100 o B Lock (0OS)
2 £ 8
5 g 80 § 60
2400 ® 5
2 o 90 S 40
=] [} Q
° E 40 £
£ 200 = 4 =
F = c 20
Z 20 2
0 0 0
256 4096 256 4096 4096 256 4096 4096 256 4096
(DAX) (DAX) (SplitFS) (SplitFS) DAX) (DAX) (SplitFS) (SplitFS) (DAX (DAX) (SplitFS) (SplitFS)

Value size (bytes)

(a) Throughput vs. Value size

Value size (bytes)

(b) Runtime Breakdown

Value size (bytes)

(¢) Function Cost Split (Value Size)

Figure 1: OS Overhead Analysis on LevelDB. Figures show (a) throughput (compression disabled), (b) user-level vs. OS time breakdown (in %), and

(c) time consumption of dominant user-level and kernel functions.

2.1 Direct-access Filesystem (DirectFS).

Several DirectFS systems have been proposed to re-
duce system call overheads, provide partial or full crash-
consistency guarantees, and POSIX compatibility. For ex-
ample, state-of-the-art approaches such as Strata [23], and
more recently SplitFS [20], divide the filesystem across the
userspace and the OS. Approaches such as Moneta-D [9]
and Arrakis [28] split filesystem across the library, kernel,
and firmware. User-level approaches like [12,25] deploy a
microkernel-like trusted server reducing OS interaction. An al-
ternative approach to achieving direct-access is by deploying a
filesystem inside storage firmware as used by prior hardware-
centric approaches such as DevFS [21] and Insider [31]. Apart
from providing direct access, firmware filesystems can exploit
hardware capabilities such as device-level CPUs, power-loss
fail-safe capacitors, device-level I/O queues for parallelism,
and others [21].

2.2 Storage-level Computation

Exploiting storage-level compute capability has been ex-
plored for the past four decades. Seminal systems such as
CASSM [33], RARES [24], and Active-Storage [6, 30] pro-
posed adding one or more processors to a disk for oper-
ations such as database scan and search. Recent systems
such as Smart-SSD [11], BlueDBM [19], and Samsung’s KV-
SSD [32] deploy query processing engine, big data applica-
tions, and key-value store engines inside SSDs. Alternatively,
the use of low-power FPGAs to accelerate storage perfor-
mance is gaining traction. LSM-FPGA [37] offloads LSM
store’s compaction engine to the storage. Quero et al. offload
sorting operations to SSD to improve application performance
and SSD lifetime [29], whereas Biscuit allows developers to
write custom applications for processing inside a raw storage
device. [14]. To accelerate persistent key-value stores, PO-
LARDRB [8] offloads and distributes table scan tasks from host
CPU to an FPGA-centric smart storage device. Caribou [16]
explores the design of near-data processing that supports key-
value engines. YourSQL [18] filters the data by offloading
data scanning of a query to user-programmable solid-state
drives.

2.3 Limitations of Prior Systems.

DirectFS: While DirectFS reduce system call costs (be-

tween application and OS), these approaches are limited by
one of the following. First, prior approaches do not necessar-
ily reduce boundary-crossings between application address
space and the storage stack. The storage stack could be run-
ning as a separate server process [12,23,25], or inside the
kernel [20, 23, 28] for control plane operations (e.g., meta-
data update), or even inside the device firmware [21]. Second,
data movement between application and storage stack is not
effectively reduced.
Storage-level Compute: Most prior storage-level compute
research has been designed purely for data processing cus-
tomized to an application without using filesystems. They lack
crash-consistency capabilities, support for POSIX, or require
OS interaction [14,29]. Approaches like DevFS [21] lack
storage-level compute capability and may even require a full
redesign of the storage stack [31]. In contrast, CompoundFS,
in addition to supporting filesystems, provides a generic, sim-
ple extension to POSIX for exploiting to storage-level com-
pute. Further, CompoundFS compounds I/O operations and
reduces data movement cost, substantially reducing latency
and improving throughput even with simple device-CPUs.
Using accelerators for scaling specific operations (e.g., scan)
in the above state-of-the-art-systems [8, 16, 18] could possibly
improve the performance of CompoundFS further.

2.4 Analysis

To understand the software overheads, in Figure 1, we
briefly analyze widely-used LevelDB, which is a persistent
key-value store application. We study the throughput (Fig-
ure la), the runtime breakdown (Figure 1b), and the cost of
dominant operations across the user and kernel-levels (Fig-
ure 1c¢). For our study, we use the popular db_bench [3] bench-
mark, and evaluate random write, random read, and overwrite
operations. We use 4-client threads and vary the value sizes
from 256B to 4KB. The key size (16 bytes) and the num-
ber of key-value pairs (100K) are kept constant. We use a
512GB DC Optane persistent memory with 64 cores and 32
GB DRAM to analyze state-of-the-art ext4-DAX (a kernel
filesystem) and SplitFS [20] (a hybrid user- and kernel-level

filesystem).

First, as shown in Figure 1a, the write throughput is signifi-
cantly lower than the read throughput because write suffers
from high compaction cost, a behavior well studied in the
past [22]. Next, as shown in Figure 1b, LevelDB suffers sig-
nificant kernel-level overhead, spending close to 65% of the
runtime when using 4K value size. To understand the over-
heads inside the OS, Figure 1c shows the breakdown of time-
consuming user- and kernel-level functionalities. As shown
in Figure 1c, the data copy overheads (between the user and
OS buffers) and across data structures inside the OS consume
9% of the time. In contrast, filesystem metadata updates and
locking consume 15% and 16%, respectively. Surprisingly,
these overheads are high in SplitFS (implemented over ext4-
DAX), which converts data plane operations to NVM load
and store operations.

We observe that Level DB performs several metadata-heavy
operations, such as file creation, rename, close, and sync oper-
ations, thereby increasing user-to-kernel data movement. We
also notice that SplitFS suffers from high kernel-level locking
and kernel-level allocation overheads due to its use of pre-
paging. In the user-level, the checksum (CRC) overheads fol-
lowed by data copy costs are high. LevelDB (and several other
applications) use CRC for application-level crash-consistency
during logging and compaction to avoid frequent fsync for
each key by first writing the payload and then the CRC of the
payload.

Based on these observations, we posit the following: (1)
system call and data copy overheads between application and
storage stack in both control and data plane impacts perfor-
mance and must be reduced; (2) applications spend a signifi-
cant time pre- or post-processing I/O data (e.g., CRC) before
read and write operation that could be offloaded to a storage
device with computation capability.

3 Design of CompoundFS

We present the general architecture of CompoundFS, a
firmware filesystem to reduce system call and data copy over-
heads by combining multiple operations and creating a com-
pound operation. Additionally, CompoundFS can also offload
I/O data pre- and post-processing to storage hardware freeing
up the host CPUs. We also discuss the crash-consistency and
scheduling challenges.

Figure 2 shows the high-level design of CompoundFS,
which consists of a user-level library (UserLib) and a
firmware-level filesystem component (StorageFS). For tra-
ditional use (without CompoundOps), CompoundFS allows
unmodified POSIX-based applications to benefit from direct
storage access similar to prior filesystems such as DevFS.
CompoundFS adds simple extensions to traditional POSIX
APIs to (1) combine two or more POSIX operations into
one CompoundFS operation, and (2) offload some pre- and
post-processing computations to StorageFS. We first provide
a brief overview of UserLib and StorageFS and then discuss

Application (Thread 1)

Opl open(Filel) ->fd,
Op3* write_and_CRC(fd1 buff, off=10,
sz=1K, checksum_pos=head)

Application (Thread 2)

Op2+ read_modify_write(fd2, buf, off=30, sz=5)
Op4 read(fd2, buf, off=30, sz=5)

o |

Per-inode I/0 Queue Per-inode Data Buffer

UserLib (in Host)
Converting POSIX I/O syscalls to
CompoundFS compoundOps Op2+

StorageFS
(In Device)

$ 888

Device CPU Threads

Op3*

In-mem Structure Journal

Meta-
data

NVM Data
Block Addr

Block | Cache |Cache | Cache TXE|

1
a3 1
Super | Inode | Dentry | Data ||TXB
1
1
1

On-disk Structure
S - =15 , Cred | CPUID | CPUID | CPUID
uper itmap | Inode ata - -

y Tole o | Ced [et

Figure 2: CompoundFS High-level Design. The filesystem data
structure is partitioned into global and per-file structures. The per-file struc-
tures are created during file setup. CompoundFS metadata structures are sim-
ilar to other kernel-level filesystems. Op2+ shows a CompoundOps, Op3*
shows a CompoundOps with processing.

our current design for combining multiple operations and
offloading computation.

User-space Library (UserLib). UserLib intercepts POSIX
as well as our extended CompoundOps and converts them to
StorageFS understandable (NVMe-like) I/O commands [35].
To exploit the hardware-level parallelism in modern I/O de-
vices that can support and process requests from 64K I/O
queues, during file open, UserLib requests the OS for a DMA
memory region for creating inode-queues, and registers them
with StorageFS. For subsequent data plane operations, such
as read, write, and fsync, UserLib adds these commands to the
inode-queues and rings a doorbell, which is then processed
by StorageFS.

Storage File System (StorageFS). The high-level design of
StorageFS is similar to other firmware-level file systems [21].
StorageFS provides a simpler filesystem with in-memory
and on-disk metadata structures such as super-block, bitmap
blocks, inode, and data blocks. StorageFS also supports data
and metadata journaling using a dedicated journal space on
the device as shown in Figure 2. Our current design adapts
and significantly extends the PMFS [13] filesystem.

PMES is a kernel-level file system designed for NVMs to
bypass the page cache. It relies on the VFS layer using tradi-
tional system calls that incur data movement between user and
kernel space, and the host-CPUs for file system processing.
While the page cache bypassing design aligns with the goal of
CompoundFS, PMFS must be extended to avoid dependence
on the VES, system calls, and crash-consistency techniques
that are tailored for StorageFS.

We modify PMFS to a command-based architecture. The
1/O operations are packed as commands, and the commands
encapsulate a command ID (e.g., read/write/append) and other
related parameters of a command (e.g., I/O buffer, size). To
eliminate system call and the VFS dependency, UserLib reg-
isters a shared circular buffer with StorageFS during an ap-
plication’s initialization from which StorageFS can directly
process. One key low-level point is that UserLib uses a sub-
mission head to point to the next available entry in the com-

mand buffer. StorageFS maintains a completion head pointing
to the current entry in the circular buffer under process; this
is similar to the new IO_Uring [5] interface recently added
to the Linux kernel. StorageFS fetches I/O commands from
inode-queues, processes request by updating data and meta-
data updates in device memory, followed by on-disk journal-
ing for crash-consistency, and finally, checkpointing them (see
§4.2).

Emulation. Due to a lack of programmable storage, we
emulate CompoundFS as a device driver with dedicated
cores that use kernel threads to process requests. During the
CompoundFS mounting, StorageFS finds the superblock, fol-
lowed by the root directory. In addition, StorageFS also re-
serves a region of firmware memory for performing I/0. For
security, CompoundFS uses a model similar to DevFS [21]
by maintaining a host CPUID to credential mapping updated
by the host OS and checked during each I/O operation.
Avoiding System Calls and Data Copy. For avoiding sys-
tem calls, UserLib writes I/O commands and input/output
buffer to the per-inode DMA buffer. StorageFS uses the DMA
buffer to perform I/O operations directly, thereby avoiding
system call overheads. However, in addition to system call
overheads, reducing data copy overheads (moving data back-
and-forth between the filesystem and user-space buffers) is
critical for I/O bound applications. We next discuss the design
of CompoundOps that combine multiple I/O operations into
one compound operation.

4 Realizing CompoundFS Operations

We envision and currently support two forms of
CompoundOps: (1) I/0-only CompoundOps that com-
bine two or more traditional POSIX operations into one
data-plane operation; (2) data pre- and post-processing
CompoundOps. We first briefly discuss the mechanics of sup-
porting CompoundOps followed by the details of currently
supported operations.

4.1 Mechanics

Unlike vectored-1/0, CompoundOps could have one or
more different POSIX (micro) operations that can be com-
bined together and also support simple data pre- and post-
processing. First, we start by extending the NVMe command
structures. Current NVMe commands support simple block
operations. Prior work such as DevFS extended the simple
NVMe commands with POSIX-like filesystem operations
(e.g., read, write, open, close). CompoundFS goes one step
beyond to extend the NVMe commands to support multiple
operations. We extend the opcode (operation code), return
code, the /O buffer pointers to support a list (using array) of
operations, in addition to an additional field on the number of
operations. In our current design, we restrict all the operations
to a single inode, and our ongoing research is exploring the
use of CompoundOps across different files.

4.1.1 Compound I/O Operations.

First, we aim to create simple CompoundOps that combine
two or more traditional POSIX operations into a compound
operation, thereby reducing interaction between applications
and StorageFS. We compound operations based on two prin-
ciples. The first principle involves combining operations that
applications and developers use in pairs. Combining these op-
erations can substantially reduce system call overheads. The
second principle involves I/O operations that require simple
data manipulation (e.g., compression). Offloading such opera-
tions to device-level CPU reduces data movement across host
and device and the system call cost, also freeing up host-level
CPUs.

We target operations that are generally used in pairs in ap-
plications; for example, open-write, open-read (open a file
and read data blocks), open-write (open a file and write data
blocks), write-close (write and close a file), and read-modify-
write (discussed in this paper). Providing a simple API to
programmers, one that does not require extensive changes
to the application’s logic or complex input argument is criti-
cal. Take the example of a read-modify-write operation that
can be used for implementing overwrite operations (e.g., in
LSM-based key-value stores). The read-modify-write is used
by an application, which combines the arguments of a read
and write operation as shown in Figure 2. Upon successful
execution, the StorageFS returns the number of bytes writ-
ten. To implement a read-modify-write, a combined NVMe
command is added to the inode-queue buffer, and StorageFS
is notified. StorageFS acquires an inode-level lock, iterates
through the opcode array, and the corresponding input or out-
put buffers, and the I/O size. Note that, before starting to
execute a CompoundOps, CompoundFS must also check the
permission of each operation. Our current simplistic design
returns an error if the permission check of even one operation
fails, and each device-CPU must complete the CompoundOps
before switching to other operations.

4.1.2 Compound Operations with Processing.

To utilize the compute capability in modern storage devices
(with 4 to 8 wimpy CPUs), we extend the CompoundOps
to support simple data pre- and post-processing. Enabling
storage-level compute not only reduces host CPU involve-
ment but also reduces interaction between application and
storage stack, and data transfer. For example, persistent key-
value stores such as Level DB, RocksDB, Redis, and several
others, store data and the checksum when writing new up-
dates to log and during compaction [26] mainly to avoid
expensive (fsync) operations for each key-value pair. Unlike
fsync, using checksums provides an optimistic application-
level crash-consistency for user data by writing data and its
checksum and not requiring an immediate page cache flush
or enforcing strict data ordering [10]. In the case of system
failure, the stored checksum and the newly computed check-
sum of persisted data is compared to identify data corruption,

which is a critical part of the filesystem crash-consistency
mechanism.

However, with checksums, the data (payload) and CRC
is written as separate write operations [3], because: (1) a
write may store fewer than the bytes it was issued for, in
which case the checksums do not match during read, (2) the
CRC is used as a commit for the preceding write, and (3) the
CRC is written at different locations. CompoundFS, to reduce
such overheads combines these operations into one opera-
tion. Currently, CompoundFS supports write_and_checksum,
read_and_checksum, compress_and_write, and compress_-
and_read (used for reducing the storage space). Applica-
tions explicitly issue a compress_and_write using UserLib,
which adds the request to the inode-queue and is processed
by StorageFS similar to simple CompoundOps described ear-
lier. CompoundFS returns an error or return code for each
operation along with the return code list.

4.2 Atomicity and Crash-Consistency

Traditional OS-level file systems guarantee atomicity and
crash-consistent durability properties. While file systems such
as DevFS are designed to satisfy these properties for simple
POSIX style operations, supporting them for CompoundOps
introduces a new spectrum of challenges. We discuss the chal-
lenges and our initial design ideas, which we aim to realize in
our on-going research.

First, regarding atomicity and consistency, because
CompoundOps combines multiple POSIX-styled operations,
a simple approach is to provide an all-or-nothing model
where an entire CompoundOps is atomic. For example, one
in-progress CompoundOps to an inode (i.e. a single directory
or file) would stall all other operations to that same inode.
Such atomicity could impact concurrency. More specifically,
an application can hold an inode-level rwlock (i.e., a read-
write semaphore), which would completely prevent any other
updates to the directory. One approach that we are currently
exploring is to allow individual operations to proceed in par-
allel, but requiring conflict resolution for the final commit.
Other possible extensions include enforcing users to control
CompoundOps atomicity with user-level locks.

Next, regarding crash-consistency, combining multiple
POSIX operations with data pre- and post-processing intro-
duces crash-consistency and ordering challenges. Regarding
the crash-consistency, a CompoundOps could only succeed
partially (e.g., a write operation could fail in read_modify_-
write). While one approach is to adopt an all-or-nothing model
(as done currently in CompoundFS), reverting partially com-
pleted operations could be useful in some cases (e.g., read
operation in a read_modify_write), whereas realizing partial
reverts could be complicated.

Next, ordering threads performing CompoundOps (e.g.,
read-modify-write) and traditional POSIX operation (e.g.,
write) could be challenging, specifically in terms of perfor-
mance. Should a thread (77) performing simple POSIX op-

eration (e.g., write) ordered behind a thread (7>) performing
CompoundOps (read-modify-write), or could interpose T7s
write with T)s read_modify_write? Our current implemen-
tation treats CompoundOps as one large operation with an
inode-level lock. However, we are exploring ways to extend
the journaling mechanism to support a flexible (partial) crash-
consistency or redesign journaling for CompoundOps by lend-
ing ideas from prior work on databases to support composite
transactions [15].

4.2.1 CompoundFS Scheduling Challenges

The number of I/O operations (simple operations as well
as CompoundOps) would most likely exceed the number
of available device-level CPUs, which demands efficient
device-CPU scheduling and management. Further, introduc-
ing CompoundOps with data processing (e.g., CRC, com-
pression) brings new challenges for avoiding starvation or
workload imbalance across device-CPUs performing both
simple and CompoundOps. Traditional block-level I/O sched-
ulers (e.g., Linux blk-queue) are a misfit for CompoundOps
operations because blk-queue does not consider computation.
While our current implementation uses first-come-first-serve
scheduling, we are exploring the benefits and implications of
OS-level CPU fairness schedulers such as Linux CFS [1].

5 [Evaluation

To understand the benefits and implications, we evaluate
CompoundFS using micro-benchmarks and an application
(LevelDB). Our evaluation answers the following questions:

(1) How effective are CompoundOps in improving the I/O
performance by reducing the interaction and data copy over-
heads between applications and the storage stack?

(2) What is the performance impact of offloading compute
to device-CPUs?

(3) How sensitive are CompoundFS benefits to device-CPU
speeds?

5.1 Experimental Setup

We use a dual-socket, 64-core, 2.4GHz Intel(R) Xeon(R)
Gold platform with 32GB DRAM, 512GB DC Optane persis-
tent memory, and 1TB NVMe. To emulate StorageFS, we use
persistent memory with four 128 GB NVM DIMMSs, which
can provide a maximum of 8GB/sec read and 3.8GB/sec write
bandwidth [17]. To emulate PCle latency, we add 900ns soft-
ware delay [27] between the time a request is added to hosts
inode-queue and marked ready with a doorbell for the device
to process. We compare CompoundFS against kernel-level
ext4-DAX [34], state-of-the-art hybrid user and kernel-level
SplitFS [20], and firmware-level DevFS [21].

5.2 Microbenchmarks

To understand the preliminary benefits of CompoundFS
with CompoundOps, we model a microbenchmark that per-
forms read-modify-write and write-and-checksum operations

1000 - [ext4-DAX 1000

@ goo4 [seltFs 3 800
=3 600 [CIDevFS =3

‘g_ A CompoundFs g 600
-§., 400 - [CompoundFS-slowcpu '§> 400
2 200 £ 200
= o

T T
256 4096 256 4096
value size value size
(a) Read Modify Write (b) Write and Checksum

@
o
N
o

M ext4-DAX [Z CompoundFS
[IsplitFs] CompoundFS-slowcpu
[CDevFs

D
o
w
o

n
o

Throughput(MB/s)
ey
o o
Latency (us/op)
n
o

o

0
512 4096 512 4096
db_bench value size (500k keys) db_bench value size (500k keys)

(¢) LevelDB Random Writes (d) LevelDB Random Reads

Figure 3: CompoundFS Performance with Microbenchmark and LevelDB.

on a large 16GB file varying 1/O size to 256-bytes and 4K-
bytes. Figure 3a shows the throughput of read-modify-write
benchmark that reads, modifies, and writes a block. We
compare CompoundFS and CompoundFS-slowcpu (slowed-
down device-CPUs running at 1.2GHz) against ext4-DAX,
SplitFS, and DevFS. Figure 3b shows the throughput of
write-and-checksum benchmark in the y-axis.

CompoundOps Performance. First, for the
read-modify-write workload, ext4-DAX suffers from
two system calls and the related data copy between the user
library and the kernel. This impacts throughput considerably,
especially for small I/O sizes. Next, SplitFS performs better
than ext4-DAX by converting read and write operations
to load and store instructions on staged memory-mapped
files [20]. However, with SplitFS, we see a huge surge in the
kernel activity with an increase in workload size. We suspect
three primary causes: (1) increase in the user-level staged
mmap files increase OS activity (for example, searching
for free blocks); (2) pre-paging with MAP_POPULATE;
(3) high filesystem internal data copy. Next, DevFS avoids
system call costs to bypass the OS. However, the data copy
problem between host and device (read and write) remains
the same. Note that the host CPU waits for the device to
complete the I/O. In contrast, CompoundFS avoids two
system calls and converts two data copy operations into one,
resulting in significant performance gains. Finally, despite
reducing the device-CPU frequency to half of the host-CPU
frequency, CompoundFS-slowcpu achieves up to 109% gains
over ext4-DAX, 68% over SplitFS, and 38% over DevFS.

CompoundOps with data processing. We next model the
payload (data) write followed by CRC write found in mod-
ern workloads, such as persistent key-value stores [3]. Note
that data and CRC are written separately for correctness and
durability, as discussed earlier. All approaches other than
CompoundFS lack the capability to exploit storage hard-
ware to process data (generating checksum), resulting in
two system calls and data copy overheads in addition to per-
forming checksum in the host. CompoundFS combines ap-
pend and checksum to one operation, offloads the operation
for StorageFS to process (and freeing up host CPUs), and
overcoming the data copy cost. Consequently, CompoundFS
improves performance over ext4-DAX, SplitFS, and De-
vES by up to 178%, 144%, and 105%, respectively. Finally,
CompoundFS-slowcpu reduces gains to 71%, 50%, and 25%
over ext4-DAX, SplitFS, and DevFS, respectively.

5.3 Real-World Application

We next study the performance implications of
CompoundFS using LevelDB [3], a persistent key-value store.
Figure 3c and Figure 3d show the write and read random
throughput along the y-axis. We compare CompoundFS
against ext4-DAX, SplitFS, and DevFS. For CompoundFS,
we replace LevelDB’s dual payload and checksum write
operations with one checksum_and_write operation. First, for
the random write workload, as observed in the microbench-
marks, even with our preliminary design, CompoundFS is
able to achieve up to 75% performance improvement. For the
blocking read operations, the data block and checksum are
read at once. While both DevFS and CompoundFS avoid the
system call cost and show performance improvement over
DAX, the benefits of CompoundFS over DevFS are minimal.
Our future work will explore more applications and pursue
other opportunities for optimizations such as designing
SplitFS-like hybrid user- and firmware-level design.

6 Conclusion

In this paper, we propose CompoundFS, a firmware-level
filesystem that provides direct access to storage without
compromising file system guarantees or POSIX support.
To reduce data copy overheads between applications and
the storage stack (e.g., filesystem), CompoundFS proposes
CompoundOps, that combines one or more POSIX opera-
tions into a compound operation. CompoundOps also exploits
device-level storage compute capability. Our ongoing work
is currently focusing on crash-consistency and scheduling
challenges. Results from our preliminary design show more
than 75% performance gains for real applications.

Acknowledgements

We thank our Shepherd, Jeanna Matthews, and anonymous
reviewers for their insightful feedback. We also thank Rutgers
Panic Lab for giving us access to systems with DC Optane per-
sistent memory. This work is supported by NSF CNS 1850297
award. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of NSF.

References

[1] Completely Fair Scheduler. https://www.
kernel.org/doc/html/latest/scheduler/

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

sched-design-CFS.html.

Intel-Micron Memory 3D XPoint. http://intel.ly/
1eICROa.

LevelDB Source Code.
google/leveldb.

https://github.com/

Revolutionary Memory Technology.
https://www.intel.com/content/www/
us/en/architecture-and-technology/
intel-optane-technology.html.

Ringing in a new asynchronous I/O API. https://lwn.

net/Articles/776703/.

Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active
Disks: Programming Model, Algorithms and Evaluation.
SIGPLAN Not., 33(11):81-91, October 1998.

Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark
Nelson, Gregory R Ganger, and George Amvrosiadis.
File systems unfit as distributed storage backends:
lessons from 10 years of Ceph evolution. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, pages 353-369, 2019.

Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei
Li, Wenjie Wu, Lingiang Ouyang, Peng Wang, Yijing
Wang, Ray Kuan, Zhenjun Liu, Feng Zhu, and Tong
Zhang. POLARDB Meets Computational Storage: Effi-
ciently Support Analytical Workloads in Cloud-Native
Relational Database. In 18th USENIX Conference on
File and Storage Technologies (FAST 20), pages 2941,
Santa Clara, CA, February 2020. USENIX Association.

Adrian M. Caulfield, Todor 1. Mollov, Louis Alex Eis-
ner, Arup De, Joel Coburn, and Steven Swanson. Provid-
ing Safe, User Space Access to Fast, Solid State Disks.
SIGARCH Comput. Archit. News, 40(1), March 2012.

Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Optimistic Crash Consistency. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operat-
ing Systems Principles, SOSP ’13, pages 228-243, New
York, NY, USA, 2013. ACM.

Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik
Park, Kwanghyun Park, and David J. DeWitt. Query
Processing on Smart SSDs: Opportunities and Chal-
lenges. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’13, pages 1221-1230, New York, NY, USA, 2013.
ACM.

Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and Protection in the ZoFS

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

User-Space NVM File System. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
SOSP 19, page 478-493, New York, NY, USA, 2019.
Association for Computing Machinery.

Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System Software for Persistent Mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, pages 15:1-15:15,
New York, NY, USA, 2014. ACM.

B. Gu, A. S. Yoon, D. Bae, I. Jo, J. Lee, J. Yoon, J. Kang,
M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang. Bis-
cuit: A Framework for Near-Data Processing of Big
Data Workloads. In 2016 ACM/IEEE 43rd Annual Inter-
national Symposium on Computer Architecture (ISCA),
pages 153-165, June 2016.

Abdelkader Hameurlain and Roland R. Wagner, editors.
Transactions on Large-Scale Data- and Knowledge-
Centered Systems XXXVII, volume 10940 of Lecture
Notes in Computer Science. Springer, 2018.

Zsolt Istvan, David Sidler, and Gustavo Alonso. Caribou:
Intelligent Distributed Storage. Proc. VLDB Endow.,
10(11):1202-1213, August 2017.

Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic Performance Measurements of
the Intel Optane DC Persistent Memory Module, 2019.

Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk
Kang, Sangyeun Cho, Daniel D. G. Lee, and Jacheon
Jeong. YourSQL: A High-Performance Database Sys-
tem Leveraging in-Storage Computing. Proc. VLDB
Endow., 9(12):924-935, August 2016.

Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks,
John Ankcorn, Myron King, Shuotao Xu, and Arvind.
BlueDBM: Distributed Flash Storage for Big Data Ana-
Iytics. ACM Trans. Comput. Syst., 34(3):7:1-7:31, June
2016.

Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
SplitFS: Reducing Software Overhead in File Systems
for Persistent Memory. SOSP ’19: Symposium on Op-
erating Systems Principles, New York, NY, USA, 2019.
ACM.

Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, Yuangang Wang, Jun Xu, and Gopinath
Palani. Designing a True Direct-access File System with
DevES. In Proceedings of the 16th USENIX Conference

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

on File and Storage Technologies, FAST’ 18, pages 241—
255, Berkeley, CA, USA, 2018. USENIX Association.

Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for Nonvolatile Memory with Nov-
eLSM. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 993—-1005, Boston, MA, July
2018. USENIX Association.

Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A Cross Media File System. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP 17,
2017.

Chyuan Shiun Lin, Diane CP Smith, and John Miles
Smith. The Design of a Rotating Associative Memory
for Relational Database Applications. ACM Transac-
tions on Database Systems (TODS), 1(1):53-65, 1976.

Jing Liu, Andrea C Arpaci-Dusseau, Remzi H Arpaci-
Dusseau, and Sudarsun Kannan. File Systems as Pro-
cesses. In /1th {USENIX} Workshop on Hot Topics in
Storage and File Systems (HotStorage 19), 2019.

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-
iharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Wisckey: Separating keys
from values in ssd-conscious storage. ACM Transac-
tions on Storage (TOS), 13(1):1-28, 2017.

Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio L6pez-Buedo, and Andrew W.
Moore. Understanding PCle Performance for End Host
Networking. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation, SIGCOMM ’18, page 327-341, New York, NY,
USA, 2018. Association for Computing Machinery.

Simon Peter, Thomas Anderson, and Timothy Roscoe.
Arrakis: The operating system as control plane. In Proc.
11th USENIX Conf. Oper. Syst. Des. Implement, vol-
ume 38, pages 44-47, 2013.

Luis Cavazos Quero, Young-Sik Lee, and Jin-Soo Kim.
Self-sorting SSD: Producing sorted data inside active
SSDs. In 2015 31st Symposium on Mass Storage Sys-
tems and Technologies (MSST), pages 1-7. IEEE, 2015.

(30]

(31]

(32]

[33]

[34]

[35]

(36]

(37]

Erik Riedel, Garth A. Gibson, and Christos Faloutsos.
Active Storage for Large-Scale Data Mining and Mul-
timedia. In Proceedings of the 24rd International Con-
ference on Very Large Data Bases, VLDB 98, pages
62—73, San Francisco, CA, USA, 1998. Morgan Kauf-

mann Publishers Inc.
Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER:

Designing In-Storage Computing System for Emerging
High-Performance Drivei. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 379—
394, Renton, WA, July 2019. USENIX Association.

Samsung. Samsung Key Value SSD. https:
//www.samsung.com/semiconductor/global.
semi.staticSamsung_Key_Value_SSD_enables_
High_Performance_Scaling-0.pdf.

Stanley Y. W. Su and G. Jack Lipovski. CASSM: A Cel-
lular System for Very Large Data Bases. In Proceedings
of the Ist International Conference on Very Large Data
Bases, VLDB ’75, Framingham, Massachusetts, 1975.

Matthew Wilcox and Ross Zwisler. Linux DAX.
https://www.kernel.org/doc/Documentation/
filesystems/dax.txt.

NVM Express Workgroup. NVMExpress Spec-
ification. https://nvmexpress.org/resources/
specifications/.

Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven
Swanson. Finding and Fixing Performance Pathologies
in Persistent Memory Software Stacks. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, pages 427-439, New
York, NY, USA, 2019. ACM.

Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu,
Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng
He, Feifei Li, Wei Cao, Zhongdong Huang, and Jianling
Sun. FPGA-Accelerated Compactions for LSM-based
Key-Value Store. In /8th USENIX Conference on File
and Storage Technologies (FAST 20), pages 225-237,
Santa Clara, CA, February 2020. USENIX Association.

	Introduction
	Background and Motivation
	Direct-access Filesystem (DirectFS).
	Storage-level Computation
	Limitations of Prior Systems.
	Analysis

	Design of CompoundFS
	Realizing CompoundFS Operations
	Mechanics
	Compound I/O Operations.
	Compound Operations with Processing.

	Atomicity and Crash-Consistency
	CompoundFS Scheduling Challenges

	Evaluation
	Experimental Setup
	Microbenchmarks
	Real-World Application

	Conclusion

