OneEdge: An Efficient Control Plane for
Geo-Distributed Infrastructures

Enrique Saurez”
Harshit Gupta®

esaurez@gatech.edu
harshitg@gatech.edu
Georgia Institute of Technology

Abstract

Resource management for geo-distributed infrastructures is
challenging due to the scarcity and non-uniformity of edge
resources, as well as the high client mobility and workload
surges inherent to situation awareness applications. Due to
their centralized nature, state-of-the-art schedulers that work
well in datacenters lack the performance and feature require-
ments of such applications. We present OneEdge, a hybrid
control plane that enables autonomous decision-making at
edge sites for localized, rapid single-site application deploy-
ment. Edge sites handle mobility, churn, and load spikes, by
cooperating with a centralized controller that allows coordi-
nated multi-site scheduling and dynamic reconfiguration.

OneEdge’s scheduling decisions are driven by each applica-
tion’s end-to-end service level objective (E2E SLO) as well as
the specific requirements of situation awareness applications.
OneEdge’s novel distributed state management combines au-
tonomous decision-making at the edge sites for rapid local-
ized resource allocations with decision-making at the central
controller when multi-site application deployment is needed.

Using a mix of applications on multi-region Azure instances,
we show that, in contrast to centralized or fully distributed
control planes, OneEdge caters to the unique requirements of
situation awareness applications. Compared to a centralized
control plane, OneEdge reduces deployment latency by 66%
for single-site applications, without compromising E2E SLOs.

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SoCC °21, November 1-4, 2021, Seattle, WA, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8638-8/21/11...$15.00
https://doi.org/10.1145/3472883.3487008

Alexandros Daglis

Umakishore Ramachandran
alexandros.daglis@cc.gatech.edu
rama@gatech.edu
Georgia Institute of Technology

CCS Concepts

« Computer systems organization — Distributed archi-
tectures; « Networks — Programming interfaces.

Keywords
Edge Computing, Control Plane Architecture, Geo Distributed

ACM Reference Format:

Enrique Saurez, Harshit Gupta, Alexandros Daglis, and Umakishore
Ramachandran. 2021. OneEdge: An Efficient Control Plane for Geo-
Distributed Infrastructures. In ACM Symposium on Cloud Comput-
ing (SoCC °21), November 1-4, 2021, Seattle, WA, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3472883.3487008

1 Introduction

Situation awareness applications such as autonomous vehi-
cles [11], drone navigation [12], AR-assisted driving [17],
large-scale video analytics [1], and camera networks for
safety and surveillance [35] continuously sense the environ-
ment and respond in real time. In addition to being inherently
geo-distributed, such applications are also both bandwidth
intensive (e.g., camera streams) and latency sensitive (e.g.,
tight bound between sensing and actuation). Edge comput-
ing is a promising approach for meeting the requirements
of such applications, offering geo-distributed deployment of
computational resources close to the sensor sources.

On the infrastructure front, we expect that the primary dri-
vers will be micro-datacenters (uDC) with server-grade ma-
chines, a few racks per site, maintained by telecommuni-
cation providers and ISPs [24], with non-uniform compu-
tational resource availability across edge sites. Thus, the
combination of Cloud datacenters and such yDCs forms a
computational continuum, as shown in Fig. 1.

On the applications front, we identify two distinct appli-
cation classes: coordinated and standalone. Coordinated ap-
plications feature multiple clients that share application
state, hence different application instances require coloca-
tion and coordination. Examples of coordinated applications
include collaborative assisted driving and geo-distributed

https://doi.org/10.1145/3472883.3487008
https://doi.org/10.1145/3472883.3487008

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Cellular
(<§» <«—> Access
Network

®-[F5-5F

Figure 1: Edge-Cloud continuum: Micro-datacenters (uDCs)
may be interconnected via dedicated fiber-optic links [29].

multiplayer games (e.g., Pokemon Go [33]). In contrast, stan-
dalone applications are limited to single-user instances. Ex-
amples include virtual reality and single-drone control.

Beyond their bandwidth and latency constraints, situation
awareness applications pose unique requirements that distin-
guish them from Cloud-native applications. These require-
ments are: R1: Autonomous control—for single-site deploy-
ment of latency-sensitive standalone applications (§3.1.2),
R2: Coordinated control—for multi-site deployment of coor-
dinated applications (§3.1.1), R3: Spatial affinity—to support
applications’ location sensitivity, R4: E2E latency SLO—to
support the necessary end-to-end latency SLO guarantees
needed, and R5: Dynamic resource reallocation—needed for
re-deployment of an application due to mobility and/or fail-
ures/resource scarcity at an edge site.

State-of-the-art control planes like Kubernetes and its vari-
ants (e.g., KubeEdge) do not meet these requirements because
they were designed for throughput-oriented applications run-
ning in the Cloud. For such applications, the aforementioned
requirements except for dynamic resource reallocation sup-
port (R5) are either not applicable or not easily met in a
datacenter environment. Adapting a state-of-the-art control
plane to meet these requirements is non-trivial. For exam-
ple, Kubernetes uses tag-based matching to select nodes for
launching applications and does not support fine-grained
latency-sensitive or location-sensitive application placement.
Such requirements would have to be enshrined in application-
specific controllers (Fig. 2a) running atop Kubernetes, push-
ing the burden of independently implementing the required
functionality to the application developer.

OneEdge is an agile control plane designed to meet the re-
quirements of situation awareness applications. Specifically,
it allows edge sites to make autonomous scheduling deci-
sions without central coordination for standalone applica-
tions. Additionally, to cater to the needs of coordinated ap-
plications which rely on global knowledge of application
instances, OneEdge has a centralized component. For rapid
autonomous control plane decisions without central coor-
dination, the authoritative state is kept locally at each site.
The central controller maintains an eventually consistent [31]
aggregate state to make deployment decisions for multi-site

Enrique Saurez, Harshit Gupta, Alexandros Daglis, and Umakishore Ramachandran

coordinated applications. Such decisions are optimistic ow-
ing to the eventually consistent nature of the aggregate state
and has to be ratified by the affected edge sites. OneEdge em-
ploys an enhanced two-phase commit protocol to ratify the
deployment decisions with the affected edge sites. OneEdge
exposes the right interfaces to the application developer to
facilitate latency- and location-sensitive scheduling of the
application components. OneEdge’s monitoring component
ensures that each application’s E2E latency SLO is met, trig-
gering migration of a client (e.g., a connected vehicle) to a
spatially appropriate application instance that aligns well
with the client mobility.

We make the following contributions:

e A novel hybrid control plane architecture for geo-distri-
buted infrastructures that combines autonomous decision-
making at edge sites to minimize deployment latency
for standalone applications, with centralized decision-
making for scheduling coordinated applications.

o Efficient optimistic concurrency control with an enhanced
two-phase commit protocol that reconciles the central
controller’s eventually consistent state with the authorita-
tive state that is distributed across edge sites. Such trans-
actional cross-site coordination is required to manipulate
application deployments straddling multiple sites.

o Intuitive interfaces for application developers to specify
spatio-temporal constraints for applications, which are
integrated in the control plane’s scheduling decisions.

o The design and implementation of OneEdge, and an eval-
uation showcasing how its objectives are met.

Paper outline: §2 discusses the shortcomings of state-of-the-
art control plane designs for situation awareness applications.
§3 introduces a model for situation awareness applications
and two concrete use cases. §4 and §5 present OneEdge’s
key design principles and architecture, respectively. §6 eval-
uates OneEdge, using microbenchmarks and a mock-up of
situation-awareness applications. Finally, we present con-
cluding remarks and avenues for future work in §7.

2 Limitations of Existing Control Planes

Cloud Resource Management. There is a large body of
work in schedulers designed specifically for Cloud datacen-
ters, including monolithic [3, 30], partitioned [2, 5, 13, 32],
and shared-state [6, 7, 15, 28] architectures. These systems
are designed for the specific characteristics of datacenter en-
vironments: largely homogeneous computational resources
with strong network connectivity between the control plane
and the managed resources. Furthermore, they rely on a
shared authoritative state (potentially replicated for redun-
dancy and fault tolerance) to coordinate resource scheduling,
which is updated by one or more distributed schedulers [28].

OneEdge: An Efficient Control Plane for Geo-Distributed Infrastructures

) | Application ®
et i«{ Controller Scheduler
B2 ‘0’
i |Edge Manager|
i g g E-"""(éj") eth
Container Cloud -
] ast
ol Slow ===
docker /Edge Site Slowest ==

(a) Workflow for app deployment on an edge site using
Kubernetes.

B CNTR CREATION
WAN OVERHEAD
B SCHEDULING DELAY

I CNTR CREATION
WAN OVERHEAD
I SCHEDULING DELAY

1000 1000

800 800

600 600

o]
0

30 40
One-way WAN latency [ms]

400
200

Median latency of operation [ms]
Median latency of operation [ms]

30 40
One-way WAN latency [ms]

(b) Latency breakdown with (c) Latency breakdown with
container cold start. pre-warmed containers.
Figure 2: Experimental results with Kubernetes.

A shared-state management approach is not scalable for edge-
centric schedulers, as they need to reach the Cloud-resident
shared state over a high-latency and unreliable network for
every control decision. Disconnections and network parti-
tions make it difficult, if not impossible, to achieve the desired
attributes of autonomous decision-making and migrations.

Geo-Distributed Resource Management. Alternative con-
trol planes for edge infrastructure such as KubeEdge [34]
and KubeFed [18], still inherit Kubernetes’ centralized design
wherein a central entity drives all control plane decisions.

To underscore the deployment overhead of the current state
of the art for situation-awareness applications, we conduct
the following experiment with Kubernetes. Fig. 2a shows
the experimental setup: a client of a situation-awareness
application, a desired edge site for launching the application
for the client, and the Kubernetes scheduler in the Cloud. The
color-coded arrows show the relative latencies for each of
the control flow actions. The control flow for launching the
application at the edge site depicted in Fig. 2a is as follows. (D
and 2): The application’s client communicates a site-specific
deployment request to a dedicated application controller in
the Cloud hosting the Kubernetes scheduler. (3): Kubernetes
makes the scheduling decision and enters it into the etcd
database. @ to (6): The edge site picks up the scheduling
request, launches the needed application containers, and
informs Kubernetes. (7) and (8): The application controller
is apprised that the application is ready to be launched and

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

notifies the client, which can now start interacting with the
deployed application on the edge site.

To showcase the best-case deployment latency (i.e., no queu-
ing effects due to other requests pending at the scheduler) for
Kubernetes and different controlled settings of WAN latency,
we emulate all the entities (Client, Cloud, and Edge Site)
involved in the control flow shown in Fig. 2a as individual
VMs inside an instance of an Azure region [20]. Every WAN
hop shown in Fig. 2a incurs a set latency controlled through
the Linux tc [19] utility. Fig. 2b and Fig. 2c show the mean
end-to-end deployment latency for different settings of WAN
latency. Fig. 2b is for deploying containers from scratch (cold
start), while Fig. 2c is for pre-warmed containers. The bar
graphs show the breakdown of the latency into individual
components. As Fig. 2b shows, the container startup time
dominates the end-to-end application deployment latency.
However, significant ongoing research efforts are focused on
addressing the high cost of cold starts by keeping pools of
pre-warmed containers [22] to avoid this overhead. Fig. 2¢
demonstrates that once the cold start effect is mitigated (us-
ing pre-warmed containers), the overhead of WAN traversal
becomes the primary deployment latency determinant. For
example, with pre-warmed containers and a 40ms one-way
WAN latency, the WAN overhead accounts for 49% of the de-
ployment latency. We observe a similar trend with KubeEdge
(but with higher latency due to additional book-keeping),
since it has a similar deployment workflow.

Ensuring low-latency control plane actions is important for
situation awareness applications both to get the application
started initially, and for reconfiguration decisions in response
to client mobility or resource scarcity. If not executed quickly,
control plane actions can result in E2E SLO violations for the
applications. Besides the latency concern of placing multiple
WAN traversals on the critical path of application deploy-
ments, state-of-the-art schedulers also do not natively cater
to the requirements of situation awareness applications (§1)
in terms of meeting their E2E latency SLOs and respecting
spatial affinity considerations. Table 1 summarizes the ability
(or lack thereof) of state-of-the-art control planes for meeting
the requirements of situation awareness applications.

The application controller in the Cloud (Fig. 2a) acts as a layer
above Kubernetes to instruct the scheduler on its desired
placement decisions. It is a burden on the developer to build
an application controller for each situation awareness appli-
cation. A natural question that follows is, would building a
generic abstraction layer on top of Kubernetes that caters to the
requirements (Table 1) be a viable solution? Unfortunately, as
noted above, existing mechanisms in state-of-the-art sched-
ulers such as Kubernetes do not inherently cater to such
requirements. Therefore, we take a clean-slate approach to
systematically address all these requirements with OneEdge.

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Requirement
Rl‘RZ‘R3‘R4‘R5
Cluster Monolithic (e.g., Kubernetes) N* | N* | N*

Cluster Partitioned (e.g., Mesos) N*| N | N*
Cluster Shared-state (e.g., Omega) N*| N | N*
Geo-dist. Centralized (e.g., KubeEdge) N“| N | N
N
Y

Type of Scheduler

Geo-dist. Decentralized (e.g., Foglets [27]) || Y Y
Geo-distributed Hybrid (OneEdge) Y Y
Table 1: Comparison of schedulers with respect to the require-
ments of situation awareness applications. The requirements
are R1: Autonomous control, R2: Coordinated control,
R3: Spatial affinity, R4: E2E latency SLO, R5: Dynamic
resource reallocation. N = requirement not met; N* = re-
quirement incompatible with system’s architecture.

== Z| 'zl 'z Z
| | |] |

3 Situation Awareness Applications

Situation awareness applications convert geo-distributed
sensed data to actionable knowledge 24X7 at computational
perception speeds and are highly latency sensitive. This sec-
tion formalizes a general application model for situation
awareness applications and highlights two concrete use cases.

3.1 Application Model

Situation awareness applications can be modeled as a pipeline
of components (e.g., detection, and filtering, as shown in
Fig. 3). The client (e.g., a vehicle) feeds input data into a
pipeline. Each component processes data generated by the
upstream component and generates output data to be con-
sumed by the downstream one. Additionally, actionable data
can be sent back to the client directly by any component.

Representing the application as a pipeline gives the control
plane the flexibility to split application components across
multiple servers within a yDC or even across yDCs, so long
as the application’s SLOs are not violated. A pipeline model
allows sharing key stages across clients to enable cross-client
coordination (e.g., sub-regional and regional views in Fig. 3).

Next, we describe a representative example of a coordinated
and a standalone application.

3.1.1 Coordinated Application: Connected Vehicles

We consider a connected vehicle scenario (Fig. 3) modeled
as a pipeline. Each vehicle (i.e., client) uses a lidar sensor
and on-board processing to generate a list of objects it can
detect in its immediate field of view. The individual views
from multiple vehicles in close spatial proximity of one an-
other are aggregated to create a composite view (sub-regional
view), which helps reveal objects missed by the individual
views due to occlusions. The fused composite view is made
available to the vehicles in the same spatial proximity so that
each vehicle can take better decisions for lane control and
collision avoidance. Different disjoint subsets of vehicles in
different spatial locales have their views fused together as in-
dependent sub-regional views. The sub-regional views may

Enrique Saurez, Harshit Gupta, Alexandros Daglis, and Umakishore Ramachandran

g - Filter
Detection |-m— 7 Sub-regional emaws)
=

~_J

" Regional
o r
e
—_— 9 E [
D2-3 Cars in Regions
rﬂ (Region Update) (each coloris a
— region)

To Sub-regional
+—— 81 —+ Views

S3

Figure 3: An exemplar of situation awareness applications —
Connected Vehicles. Cars in the same spatial locale have their
individual views fused by the sub-regional view; Regional
view fuses sub-regional views of adjacent spatial locales.

be aggregated at the next pipeline stage to create a regional
view to further improve vehicular safety and traffic analyses.
The mobility of the vehicles necessitates dynamic, constantly
evolving associations of vehicles with spatial sub-regions.

3.1.2 Standalone Application: Drone Navigation

Control of a single autonomous drone is an example of a
standalone application. The application model is much sim-
pler, as it does not share any application component or state
across clients. As there are no sharing requirements, the best
placement for standalone apps, from a network latency and
bandwidth perspective, is on the geographically closest edge
site, both for placement and mobility-triggered migration.

3.2 Application-level SLOs

For situation-awareness applications, SLOs are best defined
in terms of tolerable latencies. For example, with reference
to Fig. 3, the “Sub-Regional View” stage has a more stringent
latency requirement compared to the “Regional View” stage.
The incurred latency also depends on the data exchanged
between the stages: e.g., the “Filter” stage receives raw data
from on-board sensors and needs a high-bandwidth connec-
tion to the raw data streams; while the “Regional View” stage,
which aggregates metadata from sub-regions, has a much
smaller bandwidth requirement.

Since an application is expressed as a pipeline of compo-
nents, it is convenient for its developer to specify the SLOs
in terms of two parameters per pipeline stage: (a) acceptable
staleness, and (b) rate of data production. Both parameters
depend on the application’s semantics. Fig. 3 shows the toler-
able staleness for stage i using the notation S;. S; denotes the
worst-case acceptable composite latency at the input of stage
i. S; accounts for all the upstage communication and pro-
cessing times from the generation of a message at the client
until stage i’s input. D;_; refers to the production rate of
data items communicated between stages—e.g., the data rate
between the “Filter” and “Sub-Regional View” stages D;_; is
dictated by the objects detected per unit time (bytes/sec).

OneEdge: An Efficient Control Plane for Geo-Distributed Infrastructures

Presenting the SLOs in terms of data staleness and data rates
gives flexibility to the control plane in placement decisions,
taking into account the uDCs’ resource capacities to accom-
modate each stage’s CPU and memory needs, and the band-
width required for inter-stage communication. Concretely,
the E2E latency SLO of an application is equal to X1, S;,
where n is the number of stages in the pipeline.

Another quality of interest for coordinated applications is
spatial affinity, which we define as the application’s intent
to share state among a subset of clients based on geographical
proximity, i.e., Area of Interest (Aol). Each application may
have its logic for defining an Aol for its clients. For example,
in the connected vehicles application (Fig. 3), an Aol may be
the area covering a busy intersection. Spatial affinity is an
application SLO that the scheduler will use in its decisions.

To quantify how well an application deployment chosen by a
scheduler matches the application’s spatial affinity SLO, we
propose the new metric of spatial alignment. With respect
to Fig. 3, if there are n vehicles in a given Aol (i.e., the AoI’'s
current spatial affinity is n), the metric should quantify the
percentage of vehicles (i.e., a fraction of n) whose individual
views are fused by the sub-regional view component. Thus,
we define spatial alignment for an Aol as follows:

of clients in Aol sharing the app pipeline
of clients in Aol .

A perfect scheduler maps all clients with the same spatial
affinity to the same pipeline, i.e, spatial alignment = 1.

spatial alignment =

The scheduler’s operation uses both metrics: E2E latency
SLO and spatial affinity SLO, and aims to maximize spatial
alignment and minimize E2E latency SLO violations.

4 Challenges and Key Design Principles

In this section, we elaborate on the challenges associated
with the five key requirements for control planes manag-
ing situation awareness applications on geo-distributed in-
frastructures. We then introduce key control plane design
principles that allow OneEdge to overcome these challenges.

Challenge 1: Situation awareness applications have inher-
ently strong topological semantics. First, strict latency SLOs
are tightly associated with an application’s deployment lo-
cation relative to each client’s physical location, as network
traversals account for a significant fraction of each serviced
request’s E2E latency. Second, spatially proximal clients of
the same coordinated application should be digitally colo-
cated to enable essential application state sharing. While
topological information should be integral to scheduling
decisions, that is not the case for existing control planes.

Challenge 2: Standalone and coordinated applications im-
pose conflicting requirements on the control plane. Autono-
mous deployment necessitates distributed state and inde-
pendent decision-making based on locally available state,

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

while the need for balanced load on widely fragmented re-
sources and for inter-site client coordination necessitates an
orchestrating entity with global state knowledge.
Challenge 3: As application pipelines (Fig. 3) may span
multiple edge sites, site-specific performance monitoring
alone is insufficient to provide E2E latency guarantees.

To overcome these challenges, OneEdge’s architecture builds
on three main design principles:

Principle 1: Client geolocation and application latency re-
quirements are exposed as first-class citizens to the control
plane. This information is contained in each client’s applica-
tion deployment request (i.e., client’s GPS location), and the
control plane’s state bookkeeping is geospatially organized.

Principle 2: A two-level hybrid structure to reconcile the
conflicting need for both distributed and centralized state.
The hybrid control plane architecture comprises an autono-
mous controller per yDC and an overarching centralized
controller playing complementary roles to meet the needs of
both standalone and coordinated applications. Autonomous
per-site controllers maintain the site’s authoritative state and
allow instant deployment of standalone applications without
interacting with the centralized controller. The centralized
controller maintains an eventually consistent view of the
global state, which is leveraged for cross-site application
pipeline deployment and for off-the-critical-path resource
reallocation decisions for load balancing purposes.

Principle 3: Application deployment decisions should be
primarily SLO-driven rather than just resource-driven. Pre-
serving application E2E latency guarantees should be a re-
sponsibility of the control plane. Thus, the control plane
should not only make placements based on performance tar-
gets, but also enforce continuous compliance via hierarchical
monitoring. Per-application latency metrics must not only be
locally collected at each site’s controller, but also periodically
aggregated at the centralized controller, to assess E2E SLO
compliance. Upon SLO violation detection, the control plane
reassesses resource provisioning decisions and/or migrates
applications depending on the source of SLO violation (i.e.,
due to resource scarcity or client mobility).

5 OneEdge System Architecture

We now present the architecture of OneEdge, a hybrid con-
trol plane that builds on §4’s design principles to meet the
requirements outlined in Sections 1 and 2.

5.1 Overview

Fig. 4 depicts OneEdge’s high-level architecture, compris-
ing two top-level entities: site and controller. A site is a
self-managed instance of a geo-distributed infrastructure

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Enrique Saurez, Harshit Gupta, Alexandros Daglis, and Umakishore Ramachandran

¥
Monitoring

Clients

Manager
v

quuest Resource
ueue
Ny Scheduler

L 5 Transaction

Placement Manager

—|C Site .| Container
45} Agent ' Agent
: i
- i | Application
Monitoring i | Component
Subsystem

Container
$
Container Runtime

Figure 4: OneEdge’s System Architecture. A central controller (left blow-up) coordinates with all the edge sites (right blow-up).

(e.g., uDC, Cloud datacenter) that contains computational re-
sources and cooperates with the controller in control-plane
decision making. The controller is a logically centralized
entity that makes system-wide deployment decisions for ap-
plication pipelines spanning more than a single edge site,
or to adjust deployment decisions that were autonomously
made at individual sites, for load balancing reasons.

Client requests to launch an application on the edge infras-
tructure are always directed to the client’s geographically
proximal site by using a standard discovery service [21]. The
developer tags each application as “standalone” or “coordi-
nated”. A site agent handles deployment requests for stan-
dalone applications locally, avoiding WAN traversals and
centralized coordination, unless resource constraints pre-
vent local deployment. Deployment requests for coordinated
applications are always forwarded to the central controller.

The central controller monitors and orchestrates the aggre-
gated infrastructure’s state; it plays both a proactive and a
reactive role, on and off an application deployment’s crit-
ical path, respectively. For coordinated applications, it de-
termines each client matching to application instances and
the placement of application components to specific sites. It
also continuously monitors each site’s resource usage and
each application’s performance compared to its SLO, to drive
resource re-allocation and application migration decisions.

5.2 Edge Site Components and Operation

Each site comprises four components (Fig. 4, right): the site
agent, the monitoring subsystem, the container agent, and
the container runtime (built on Docker [8]). The site agent
is the site’s local resource manager and coordinator with the
central controller. It receives deployment requests from the
clients within the site’s range and from the central controller.
Each application component is deployed, by the container
runtime, with an associated container agent. Each compo-
nent’s container agent handles any inter-site communication
between application pipeline stages spanning multiple sites.
Finally, the monitoring subsystem continuously gathers met-
rics about the site’s resource usage and metrics pertaining to
the SLOs of the application components hosted on that site.
The monitoring subsystem is further discussed in §5.3.2.

Deflection. In general, a site forwards new deployment re-
quests for coordinated applications to the central controller
and autonomously handles the local deployment of stan-
dalone application requests. When a site’s resources are
highly utilized, even standalone application requests can-
not be locally served and have to be deflected to the central
controller. The central controller will then deploy the ap-
plication on a nearby edge site that can meet the applica-
tion’s SLOs. A site’s deflection policy is controlled by two
parameters: threshold and percentage. When the resource
commitment at a site exceeds a specified threshold, up to the
indicated percentage of new client requests will be deflected
to the centralized controller for alternative placement. A
fully saturated edge site deflects all new requests. OneEdge’s
deflection is inspired by a similar dynamic load shedding
technique previously proposed in rack-scale systems [23].

5.3 Controller Components and Operation

OneEdge’s central controller (Fig. 4, left) plays two crucial
roles. First, it determines the placement of cross-site applica-
tion pipelines, a need typically associated with coordinated
applications. Second, it continuously monitors the entire
infrastructure for significant load imbalances and E2E appli-
cation SLO violations. When such incidents are detected, the
controller will make reallocation and/or migration decisions
to ameliorate the problem. The two roles are fulfilled by the
controller’s proactive and reactive policies, respectively.

5.3.1 Proactive Policies

Fig. 4 (left) shows the central controller’s workflow for han-
dling deployment requests received from site agents (mainly
for coordinated, but also for standalone applications due to
deflection). The monitoring subsystem may also insert recon-
figuration requests into the request queue to avoid potential
SLO violations detected through the monitoring statistics
(see §5.3.2). The resource scheduler processes the requests in
order, making placement decisions to match each request’s
requirements: (i) type—standalone or coordinated; (ii) E2E
latency SLO—inferred from the application pipeline to be
launched (similar to Fig. 3); and (iii) spatial affinity—inferred
from the request-initiating client’s GPS location. We use the

OneEdge: An Efficient Control Plane for Geo-Distributed Infrastructures

metrics defined in §3.2 to quantify E2E latency and spatial
alignment in the proactive scheduling decisions.

To facilitate resource sharing while respecting application
SLOs, OneEdge uses offline profiling to generate a resource
requirement profile (RRP), for each application component
that may be shared across client requests. The RRP specifies
the resource commitment needed for each stage of an appli-
cation pipeline as a function of the number of concurrent
clients. RRP is used by both the site agent and the central
controller’s resource scheduler to make allocation decisions
and is therefore populated in both sets of components.

The placement module in the resource scheduler selects the
site(s) to launch the application pipeline for the client request.
In making this placement decision, the resource scheduler
consults the aggregate state which is the composite of the re-
source commitments of all the yDCs. Due to the autonomous
decision making at the yDCs, the aggregate state may not
be up to date. Keeping the aggregate state eventually consis-
tent is a principle (§4) we adopted to give local autonomy
for making rapid deployment for latency-critical standalone
applications. Placement decisions are made optimistically,
under the assumption that aggregate state is up to date. Our
approach follows the “think globally, act locally” conven-
tional wisdom in distributed systems.

A coordinated application may comprise several stages, which
can straddle multiple edge sites due to a range of deploy-
ment or resource availability reasons (§3.1). Correct appli-
cation execution requires all involved components to be de-
ployed atomically, thus necessitating cross-site coordination
when the application spans multiple edge sites. For example,
even individual client mobility in the connected vehicles
app would involve multi-site coordination since the client’s
pipeline may span multiple sites. As individual sites make
autonomous deployment decisions for standalone applica-
tions, atomic modification of the distributed state is required.
For this reason, we use a 2-phase commit (2PC) protocol
as the starting point to enable coordinated updates of the
authoritative state that is distributed across edge sites.

It is the role of the transaction manager in the central con-
troller workflow to atomically launch the placement deci-
sions using 2PC. At the end of the first phase, the transaction
manager will know if the placement decision has been ac-
cepted by all the involved sites. In this case, the second phase
of the transaction is to confirm the placement decision to
the involved pDCs. If any of the these sites rejects the de-
cision in the first phase, the transaction manager sends an
abort message in the second phase to all the involved sites,
and updates its aggregate state using the authoritative state
information received from the sites. The yDCs update their
internal authoritative states upon receiving the abort mes-
sage. After an abort, the request is re-enqueued in the central

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

controller’s request queue with a higher priority. Periodic
state updates from edge sites ensure that the aggregate state
does not significantly diverge from the ground truth.

As the resource scheduler updates the aggregate state af-
ter completing every request and uses the new aggregate
state to process the next request, an invariant that should be
maintained by the transaction manager is that the transac-
tions should appear to be applied on the sites serially. We
discuss optimizations to preserve this requirement without
compromising performance in §5.3.3.

5.3.2 Reactive Policies

While the central controller’s proactive policies place appli-
cations so that E2E SLOs are met and resource utilization
across the infrastructure is balanced, continuous adaptations
may be needed for various reasons. First, autonomous de-
ployments of standalone applications at edge sites can cause
utilization imbalance and increased resource pressure at indi-
vidual edge sites. Second, client mobility can cause frequent
load shifts between edge sites serving the same application.
Such events can lead to application SLO violations, thus the
controller needs to reevaluate its resource allocation and
application placement decisions periodically. At the heart of
these reevaluations lies OneEdge’s monitoring subsystem.

Hierarchical SLO Monitoring. Each site has its own mon-
itoring subsystem, where the container agent obtains and
periodically aggregates each locally running application’s
metrics of interest (e.g., per-stage execution time). For stan-
dalone applications, the aggregated statistics are conveyed
to the site agent. If the site agent detects application SLO vio-
lations, it attempts to alleviate the issue locally by allocating
additional resources to the suffering application’s containers.
If that is not possible (e.g., no local resource availability or
client mobility), the agent notifies the central controller.

For coordinated applications spanning multiple edge sites,
per-site statistics have to be combined to determine potential
SLO violations. The site agent forwards the locally aggre-
gated statistics (e.g., execution times, inter-stage communica-
tion latency, queuing between stages) to a preselected leader
site, which hosts some of the application pipeline’s stages.
The leader site summarizes the collected statistics and sends
a digest to the central controller’s monitoring manager. The
monitoring manager uses this information to determine if an
application reconfiguration (e.g., increase resource allocation
at each involved site or migrate application stages) is neces-
sary; if so, it generates a new request in the request queue.
For example, in Fig. 3, fading communication between the
client and the first stage of the application would violate S,
and would trigger a reconfiguration.

Dynamic Resource Reallocation. The first reaction to de-
tected SLO violations is a gradual resource allocation increase

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

for the container(s) hosting the target application pipeline’s
stages. The controller uses the RRP (§5.3.1) as an application-
specific guide to define the extra resources that need to be
allocated to avoid the SLO violation, as follows. The alloca-
tion for the affected application is increased by A dummy
clients, where A is a configuration parameter (a small posi-
tive integer). Suppose C is the number of clients currently
served by the application pipeline. In that case, the allocation
is increased to that needed for C + A, using RRP to identify
the required resources corresponding to the new number of
clients. Incremental allocation provides the agility necessary
to react quickly to surges in resource needs.

The second reaction knob is the migration of the application’s
pipeline stages from the site experiencing the load spike that
caused the SLO violation to other sites. The central con-
troller uses three inputs to guide this action: (a) knowledge
of spatially proximal sites to the affected site, (b) the resource
commitments at these proximal sites (available from aggre-
gate state) to ensure load balance, and (c) the requirements
of the application components to be migrated.

5.3.3 Performance Optimizations

Enhanced 2PC. The central controller uses a 2PC proto-
col to deploy coordinated applications spanning multiple
sites. The traditional semantics of 2PC would abort a trans-
action T; if there is a mismatch between the controller’s
aggregate—but often stale—state when T; was generated by
the resource scheduler and the site’s authoritative state when
T; is processed at the site. Using 2PC semantics as the start-
ing point simplifies the centralized controller’s state man-
agement, since the authoritative state is held in the respec-
tive geo-distributed edge site. To avoid unnecessary aborts,
OneEdge leverages the observation that a transaction need
not abort as long as the sum of the transaction’s requested
resources and currently reserved resources does not exceed
the site’s resource capacity (Omega [28] exploits a similar
idea in a datacenter setting). When such conditions are met,
instead of aborting the transaction, the site agent updates the
authoritative state with the transaction’s allocation request
during phase one of the protocol, and informs the central
controller of the actual site resource commitments to update
the aggregate state. The key difference between baseline and
enhanced 2PC is the semantic redefinition of what consti-
tutes a state conflict (i.e., controller’s and site’s states do not
need to match, but sufficient resources need to be available).

A second optimization to conventional 2PC reduces the la-
tency on the critical path from two WAN traversals to one.
In the first phase, a site replying affirmatively to a deploy-
ment request also reserves the requested resources. If the
controller receives affirmative responses from all affected
sites, it notifies the client in parallel with the execution of the
second phase. Thus, the WAN latency for the second phase

Enrique Saurez, Harshit Gupta, Alexandros Daglis, and Umakishore Ramachandran

can be overlapped, as the site can start receiving actual data
plane actions from the client ahead of the second phase’s
completion. If the transaction is aborted, the second phase
frees each site’s reserved resources.

Transaction Pipelining. It is reasonable to expect geo-
spatial diversity across successive client requests arriving
at the central controller. Successive transactions affecting
disjoint sets of sites are independent; so, the transaction man-
ager could execute them in parallel. However, for the correct
operation of the resource scheduler, transactions should ap-
pear to be executed serially by the transaction manager. One
way of exploiting parallelism and preserving this ordering
invariant is to enforce ordering at the destination sites.

The following conditions should be met at the destination
site to ensure that transaction order is preserved while exe-
cuting transactions (which may or may not be independent
of each other) in parallel: (1) successive transactions that
affect the same site should be processed by the site in the
scheduler’s order of generation, and (2) a transaction abort
should correctly restore the authoritative state at the site
before that site processes subsequent transactions.

We denote D(T;) to represent the dependency set of transac-
tions T; for which T; — T;. Similarly we denote AD(T;) to
denote anti-dependency, i.e., the set of transactions T; such
that T; — T;. A transaction T; is eligible to be processed at
each affected site so long as all the transactions in its depen-
dency set D(T;) have been completed. Every transaction T;
sent to a site contains D(T;) and AD(T;).

The site will not process T; unless it has already received and
processed T;. The completion of T; will trigger the deletion
of all the incoming edges from the transactions in AD(T}),
possibly making some of them eligible for processing. If T;
is aborted, the aggregate state is rolled back accordingly. Fur-
ther, this abort will trigger a cascading rollback of the pend-
ing transactions that transitively depend on T; (i.e., starting
from the members of AD(T})). These aborted transactions
will result in a re-submission of the associated control plane
requests to the request queue. However, aborts are uncom-
mon, because, per our Enhanced 2PC protocol, they only
occur if the site’s resources have been depleted (and not due
to a mere mismatch between the central controller’s and the
site’s state of resource availability).

Additionally, to prevent queue buildup at the destination
sites, we use a windowing technique, which limits the maxi-
mum number of outstanding transactions that can be sent to
a given site. The limit ensures that a site is not overloaded.

5.3.4 Fault Tolerance and Scaling up

Fault tolerance for the centralized controller is provided in
a standard manner. We assume that the central controller
runs in a robust environment (e.g., Cloud datacenter). While

OneEdge: An Efficient Control Plane for Geo-Distributed Infrastructures

the server that hosts the central controller may fail, it is
improbable for the entire datacenter to fail. Therefore, the
approach to fault tolerance is to have a secondary instance
of the central controller running in tandem with the primary
in another server. All the pertinent information involved
in the primary workflow (§5.3.1) is replicated, including in-
flight transactions. On a primary failure, the secondary takes
over and rolls back to an aggregate state comprising only
complete transactions, by issuing aborts for all the in-flight
transactions and resubmitting them as new requests.

Given our scope, we choose a simple design for the central
scheduler. In a full-scale scenario, the central scheduler can
still become a bottleneck, calling for a more sophisticated de-
sign that allows scaling its performance. Well-known Cloud
techniques [28] can be directly applied to address such chal-
lenges; this is part of our future work (§7).

6 Performance Evaluation

OneEdge is implemented in C++11 on Ubuntu 18.04. Each

application component is dynamically linked in to a base

OneEdge container image built using the Docker framework.

We use MongoDB to store the transaction manager’s aggre-

gate state, and ZMQ for communication among the system’s

distributed components. The evaluations we report in this
section aim to verify the following hypotheses:

(1) Transaction pipelining and enhanced 2PC (§5.3.3) are
effective in improving OneEdge’s performance (§6.2.2).

(2) OneEdge’s hybrid nature delivers lower-latency place-
ment decisions compared to a centralized control plane
for standalone requests (§6.2.3).

(3) OneEdge strikes a good compromise between deploy-
ment latency for standalone requests and load balance
across latency-equivalent edge sites (§6.2.4).

(4) OneEdge is similar to a centralized control plane at meet-
ing both application types’ SLOs, while achieving much
lower deployment latency for standalone requests (§6.3).

We derive a centralized control plane baseline by configuring
OneEdge’s site agents to deflect all incoming requests at
edge sites to the central controller. The resulting centralized
baseline is functionally similar to KubeEdge [34], enhanced
with the pipelined control plane actions described in §5.3.3
and satisfying the applications’ E2E latency constraints.

6.1 Experimental Platform

Azure Regions. For the microbenchmarks and end-to-end
application evaluation, we emulate a geo-distributed edge in-
frastructure with sites in multiple metropolitan areas. To do
so0, we use resources in five Azure regions: WestUS, WestUS
2, CentralUS, South Central, and East US. We host the central
controller on the East US region and use each of the remain-
ing regions to emulate a different metropolitan area. In each

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

region we create multiple VMs, and each VM represents a
uDC (i.e., an edge site) located within that metropolitan area.
We used “Standard D16s_v4” VMs, each featuring 16 vcpus
and 64 GiB memory. Emulated clients are tied to a specific
metropolitan area and are hosted in the corresponding Azure
region. Clients exhibit mobility only inside their associated
metropolitan area, but not across metropolitan areas.

6.2 Microbenchmarks

In this section, we stress-test OneEdge by executing all the
control plane actions without any application running or any
actual resource allocations. To stress-test at scale, we emulate
#DCs and parameterize the container runtime within each
uDC. Further, we synthesize the client workload presented
to OneEdge to drive the controlled experiments.

6.2.1 Experimental Setup

Control-plane Parameters. OneEdge consists of one Cen-
tral Controller, multiple yDCs, and multiple Clients (Fig. 4).
We use a simplified placement logic to stress test our per-
formance optimizations. The controller’s resource scheduler
uses two common heuristics: round-robin placement across
1#DCs (in the same metropolis) to improve allocation balance,
and collocation of an application’s pipeline stages on the
same puDC, if capacity allows, to improve application E2E la-
tency. We set resource scheduling latency to 2 ms, matching
the best-case performance of our resource scheduler imple-
mentation used in the end-to-end study (§6.3).

Emulated pDCs. In the emulation, although each uDC is
represented by a single VM, its resource capacity is mod-
eled as comprising 32 servers with 128 cores and 256GB of
DRAM per server. Note that the modeled per-uDC capacity
is only for book-keeping purposes in the microbenchmark
experiments—resources are not actually allocated.

Container Runtime. To parameterize the times associated
with the management of an application pipeline on a yDC,
we measure the Docker container runtime used in the site
agent’s implementation (Fig. 4). The measured mean con-
tainer deployment time (consisting of a simple application
and its container agent library) is 583ms, with a std. devi-
ation of 143ms. The measured mean time for updating an
already deployed container’s resource allocation (CPU-set
and memory limit [9]), is 25ms, with a std. deviation of 4ms.
We use these results to parameterize the yDC’s reaction time
upon every deployment request in the microbenchmarks.

Workload Characterization. We generate a synthetic work-
load with a mix of deployment requests for coordinated and
standalone applications (abbreviated as C-App and S-App,
respectively). We construct the synthetic workload by study-
ing the cellular mobility of cars in San Francisco (SF), using
the SF cabs dataset [25] and locations of cellular towers in
SF [4]. We use k-means to group the cellular towers into

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Parameter Value
Container Startup/Update 583 ms/25 ms
One-way WAN latency 20 ms
Window Size 100
Resource Scheduling Latency 2 ms

Modeled per-uDC resource capacity | 4096 cores, 8 TB memory
Per-request resource allocation 1 core, 512 MB memory

C-App Exponential ff range 10-100 s
C-App Poisson A range (per uDC) 1-8 571

S-App Exponential range 100-300 s
S-App Poisson A range (per uDC) 2-25571

Table 2: Summary of parameters for microbenchmarks.
1.0

’

0]
]
©
2 0.8 ¥,

2 "
: g’O 6 - Controller-site
OS] WAN RTT [ms]
2coq4 —e— 40.0
© = > -%- 80.0
g me 120.0
g 0.2 =<- 200.0

20 40 60 80 100
Window Size Per Site

Figure 5: Impact of Pipelining on Aggregate Throughput.

32 clusters and select each cluster’s resulting centroid as a
4#DC’s location. Clients send allocation requests to the geo-
graphically closest yDC, hence client-yDC communication
does not incur WAN latency. As each mobile client’s clos-
est uDC changes over time, C-App clients trigger migration
requests, while S-App clients send an allocation request to
the new closest yDC. Since taxis represent a small subset
of a city’s whole car fleet, we overlay the 23 days worth of
data in the SF cabs dataset to increase the number of simul-
taneously active cars. We model each yDC’s request arrival
using a Poisson distribution and each client’s connection
duration to a given yDC using an exponential distribution,
and instrument these distributions with the ranges of client
inter-arrival and connection duration extracted from our
enlarged overlaid dataset, for both C-App and S-App. Table 2
summarizes the parameters used in the microbenchmarks.

We use the parameters extracted from SF to model one metro-
politan area’s workload. To conduct larger-scale experiments
with multiple metropolitan areas, we replicate the edge in-
frastructure (using additional Azure Regions), and the above
SF workload to every additional metropolitan area we model.

6.2.2 Evaluation of OneEdge’s Optimizations

We evaluate OneEdge’s optimizations (§5.3.3)—transaction
pipelining and enhanced 2PC—using a single yDC.

Transaction Pipelining. The windowing mechanism in
the transaction manager (§5.3.3) aims at mitigating the effect
of the WAN round-trip time (RTT) between the controller
and the pyDC on the throughput of placement requests. The
choice of window size is a function of the WAN RTT. To study
the effect of the window size on OneEdge’s throughput, we

Enrique Saurez, Harshit Gupta, Alexandros Daglis, and Umakishore Ramachandran

.6

ict Fraction
o

2PC Type
0.4 — BASELINE
: ENHANCED

o
N)

Mean Conflict Fraction
Available resources
(fraction of capacity)

Mean Confl

20 212223724 25
S-App request rate
per site [ops/s]

e

18 20 22 24
S-App request rate per site [ops/s]

g
o

Figure 6: MCF of baseline and enhanced 2PC for typical S-App
and C-App request rates from the SF cabs dataset (Table 2).
The blow-up shows the increase in MCF and the yDC’s re-
maining available resources for enhanced 2PC.

construct an experiment consisting of only C-App requests,
where the request generation rate is set to correspond to the
maximum throughput achievable by the central controller
without any queuing delays (i.e., equivalent to having a WAN
RTT of zero and no transaction aborts). Fig. 5 plots the effect
of window size on OneEdge’s aggregate throughput (normal-
ized to the maximum throughput achievable) for different
WAN RTT settings. Naturally, the minimum window size
required to maximize throughput grows as a function of
WAN RTT. For example, a WAN RTT of 40 ms requires a
minimum window size of 50 transactions to reach the maxi-
mum throughput. This result highlights the need to batch
multiple placement requests to mitigate the negative impact
of WAN RTT from the controller to the uDC. Therefore, we
have chosen a conservative window size of 100 for all the
remaining microbenchmark experiments.

Enhanced 2PC Protocol. This optimization aims at avoid-
ing unnecessary rollbacks of placement requests due to state
mismatch between the central controller and a yDC (§5.3.3)
by performing state reconciliation. To evaluate the tech-
nique’s effectiveness, we use the metric mean conflict fraction
(MCF), defined as the average number of conflicts per success-
ful transaction. A score of zero represents no conflict, while
a non-zero value indicates the number of aborts that happen
for each successful transaction. For this evaluation we use
a mix of C-App and S-App requests and disable deflection to
deterministically control which requests are handled at the
central controller as opposed to locally at the uDC.

In this evaluation, we focus on scenarios with high pDC re-
source commitment. We therefore use the higher arrival rate
ranges from Table 2: we vary the C-App and S-App request
arrival rates between 4-10 and 15-25 requests per second,
respectively, while keeping the C-App and S-App client dura-
tions fixed at 50 and 200 seconds, respectively.

Fig. 6 shows the MCF for the enhanced 2PC compared against
baseline 2PC over a range of request arrival rates. The MCF
of baseline 2PC is consistently higher than the enhanced 2PC,
which only becomes non-zero at high arrival rates, when

OneEdge: An Efficient Control Plane for Geo-Distributed Infrastructures

o
N
o

Control Plane Configuration

== ONEFOG
== CENTRALIZED
0

Central South West West
us Central US us us 2

-
& [} =] o
o o o o

Deployment latency [ms]
N

Figure 7: S-App deployment latency: OneEdge vs. Centralized

the resource commitment at the uDC is sufficiently high to
cause transaction failures due to capacity overcommitment.
For example, at an S-App rate of 20 req/s, the uDC resource
commitment is 88-90% of its total capacity and it is only
from this point on that the MCF increases for enhanced 2PC.
Fig. 6’s inset plot is a blow-up of the enhanced 2PC results to
show the increase in MCF with increasing request rates. Even
at an observed capacity of 95% (corresponding to the largest
S-App arrival rate shown in the graph), the MCF for enhanced
2PC is an order of magnitude lower compared to baseline 2PC.
On realistic deployments with multiple uDCs, the central
controller can further reduce the probability of capacity-
caused conflicts by avoiding scheduling new requests on
1#DCs with resource commitments over a threshold (e.g., 80%).

The higher the MCF, the higher the probability of failure,
hurting the latency of C-App requests because their success-
ful execution requires repeated scheduling attempts across
the WAN. The MCF trends can be used to extrapolate the
probability of a failure for applications deployed across n
p#DCs: the probability of failure is 1 — (1 — f)", where f
is the probability of transaction failure on a single yDC,
which equals MCF/(1 + MCF). A higher MCF increases the
likelihood of failure, which means that the enhanced 2PC’s
positive effect is multiplicative in the multi-yDC scenario.

The results from the windowing and enhanced 2PC experi-
ments validate our first hypothesis regarding the effective-
ness of OneEdge’s optimizations in improving performance.

6.2.3 Control Plane Effect on Standalone Applications

Next, we quantify OneEdge’s performance advantage over a
centralized control plane. As we noted earlier, the centralized
baseline is similar to KubeEdge [34] in terms of control plane
actions. The metric of interest is latency per S-App deploy-
ment request. The experiment uses a DC in each of the four
metropolitan regions (§6.1). Deployment requests originate
from the locales of all four uDCs, following the parameters
in Table 2. For this experiment, we turn off deflection to fully
control where each request is processed.

Fig. 7 shows the deployment latency of S-App requests from

each of the four metropolitan areas considered in our sce-
nario. We chose scenarios with low load to avoid queue

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

o
o

"y Deflection Threshold
Sos £140 — 0.0 (Centralized)
s --- 0.3
© 120 i
< i
'g 0.4 % 100 ---- 056
203 — 80 == 075
° <
%02 g 60
S > 40
< 2 20
0.0 2 o
0 20 40 60 80 100 0 20 40 60 80 100
Deflection Percentage Deflection Percentage
(a) Allocation imbalance. (b) Deployment latency.

Figure 8: Trade-off in S-App request handling at proximal
uDC vs. at central controller.

buildup in the scheduling entity. We categorize the requests
based on their origin yDC. Centralized incurs higher deploy-
ment latency than OneEdge, and is higher for yDCs further
away from the central controller. In contrast, OneEdge in-
curs a constant low latency irrespective of the WAN latency
between edge and controller, as it depends only on the con-
tainer’s allocation update latency (25 ms as per Table 2).

These latency results corroborate our second hypothesis re-
garding the advantage of OneEdge over a centralized control
plane in terms of deployment latency for S-App requests.

6.2.4 Latency Versus Load-balance Trade-off

OneEdge’s deflection mechanism (§5.2) enables the central
controller to load-balance S-App applications across pDCs
that are equivalent in terms of providing the latency require-
ments of the requesting client. We construct a microbench-
mark to evaluate the trade-off between achieving low latency
for S-App requests and the desired property of resource allo-
cation balance across latency-equivalent yDCs. The metric
used is allocation imbalance, defined as the difference be-
tween the highest and lowest resource commitments among
the latency-equivalent pDCs at a given time. Hence, a value
of zero for this metric indicates perfect load balance.

We evaluate a setting of 8 uDCs in the same metropolitan
area, with all of them equally capable of meeting the latency
requirements of all the emulated client requests within that
region. We calculate the allocation imbalance metric for this
set of uDCs. When the central controller receives a deflected
request, its placement algorithm selects the uDC with the
lowest resource commitment towards a more evenly bal-
anced load. The workload consists of only S-App requests
which are skewed such that if all the requests are handled
locally (i.e., no deflection), 50% of the yDCs in each cell would
have 80% of their resources committed, while the remaining
50% of the uDCs would have 20% of their resources commit-
ted on an average. Thus, this workload without deflection
results in an allocation imbalance of 0.6.

We present results for the 8 uDCs emulated in the West US
Azure region, but similar trends hold for the other Azure

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

regions as well. Fig. 8 shows the allocation imbalance when
applying our placement heuristic. The figure shows the trade-
off between deployment latency and allocation imbalance for
different settings of the deflection threshold and percentage.
Increasing the deflection percentage for a given threshold
results in better allocation balance (Fig. 8a) at the expense
of higher request completion latency (Fig. 8b) and a higher
load on the central controller.

It is noteworthy that for a given deflection percentage, lower-
ing the deflection threshold, which would result in increasing
the number of deflections, does not result in a proportionate
decrease in allocation imbalance. For example, in Fig. 8a,
one can see a significant reduction in allocation imbalance
between thresholds of 0.5 and 0.6. In contrast, the reduction
in allocation imbalance between 0.3 and 0.0 is much smaller.
This result is intuitive because 0.5 threshold is close to the
average resource commitment for the evaluated yDCs.

These results support our third hypothesis regarding the use
of deflection for the latency/load-balance trade-off. Further,
they suggest an intuitive policy for setting the deflection
threshold, namely, the average resource commitment across
equivalent yDCs. Such a simple policy would be easier to im-
plement than striving for an optimal trade-off, which requires
the knowledge of the lifetime of the deployed applications
and may not be readily available.

6.3 End-to-end Evaluation

The microbenchmarks stress-tested the control planes with-
out real allocation of edge resources or execution of applica-
tion components. In this subsection, we detail an E2E eval-
uation using the experimental platform and OneEdge’s full
implementation for running mockups of the exemplar situa-
tion awareness applications discussed in §3. We also compare
OneEdge to configurations that are architecturally equiva-
lent to fully centralized and fully decentralized control planes.
The purpose of the evaluation is to verify our last hypothesis,
namely, OneEdge’s ability to provide both low latency for
S-App applications and meet application SLOs expressed as
latency bounds and spatial affinity (§3.2).

6.3.1 Experimental Setup

Applications. For end-to-end evaluations we experimented
with two applications: Drone (based on [12] and [37]) as
an instance of a S-App and View-Fuse (based on [36]) as an
instance of a C-App.

S-App uses a camera input and inertial measurement to deter-
mine the pose and location of the drone, using a Kalman-filter
based algorithm. The drone application’s pipeline comprises
two stages: 1) feature tracking and detection from the iner-
tial measurement unit (IMU) and cameras, and 2) pose state
estimation (update). For our evaluations, we use a dataset
generated using the ROS [26] framework for both the camera

Enrique Saurez, Harshit Gupta, Alexandros Daglis, and Umakishore Ramachandran

and inertial measurements [14]. To model the mobility of
the drones (each drone is operating independently), we use
the San Francisco cab dataset [25], associating an individ-
ual cab mobility to that of a drone. S-App is run with the
above synthetic dataset and mobility data for a mockup of
the standalone application for our evaluation studies.

C-App fuses the objects detected by multiple vehicles from
their respective fields of view to create sub-regional view
(Fig. 3), which is then sent back to the vehicles in the same
geographical locale to improve collision avoidance decisions.
To create a mock-up of this application for our evaluation
purposes, we first created a dataset using Carla [10]. Specif-
ically, we used 80+ cars plying through the most complex
map available in Carla (called Town3). A 15-minute Carla
simulation produces a spatio-temporal dataset consisting of
object detections by individual vehicles. This dataset is then
used as the input to C-App for a mock-up of the coordinated
application for our evaluation studies.

Mixed Workload Creation. For the E2E evaluation we
wish to create a mixed workload consisting of both stan-
dalone and coordinated applications exercising the control
plane simultaneously. The maps are different for the two
applications in the above data collection. However, the only
purpose for the map is to assign a spatial location for a client
relative to others in the same application. Therefore, to unify
the data corresponding to each of the two maps, we shrunk
the larger map (SF city) so that its four corners are aligned
with the Carla Town3 map. The implication from the applica-
tion point of view is that the drones appear to move slower
than in the original dataset.

Control Plane Configurations: We consider 4 configura-
tions: Centralized and OneEdge with three different deflec-
tion thresholds for S-App requests: 0.5, 0.75, and 1.0 (the
deflection percentage is fixed at 100%).

Emulated pDCs. Each yDC is represented by a VM in an
Azure region (which represents a Metropolitan area). Each
emulated pDC represents a geographical region within the
metropolis as detailed in §6.2.1. As mentioned in §6.1, each
VM has 16 vcpus with 64 GiB memory. In contrast to the
microbenchmarks, for the E2E evaluation, the resources are
actually deployed and the application pipelines execute on
the deployed resources.

Evaluation Metrics: In addition to the control plane figures
of merit such as deployment latency and spatial alignment,
we also record SLO violations for all deployed application
components. For S-App, the latency bound is 12 ms for the
first level (feature tracking) and 50 ms for the second level
(update). For C-App, latency bounds are 10 ms for the first
level (sub-region view) and 100 ms for the second level (re-
gion view), similar to prior work [16]. Any perceived latency
exceeding these bounds is considered an SLO violation.

OneEdge: An Efficient Control Plane for Geo-Distributed Infrastructures

Control plane config (Deflection Threshold)
120 —e— Centralized (0.0) ~-=~ OneEdge (0.75)

§ --#-- OneEdge (0.5) -+ OneEdge (1.0)
-100 e = = -
S [} p—p———
&g 80 £%1s0
< 60 Placement Type %g
o2 —— OneEdge @ >100 meseT
>Z 0gd
< = 40 Gree‘dy) °0F e
= Spatially Agnostic g8 50 —
g 20 g
I T T T L

o

70 80 90

0 200 400 600 Number of simultaneously active

Time [s] drones (S-App clients)
(a) Spatial alignment (b) Deployment latency
for C-App. for S-App.

Control plane config (Deflection Threshold)
@ Centralized (0.0) OneEdge (0.5) &=a OneEdge (0.75) ¥ OneEdge (1.0)

(o]

N

Average E2E Latency
SLO violation rate (%)
Sy

0 GN=- % : -
64 80 96

Number of simultaneously active
drones (S-App clients)

(c) E2E Latency SLO violations detected for C-App.

Figure 9: Evaluation of E2E situation awareness applications.

6.3.2 Analysis of Results

Fig. 9a shows the achieved spatial alignment for the C-App
application. The graph depicts a representative window of
time for the C-App’s execution in one metropolitan area. We
partition the metropolitan area into 48 Aols and report the
average spatial alignment (calculated for each Aol as per §3.2).
We also plot a Greedy and a Spatially Agnostic placement,
as reference points. Greedy represents a fully decentralized
design similar to Foglets [27], which selects the closest uDC
every time a vehicle requests to connect to the View-Fuse
C-App. It is an idealized approximation of any real greedy
implementation: it is computed offline, and does not account
for migration or deployment latencies. Spatially Agnostic
places each request on any pyDC with available resources,
without taking the client’s location into account.

An optimal placement would achieve 100% spatial alignment.
Suboptimal spatial alignment implies that the fused results
given back to the vehicles by the sub-region View in Fig. 3
are incomplete, resulting in lower-fidelity decision-making
by the vehicles. Fig. 9a shows that OneEdge achieves near-
perfect spatial alignment, outperforming Greedy, with down-
ward spikes attributed to the latency of migration causing
the achieved spatial alignment to lag behind the ground truth
of the vehicles’ spatial affinity. The huge gap with Spatially
Agnostic indicates the significance of spatial affinity in the
control plane’s placement decisions.

For Fig. 9b and Fig. 9c, we fix the clients of C-App (vehi-
cles) to 72 and sweep the number of clients using the S-App

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

(drones). In both graphs, a deflection threshold of 1.0 is ar-
chitecturally equivalent to a fully decentralized approach
similar to Foglets [27]. Fig. 9b shows the average deploy-
ment latency for S-App applications, while excluding outliers
from the calculation (e.g., cold starts). When all deployments
are handled locally—deflection threshold 1.0 and assuming
sufficient uDC capacity—OneEdge’s achieved deployment
latency compared to centralized is more than 3x lower. As
more requests are deflected, the deployment latency gap be-
tween OneEdge and the centralized control plane shrinks. A
higher deflection threshold in OneEdge yields lower S-App
deployment latency. More drones increase the probability
of reaching a site’s deflection threshold, leading to more
deflections and thus higher latencies for S-App applications.

Finally, Fig. 9c shows the average percentage of SLO vio-
lations for the sub-region view application component of
the C-App application under various control plane config-
urations. Similarly to Fig. 9b, the violations are presented
for a varying number of active drones. All three OneEdge
configurations display similar trends for SLO violation rates
as centralized, while delivering much better deployment la-
tency for S-App applications.

7 Conclusions and Future Work

OneEdge is an agile control plane for supporting situation
awareness applications on geo-distributed edge infrastruc-
tures. OneEdge’s contributions include its rich feature set
and novel distributed state management that allows concur-
rent scheduling decisions at the edge sites and the central
controller. The system has been evaluated with microbench-
marks and mock-up of situation awareness applications in a
multi-region Azure setup.

Avenues for future work include (a) Control plane federation:
We plan to partition the central controller into multiple such
controllers with overlapping coverage regions, using a co-
ordination mechanism akin to enhanced 2PC. Additionally,
pushing some of the bookkeeping from the central controller
to the edge sites (e.g., deflection management) could fur-
ther improve the system’s scalability. (b) Resource scheduler
parallelization: Currently, the central controller processes
requests sequentially; we plan to apply datacenter scheduler
optimizations [28] for parallelizing the central controller.

Acknowledgments

We thank our shepherd, Dr. Landon Cox, and all anony-
mous reviewers for their insightful feedback and suggestions,
which substantially improved the content of this paper. This
work was funded in part by NSF CPS-1446801, NSF CNS-
1909346, Cisco, and a gift from Microsoft Corp.

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

References

[1] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodik, Krishna Chin-

[11

[12

[13

(14

[15

—

]

—

—_

[l

=

talapudi, Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha.
2017. Real-Time Video Analytics: The Killer App for Edge Comput-
ing. Computer 50, 10 (2017), 58-67. https://doi.org/10.1109/MC.2017.
3641638

Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and
Coordinated Scheduling for Cloud-Scale Computing. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14). USENIX, Broomfiled, CO, 285-300.

Eric A Brewer. 2015. Kubernetes and the path to cloud native. In
Proceedings of the Sixth ACM Symposium on Cloud Computing. ACM,
Hawaii, USA, 167-167. https://doi.org/10.1145/2806777.2809955
City-Data. (accessed May, 2021). FCC Registered Cell Phone and
Antenna Towers in San Francisco, California. https://www.city-data.
com/towers/cell-San-Francisco-California.html.

Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Sriram Rao,
Giovanni M Fumarola, Botong Huang, Kishore Chaliparambil, Arun
Suresh, Young Chen, Solom Heddaya, et al. 2019. Hydra: a Federated
Resource Manager for Data-center Scale Analytics. In Proceedings of
the 16th USENLX Symposium on Networked Systems Design and Imple-
mentation (NSDI 19). USENIX, Boston, MA, 177-192.

Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy
Zwaenepoel. 2015. Hawk: Hybrid Datacenter Scheduling. In Proceed-
ings of the 2015 USENIX Annual Technical Conference (USENIX ATC 15).
USENIX, Santa Clara, CA, 499-510.

Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. 2015.
Tarcil: Reconciling Scheduling Speed and Quality in Large Shared
Clusters. In Proceedings of the 6th ACM Symposium on Cloud Computing.
ACM, Hawaii, 97-110. https://doi.org/10.1145/2806777.2806779
Docker. 2020. Docker Engine overview. https://docs.docker.com/
engine/.

Docker. (accessed May, 2021). Runtime options with Memory, CPUs,
and GPUs. https://docs.docker.com/config/containers/resource_
constraints/.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. 2017. CARLA: An Open Urban Driving Simulator. In
Proceedings of the 1st Annual Conference on Robot Learning (Proceedings
of Machine Learning Research, Vol. 78). PMLR, Moutain View, CA, 1-16.
M. Gerla, E. Lee, G. Pau, and U. Lee. 2014. Internet of vehicles: From
Intelligent Grid Autonomous Cars and Vehicular Clouds. In 2014 IEEE
World Forum on Internet of Things (WF-IoT). IEEE, Seoul, Korea, 241-
246. https://doi.org/10.1109/WF-10T.2014.6803166

Samira Hayat, Roland Jung, Hermann Hellwagner, Christian Bettstet-
ter, Driton Emini, and Dominik Schnieders. 2021. Edge Computing
in 5G for Drone Navigation: What to Offload? IEEE Robotics and Au-
tomation Letters 6, 2 (2021), 2571-2578. https://doi.org/10.1109/LRA.
2021.3062319

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A platform for fine-grained resource sharing in the data center.
In Proceedings of the 8th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 11). USENIX, Boston, MA, 22-22.
Roland Jung, Gernot Rischner, Eren Allak, Alexander Hardt-Stremayr,
and Stephan Weiss. 2020. AAU synthetic ROS dataset for VIO. University
of Klagenfurt. https://doi.org/10.5281/zenodo.3870851

Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas,
Kishore Chaliparambil, Giovanni Matteo Fumarola, Solom Heddaya,
Raghu Ramakrishnan, and Sarvesh Sakalanaga. 2015. Mercury: Hybrid
Centralized and Distributed Scheduling in Large Shared Clusters. In

[16]

[17]

(18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Enrique Saurez, Harshit Gupta, Alexandros Daglis, and Umakishore Ramachandran

Proceedings of the 2015 USENIX Annual Technical Conference (USENIX
ATC 15). USENIX, Denver, CO, 485-497.

Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E.
Haque, Lingjia Tang, and Jason Mars. 2018. The Architectural Im-
plications of Autonomous Driving: Constraints and Acceleration. In
Proceedings of the 23rd International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Williams-
burg, VA, USA) (ASPLOS ’18). ACM, New York, NY, USA, 751-766.
https://doi.org/10.1145/3173162.3173191

Patrick Lindemann, Tae-Young Lee, and Gerhard Rigoll. 2018. Sup-
porting Driver Situation Awareness for Autonomous Urban Driving
with an Augmented-Reality Windshield Display. In Proceedings of the
2018 IEEE International Symposium on Mixed and Augmented Real-
ity Adjunct (ISMAR-Adjunct). IEEE, IEEE, Munich, Germany, 358-363.
https://doi.org/10.1109/ISMAR- Adjunct.2018.00104

Karim Manaouil and Adrien Lebre. 2020. Kubernetes and the Edge?
Ph.D. Dissertation. Inria Rennes-Bretagne Atlantique.

Linux Manual. (accessed October, 2021). Tc - traffic control. https:
//linux.die.net/man/8/tc.

Microsoft Azure. (accessed October, 2021). Azure Geographies. https:
//azure.microsoft.com/en-us/global-infrastructure/geographies/.
Walter Milliken, Trevor Mendez, and Dr. Craig Partridge. 1993. Host
Anycasting Service. RFC 1546. https://doi.org/10.17487/RFC1546
Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. 2019. Agile Cold Starts for
Scalable Serverless. In Proceedings of the 11th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 19). USENIX, Renton, WA, 21.
Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. 2016. The Case for RackOut: Scalable Data Serving
Using Rack-Scale Systems. In Proceedings of the 7th ACM Symposium
on Cloud Computing, , USA, October 5-7, 2016. ACM, Santa Clara, CA,
182-195. https://doi.org/10.1145/2987550.2987577

Larry Peterson, Tom Anderson, Sachin Katti, Nick McKeown, Guru
Parulkar, Jennifer Rexford, Mahadev Satyanarayanan, Oguz Sunay,
and Amin Vahdat. 2019. Democratizing the Network Edge. ACM
SIGCOMM Computer Communication Review 49, 2 (2019), 31-36. https:
//doi.org/10.1145/3336937.3336942

Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Gross-
glauser. 2009. CRAWDAD dataset EPFL/Mobility (v. 2009-02-24).
Downloaded from https://crawdad.org/epfl/mobility/20090224. https:
//doi.org/10.15783/C7J010

Open Robotics. (accessed October, 2021).
tem(ROS). https://www.ros.org/about-ros/.
Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ramachan-
dran, and Beate Ottenwiélder. 2016. Incremental Deployment and
Migration of Geo-Distributed Situation Awareness Applications in
the Fog. In Proceedings of the 10th ACM International Conference
on Distributed and Event-based Systems. ACM, Irvine, CA, 258-269.
https://doi.org/10.1145/2933267.2933317

Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. 2013. Omega: Flexible, Scalable Schedulers for Large
Compute Clusters. In Proceedings of the 8th ACM European Conference
on Computer Systems. ACM, Prague, Czech Republic, 351-364. https:
//doi.org/10.1145/2465351.2465386

VaporlO. (accessed October, 2021). VaporlO: a nationwide platform
for edge. https://www.vapor.io.

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-scale Cluster Man-
agement at Google with Borg. In Proceedings of the 10th ACM Euro-
pean Conference on Computer Systems. ACM, Bordeaux, France, 1-17.
https://doi.org/10.1145/2741948.2741964

Robot Operating Sys-

https://doi.org/10.1109/MC.2017.3641638
https://doi.org/10.1109/MC.2017.3641638
https://doi.org/10.1145/2806777.2809955
https://www.city-data.com/towers/cell-San-Francisco-California.html
https://www.city-data.com/towers/cell-San-Francisco-California.html
https://doi.org/10.1145/2806777.2806779
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/resource_constraints/
https://doi.org/10.1109/WF-IoT.2014.6803166
https://doi.org/10.1109/LRA.2021.3062319
https://doi.org/10.1109/LRA.2021.3062319
https://doi.org/10.5281/zenodo.3870851
https://doi.org/10.1145/3173162.3173191
https://doi.org/10.1109/ISMAR-Adjunct.2018.00104
https://linux.die.net/man/8/tc
https://linux.die.net/man/8/tc
https://azure.microsoft.com/en-us/global-infrastructure/geographies/
https://azure.microsoft.com/en-us/global-infrastructure/geographies/
https://doi.org/10.17487/RFC1546
https://doi.org/10.1145/2987550.2987577
https://doi.org/10.1145/3336937.3336942
https://doi.org/10.1145/3336937.3336942
https://crawdad.org/epfl/mobility/20090224
https://doi.org/10.15783/C7J010
https://doi.org/10.15783/C7J010
https://www.ros.org/about-ros/
https://doi.org/10.1145/2933267.2933317
https://doi.org/10.1145/2465351.2465386
https://doi.org/10.1145/2465351.2465386
https://www.vapor.io
https://doi.org/10.1145/2741948.2741964

OneEdge: An Efficient Control Plane for Geo-Distributed Infrastructures SoCC ’21, November 1-4, 2021, Seattle, WA, USA

[31] Werner Vogels. 2009. Eventually consistent. Commun. ACM 52, 1 [35] Zhuangdi Xu, Harshil Shah, and Umakishore Ramachandran. 2020.
(2009), 40-44. Coral-Pie: A Geo-Distributed Edge-compute Solution for Space-Time

[32] Zhijun Wang, Huiyang Li, Zhongwei Li, Xiaocui Sun, Jia Rao, Hao Che, Vehicle Tracking. In Proceedings of the 21st International Middleware
and Hong Jiang. 2019. Pigeon: an Effective Distributed, Hierarchical Conference (December, 2020). ACM/IFIP, Delft, The Netherlands, 400—
Datacenter Job Scheduler. In Proceedings of the ACM Symposium on 414. https://doi.org/10.1145/3423211.3425686
Cloud Computing. ACM, Santa Cruz, CA, 246-258. https://doi.org/10. [36] Z.Zhang, S. Wang, Y. Hong, L. Zhou, and Q. Hao. 2021. Distributed
1145/3357223.3362728 dynamic map fusion via federated learning for intelligent networked

[33] Wikipedia. (accessed October, 2021). Pokemon Go. https://en. vehicles. In Proceedings of 2021 IEEE International Conference on Robot-
wikipedia.org/wiki/Pok%C3%A9mon_Go. ics and Automation (ICRA). IEEE, Xi’an, China, 12.

[34] Y. Xiong, Y. Sun, L. Xing, and Y. Huang. 2018. Extend Cloud to Edge [37] Alex Zihao Zhu, Nikolay Atanasov, and Kostas Daniilidis. 2017. Event-
with KubeEdge. In Proceedings of 2018 IEEE/ACM Symposium on Edge Based Visual Inertial Odometry. In Proceedings of the IEEE Conference
Computing (SEC). IEEE/ACM, Bellevue, WA, 373-377. https://doi.org/ on Computer Vision and Pattern Recognition (CVPR). IEEE, Honolulu,

10.1109/SEC.2018.00048 HI, 5391-5399. https://doi.org/10.1109/CVPR.2017.616

https://doi.org/10.1145/3357223.3362728
https://doi.org/10.1145/3357223.3362728
https://en.wikipedia.org/wiki/Pok%C3%A9mon_Go
https://en.wikipedia.org/wiki/Pok%C3%A9mon_Go
https://doi.org/10.1109/SEC.2018.00048
https://doi.org/10.1109/SEC.2018.00048
https://doi.org/10.1145/3423211.3425686
https://doi.org/10.1109/CVPR.2017.616

	Abstract
	1 Introduction
	2 Limitations of Existing Control Planes
	3 Situation Awareness Applications
	3.1 Application Model
	3.2 Application-level SLOs

	4 Challenges and Key Design Principles
	5 OneEdge System Architecture
	5.1 Overview
	5.2 Edge Site Components and Operation
	5.3 Controller Components and Operation

	6 Performance Evaluation
	6.1 Experimental Platform
	6.2 Microbenchmarks
	6.3 End-to-end Evaluation

	7 Conclusions and Future Work
	Acknowledgments
	References

