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Abstract. This paper introduces Helping Interdisciplinary Vocabulary
Engineering for Materials Science (HIVE-4-MAT), an automatic linked
data ontology application. The paper provides contextual background
for materials science, shared ontology infrastructures, and knowledge ex-
traction applications. HIVE-4-MAT’s three key features are reviewed: 1)
Vocabulary browsing, 2) Term search and selection, and 3)Knowledge
Extraction/Indexing, as well as the basics of named entity recognition
(NER). The discussion elaborates on the importance of ontology infras-
tructures and steps taken to enhance knowledge extraction. The conclu-
sion highlights next steps surveying the ontology landscape, including
NER work as a step toward relation extraction (RE), and support for
better ontologies.

Keywords: Materials Science · Ontology · Ontology Infrastructure ·
Helping Interdisciplinary Vocabulary Engineering · Named Entity Recog-
nition · Knowledge Extraction

1 Introduction

A major challenge in materials science research today is that the artifactual
embodiment is primarily textual, even if it is in digital form. Researchers an-
alyze materials through experiments and record their findings in textual docu-
ments such as academic literature and patents. The most common way to extract
knowledge from these artifacts is to read all the relevant documents, and manu-
ally extract knowledge. However, reading is time-consuming, and it is generally
unfeasible to read and mentally synthesize all the relevant knowledge[26, 28].
Hence, effectively extracting knowledge and data becomes a problem. One way
to address this challenge is through knowledge extraction using domain-specific
ontologies [18]. Unfortunately, materials science work in this area is currently
hindered by limited access to and use of relevant ontologies. This situation un-
derscores the need to improve the state of ontology access and use for materials
science research, which is the key goal of the work presented here.

? Supported by NSF Office of Advanced Cyberinfrastructure (OAC): #1940239.



2 Greenberg, et al.

This paper introduces Helping Interdisciplinary Vocabulary Engineering for
Materials Science (HIVE-4-MAT), an automatic linked data ontology applica-
tion. The contextual background covers materials science, shared ontology infras-
tructures, and knowledge extraction applications. HIVE-4-MAT’s basic features
are reviewed, followed by a brief discussion and conclusion identifying next steps.

2 Background

2.1 Materials Science

Materials science is an interdisciplinary field that draws upon chemistry, physics,
engineering and interconnected disciplines. The broad aim is to advance the ap-
plication of materials for scientific and technical endeavors. Accordingly, materi-
als science researchers seek to discover new materials or alter existing ones; with
the overall aim of offering more robust, less costly, and/or less environmentally
harmful materials.

Materials science researchers primarily target solid matter, which retains its
shape and character compared to liquid or gas. There are four key classes of solid
materials: metals, polymers, ceramics, and composites. Researchers essentially
process (mix, melt, etc.) elements in a controlled way, and measure performance
by examining a set of properties. Table 1 provides two high-level examples of
materials classes, types, processes, and properties.

MATERIAL
CLASS & TYPE

MANUFACTURING PROCESS
PROPERTIES
(examples)

Class:
Polymer

Type:
Polyethylene[21]

Polymerization (distillation of
ethane into fractions, some of
which are combined with catalysts)

Melt temperature
Tensile strength
Flexurile strength
(or bend strength)
Shrink Rate

Class: Metal
Type: Steel

Iron ore is heated and forged in
blast furnaces, where the impurities
are altered and carbon is added.

Yield strength
Tensile strength
Thermal conductivity
Resistance to
wear/corrosion
Formability

Table 1: Examples of Materials classes and types, processes, and properties

The terms in Table 1 have multiple levels (sub-types or classes) and variants.
For example, there is stainless steel and surgical steel. Moreover, the universe
of properties, which is large, extends even further when considering nano and
kinetic materials. This table illustrates the language, hence the ontological un-
derpinnings, of materials science, which is invaluable for knowledge extraction.
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Unfortunately, the availability of computationally ready ontologies applicable to
materials science is severely limited, particularly compared to biomedicine and
biology.

2.2 Ontologies: Shared Infrastructure and Knowledge Extraction
Applications

Ontologies have provided a philosophical foundation and motivation for scien-
tific inquiry since ancient times[15]. Today, computationally ready ontologies
conforming to linked data standards[9] offer a new potential for data driven dis-
covery[14]. Here, the biomedical and biology communities have taken the lead
in developing a shared infrastructure, through developments such as the Na-
tional Center for Biological Ontologies (NCBO) Bioportal[29, 4] and the OBO
foundry[25, 6]. Another effort is the FAIRsharing portal[23, 1], providing access
to a myraid of standards, databases, and other resources[31].

Shared ontology infrastructures help standardize language and support data
interoperability across communities. Additionally, the ontological resources can
aid knowledge extraction and discovery. Among one of the best known applica-
tions in this area is Aronson’s [8] MetaMap, introduced in 2001. This application
extracts key information from textual documents, and maps the indexing to the
metathesaurus ontology. The MetaMap application is widely-used for extraction
of biomedical information. The HIVE application[16], developed by the Meta-
data Research Center, Drexel University, also supports knowledge extraction in
a same way, although results are limited by the depth of the ontologies applied.
For example, biomedicine ontologies, which often have a rich and deep network
of terms, will produce better results compared to more simplistic ontologies tar-
geting materials science[33, 32].

Overall, existing ontology infrastructure and knowledge extraction approaches
are applicable to materials science. In fact, biology and biomedical ontologies
are useful for materials science research, and researchers have been inspired
by these developments to develop materials science ontologies[7, 11, 17]. Related
are nascent efforts developing shared metadata and ontology infrastructures for
materials science. Examples include the NIST Materials Registry[5] and the In-
dustrial Ontology Foundry[2]. These developments and the potential to leverage
ontologies for materials science knowledge extraction motivate our work to ad-
vance HIVE-4-MAT. They have also had a direct impact on exploring the use
of NER to assist in the development richer ontologies for materials science [33].

2.3 Named Entity Recognition

The expanse and depth of materials science ontologies is drastically limited,
pointing to a need for richer ontologies; however, ontology development via man-
ual processes is a costly undertaking. One way to address this challenge is to
through relation extraction and using computational approaches to develop on-
tologies. To this end, named entity recognition (NER) can serve as an invaluable
first step, as explained here.
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The goal of Named Entity Recognition (NER) is to recognize key information
that are related to predefined semantic types from input textual documents[20].
As an important component of information extraction (IE), it is widely applied
in tasks such as information retrieval, text summarization, question answering
and knowledge extraction.

The semantic types can vary depending on specific task types. For example,
when extracting general information, the predefined semantic types can be lo-
cation, person, or organization. NER approaches have been also proven effective
to biomedical information extraction; an example from SemEval2013 task 9[24]
about NER for drug-drug interaction is shown in Figure 1 below.

Fig. 1: An NER Example from a SemEval Task

As shown in the Figure 1, the NER pharmaceutical model receives the tex-
tual input (e.g. sentences), and returns whether there are important information
entities that belong to any predefined labels, such as brand name and drug name.

A similar undertaking has been pursued by Weston et al.[28], with their
NER model designed for inorganic materials information extraction. Their
model includes seven entity labels and testing has resulted in an overall f1-
score of 0.87[28]. This work has inspired the HIVE team to use NER, as a step
toward relation extraction, and the development of richer ontologies for materials
science.

3 Purpose and Goals

Goals of this paper are to:

1. Introduce HIVE
2. Demonstrate HIVE’s three key features Vocabulary browsing, term search

and selection, and knowledge extraction/indexing
3. Provide an example of our NER work, as a foundation for relation extraction.

4 HIVE-4-MAT: Prototype Development and Features

Hive is a linked data automatic metadata generator tool developed initially
as a demonstration for the Dryad repository[16, 30], and incorporated into the
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DataNet Federation Consortium’s iRODS system[12]. Ontologies encoded in the
Simple Knowledge Organization System (SKOS) format are shared through a
HIVE-server. Currently, HIVE 2.0 uses Rapid Automatic Keyword Extraction
(RAKE), an unsupervised algorithm that processes and parses text into a set of
candidate keywords based on co-occurrence[22]. Once the list of candidate key-
words is selected from the SKOS encoded ontologies, the HIVE system matches
candidate keywords to terms in the selected ontologies. Figure 2 provides an
overview of the HIVE model.

HIVE-4-MAT builds on the HIVE foundation, and available ontologies have
been selected for either broad or targeted applicability to materials science. The
prototype includes the following ten ontologies: 1)Bio-Assay Ontology (BioAs-
say), 2) Chemical Information Ontology (CHEMINF), 3) Chemical Process On-
tology (prochemical), (4) Library of Congress Subject Headings (LCSH), 5)
Metals Ontology, 6) National Cancer Institute Thesaurus (NCIT), 7) Physico-
Chemical Institute and Properties (FIX), 8) Physico-chemical process (REX), 9)
Smart Appliances REFerence Ontology (SAREF), and 10) US Geological Survey
(USGS).

Fig. 2: Overview of HIVE Structure

Currently, HIVE-4-MAT has three main features:

• Vocabulary browsing (Figure 3 and Figure 4)
• Term search and selection (Figure 5)
• Knowledge Extraction/Indexing (Figure 6)
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Fig. 3: Lists of Vocabularies/Ontologies

The vocabulary browsing feature allows a user to view and explore the on-
tologies registered in HIVE-4-MAT. Figure 3 presents the full list of currently
available ontologies, and Figure 4 provides an example navigating through the
hierarchy of the Metals ontology. The left-hand column (Figure 4) displays the
hierarchical levels of this ontology; the definition, and the right-hand side dis-
plays the alternative name, broader concepts and narrow concepts.

4.1 Mapping Input Text to Ontologies

The term search and selection feature in Figure 5 allows a user to select a set
of ontologies and enter a search term. In this example, eight of the 10 ontolo-
gies are selected, and the term thermoelectric is entered as a search concept.
Thermoelectrics is an area of research that focuses on materials conductivity of
temperature (heat or cooling) for energy production. In this example, the term
was only found in the LCSH, which is a general domain ontology. The lower-half
of Figure 5 shows the term relationships. There are other tabs accessible to see
the JSON-LD, SKOS-RDF/XML and other encoding. This feature also allows a
user to select an encoded term for a structure database system, such as a catalog,
or for inclusion in a knowledge graph.
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Fig. 4: Vocabularies/Ontologies Structure

Fig. 5: Term Search



8 Greenberg, et al.

Figure 6 illustrates the Knowledge Extraction/Indexing Feature. To reiter-
ate, reading research literature is time-consuming. Moreover, it is impossible for
a researcher to fully examine and synthesize all of the knowledge from existing
work. HIVE-4-MAT’s indexing functionality allows a researcher or a digital con-
tent curator to upload a batch of textual resources, or simply input a uniform
resource locator (URL) for a web resource, and automatically index the tex-
tual content using the selected ontologies. Figure 6 provides an example using
the Wikipedia content for Wikipedia page on Metal[3]. The visualization of the
HIVE-4-MAT’s results helps a user to gain an understanding of the knowledge
contained within the resource, and they can further navigate the hypertext to
confirm the meaning of a term within the larger ontological structure.

Fig. 6: Keyword Extraction

4.2 Building NER for Information Extraction

Inspired by the work of Weston et al.[28], the HIVE team is also exploring
the performance and applications of NER as part of knowledge extraction in
materials science. Research in this area may also serve to enhance HIVE. Weston
et al.[28] focus on inorganic materials, and appear to be one of the only advanced
initiative’s in this area. Our current effort focuses on building a test dataset for
organic materials discovery, with the larger aim of expanding research across
materials science.

To build our corpus, we used Scopus API[27] to collect a sample of abstracts
from a set of journals published by Elsevier that cover organic materials. The
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research team has identified and defined a set of seven key entities to assist with
the next step of of training our model. These entities have the following semantic
labels: (1) Molecules/fragments, (2) Polymers/organic materials, (3) Descriptors,
(4) Property, (5) Application, (6) Reaction and (7) Characterization method.
Members of our larger research team are actively annotating the abstracts using
these semantic labels as shown in Figure 7. The development a test dataset is an
important research step, and will help our team move forward testing our NER
model and advancing knowledge extraction options for materials science in our
future work.

Fig. 7: Example from our In-Progress Organic Dataset

5 Discussion

The demonstration of HIVE and reporting of initial work with NER is motivated
by the significant challenge materials science researchers face gleaning knowledge
from textual artifacts. Although this challenge pervades all areas of scientific re-
search, disciplines such as biology, biomedicine, astronomy, and other earth sci-
ences have a much longer history of open data and ontology development, which
drives knowledge discovery. Materials science has been slow to embrace these
developments, most likely due to the disciplines connection with competitive in-
dustries. Regardless of the reasons impacting timing, there is clearly increased
interest and acceptance of a more open ethos across materials science, as demon-
strated by initiatives outlined by Himanen et al. in 2019 [19]. Two key examples
include NOMADCoE [13] and the Materials Data Facility [10], which are inspired
by the FAIR principles [13, 31]. These developments provide access to structured
data, although, still the majority of materials science knowledge remains hidden
in textually dense artifacts. More importantly, these efforts recognize the value of
access to robust and disciplinary relevant ontologies. HIVE-4-MAT complements
these developments and enables materials science researchers not only to gather,
register, and browse ontologies; but, also the ability to automatically apply both
general and targeted ontologies for knowledge extraction. Finally, the HIVE-4-
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MAT output provides researchers with a structured display of knowledge that
was previously hidden within unstructured text.

6 Conclusion

This paper introduced the HIVE-4-MAT application, demonstrated HIVE’s three
key features, and reported on innovative work underway exploring NER. The
progress has been encouraging, and plans are underway to further assess the
strengths and limitation of existing ontologies for materials science. Research
here will help our team target areas where richer ontological structures are
needed. Another goal is to test additional algorithms with the HIVE-4-MAT
application, as reported by White, et al[30]. Finally, as the team moves forward,
it is critical to recognize that ontologies, alone, are not sufficient for extract-
ing knowledge, and it is important to consider other approaches for knowledge
extraction, such as Named Entity Recognition (NER) and Relation Extraction
(RE) can complement and enrich current apporaches. As reported above, the
HIVE team is also pursuing research in this area as reported by Zhao[33], which
we plan to integrate with the overall HIVE-4-MAT.
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