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As the popularity of online travel platforms increases, users tend to make ad-hoc decisions on places to visit
rather than preparing the detailed tour plans in advance. Under the situation of timeliness and uncertainty
of users’ demand, how to integrate real-time context into a dynamic and personalized recommendations
have become a key issue in travel recommender system. In this paper, by integrating the users’ historical
preferences and real-time context, a location-aware recommender system called TRACE (TravelReinforcement
Recommendations Based on Location-Aware Context Extraction) is proposed. It captures users’ features based
on location-aware context learning model, and makes dynamic recommendations based on reinforcement
learning. Specifically, this research: (1) designs a travel reinforcing recommender system based on an Actor-
Critic framework, which can dynamically track the user preference shifts and optimize the recommender
system performance; (2) proposes a location-aware context learning model, which aims at extracting user
context from real-time location and then calculating the impacts of nearby attractions on users’ preferences;
and (3) conducts both offline and online experiments. Our proposed model achieves the best performance in
both of the two experiments, which demonstrates that tracking the users’ preference shifts based on real-time
location is valuable for improving the recommendation results.
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1 INTRODUCTION
With the development of information technology and wide use of smartphones, the collections of
user data from tourism platforms becomes more and more available. The rich user data makes the
high-quality and personalized recommendation possible. To deal with the massive and complex
data from users, many researches have made efforts on integrating various information including
users’ tour histories, comment texts, geographical locations and so on to provide personalized
attraction recommendations for tourists. On users’ side, it is challenging for users to collect lots
of information on attractions and to plan their traveling routes in advance. As a result, users are
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likely to make ad-hoc decisions on the visiting places depending on their preferences as well as
their locations. So, a real-time recommender system is important to recommend and arrange travel
plans based on real time users’ context. However, it is a challenging issue to promptly capture
the real-time information and compute its impact of recommendation results in a recommender
system.

To address with these challenges, many existing studies attempted to design a context-aware rec-
ommendation system based on machine learning algorithms. On one hand, some studies (e.g., Chen
et al. [7]; Guo et al. [8]; Jiang et al. [12]; Shi et al. [24]) focus on extracting the users’ characteristics
by analyzing their personal information as well as historical travel data, and then predicting the
potential user interests, which help the system to effectively recommend appropriate attractions
to users. On the other hand, there are also many studies (Aydin, & Telceken [4]; Kurashima et al.
[15]; Sun et al. [26]; Xu et al. [34]; Yamasaki et al. [35]) focusing on optimizing the travel routes of
attractions. These works consider the relationship between the users’ preference and attractions’
locations, then attempt to find out the most economical or time-saving routes to users. Although
these efforts have achieved significant performance gain, most of them avoid to track the users’
real-time shift of preferences from users’ dynamic interactions with systems and ignore the impact
of users’ current location context on attraction selection, missing the opportunity in maximizing
user satisfactions.
In this paper, we propose a recommender framework called TRACE (Travel Reinforcement

Recommendation based on Location-AwareContext Extraction). First, the proposed method models
the recommendation process of attractions as a Markov Decision-Making Process (MDP) in order
to evaluate the long-term benefits of recommendation results rather than just calculating the short-
term accuracy. Second, we construct a reinforcement recommendation framework for the modeled
MDP based on Actor-Critic framework to dynamically train and update the parameters. In addition,
to help the TRACE model track the users’ real-time context, we innovatively operationalized
the meaning of travel context as travel sites distances and travel sites sequences and proposed a
location-aware user context learning model. Finally, we also evaluate the performance of TRACE
model using real-world data. There are three main research tasks in this study: user preference
extraction based on users’ historical behaviors, user context learning based on real-time location
information, and recommender system development.

Our contributions mainly include the following:

• The proposed TRACE recommender system innovatively integrates attention mechanism,
context-aware learning approach, and reinforcement learning techniques in travel recom-
mendations, where users’ needs are complex and dynamically changing.

• Our novel location-aware learning algorithm considers both travel sites distances and travel
order popularity to update the user context real time and dynamically, which has special
importance for the travel domain.

• The proposed TRACE was evaluated by both offline and online experiments from the compu-
tational and human-centered perspectives. Both experiments demonstrated the effectiveness
of TRACE.

2 RELATEDWORK
This work integrates three lines of research: travel recommender systems, user context learning,
and reinforcement learning. We will review each of these lines in the following subsections.
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Table 1. Research on Travel Recommender Systems

Type Study Data Source Method

Preference
Prediction

Shi et al. [23] Comment text Collaborative Filtering

Guo et al. [8] Comment text SVM, LDA

Jiang et al. [12] Comment text
Travel photo Topic Model

Chen et al. [7] Travel photo Bayesian Probability Model

Route
Optimization

Xu et al. [34] Comment text Monotone Ratio Scheduling
Algorithm

Aydin et al. [4] Comment text
Historical route Ant Colony Algorithm

Yamasaki et al. [35] Historical route Markov Model

Sun et al. [26] Historical route Hyperchain Induced Topic Search
Model

Kurashima et al. [15] Historical route LDA, Markov Model

Huang et al. [11] Historical route Multi-destination Route Planning
Algorithm

2.1 Travel Recommender Systems
Nowadays, online travel platforms are growing rapidly. More and more travel information can be
shared conveniently. It has become an important resource for tourists to make plans. Many studies
are now focusing on optimizing travel recommendation services by analyzing the data from online
travel communities based on machine learning algorithms. Table 1 summarizes the two types of
those studies: preference prediction and route optimization.
Most of the studies prioritize on recommending attractions to tourists by analyzing their his-

torical comments or routes information. For example, Shi et al. [23] proposed an ontology-driven
recommendation strategy based on user context, which could integrate users’ direct demands and
potential preferences in recommendation context based on the proposed ontology. Jiang et al. [12]
proposed user topic modeling and route topic modeling by mapping the description texts of users
and routes. At the same time, they used two kinds of social media information to complement
each other: travel diaries and photos. Chen et al. [7] detected the photos from Flickr platform to
automatically obtain the demographic characteristics and travel path of individuals or groups,
which could improve the performance of personalized recommendations to users.

However, these studies did not incorporate heterogeneous and rich context sources of travel
information such as location and routes, made available today with advances of technology. This
study believes the context information has great potential in inferring users’ preferences of travel
attractions. Therefore, it will move forward with incorporating those contextual information sources
into travel recommendations.

2.2 Recommendations Based on User Context
One of the most critical tasks in personalized recommendation is to comprehensively calculate
users’ preference representations based on user context. Traditional recommender systems aimed



1:4 Z. Fu et al.

to recommend the items that can potentially be attractive to users based on their past preferences.
However, more and more recent research has noticed that user context can help filter out irrelevant
past preferences (Aliannejadi, & Crestani [3]; Zhou et al. [40]). Contextual information is a kind
of extra information in addition to traditional users’ ratings or behavior data. It is widely used to
solve the cold-start problem and improve the users’ satisfaction in recommender systems (Zeng et
al. [36]). Recently, due to the explosive growth of e-commerce platforms, more and more attention
has been drawn to integrating user context with user historical behavior, which has apparent
advantages in extracting users’ preferences. For example, Hong et al. [10] believed that users’
interests and trust relations in mobile scenarios can be affected by context of time and location.
Therefore, to improve the quality of the user experience, they proposed an efficient recommendation
approach by combining the context-aware interests and context-aware trust values obtained from
users’ behavior. Unger et al. [27] designed a deep learning recommendation framework integrating
structured contextual information, including time, locations and user activities, with a Neural
Collaborative Filtering (NCF) algorithm to improve the performance of recommender systems.
Another attempt conducted by Alhamid and his colleagues [1, 2] on improving the user experience
of multimedia content recommendation was leveraging contextual information associated with
user-item interaction tuple to represent the latent preferences of users and items toward contexts.
Moreover, Wu et al. [31] proposed a context-aware user-item representation learning model based
on Factorization Machines (FM) for rating prediction, which extracts latent feature interactions
between users and items as contextual information to better model the user’s rating behavior.

However, the impacts of users’ context in recommender systems are not static, and not all features
of context have the same impacts on users. Therefore, many studies attempted at introducing
attention mechanism (Bahdanau et al. [5]; Chen et al. [6]; Xu et al. [33]) to adjust the weights of
different types of context. Wang et al. [29] attempted to imitate the editors’ behavior of filtering
news by proposing a dual attention mechanism to adjust the news’ context of timeliness and
categories for each day. In the research of session-based recommender systems, Liu et al. [18]
believed that the existing methods based on LSTM models could effectively capture users’ general
preferences from historical records, but failed to focus on the impacts of users’ recent preference.
Therefore, their research further focused on the users’ last click actions and proposed a short-term
attention/memory priority model to capture the short-term preferences from their last clicks. These
efforts collectively show the effectiveness of context-aware recommendation on improvement
of user satisfaction. In this paper, we applied this context-aware idea into our research. More
importantly, we innovatively operationalized the meaning of travel context as travel sites distances
and travel sites sequences.

2.3 Recommendations Based on Reinforcement Learning
Due to its adequate model capability and the support of dynamic feature capture, reinforcement
learning (RL) has achieved huge success in personalized recommendation. Compared with tra-
ditional deep learning algorithms, reinforcement learning is able to quickly extract the user’s
preferences and maximize their benefits from user-system interactions. Therefore, more and more
research efforts begin to integrate the reinforcement learning and deep learning technologies to
deal with real-time recommendation tasks. Zheng et al. [39] pointed out that users’ preferences
will change dynamically in the situation of news recommendations. In order to capture the user’s
real-time behavior, they proposed a Deep Q-Network (DQN) based reinforcement learning frame-
work, which captured the shift of preferences through the user-system interactions. Zhao et al.
[38] found that most existing recommender systems based on deep learning models only focused
on the current accuracy and ignored potential future rewards. To address the problem, they used
the Markov Decision Process (MDP) to model the interaction process between users and system,
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and proposed a recommendation model based on a Deep Deterministic Policy Gradient (DDPG)
framework. Similarly, Lei and Li [16] also formulated the problem of interactive recommendation
for different users as MDP and proposed a DQN-based model to estimate optimal policies. Wang
et al. [28] studied the problem of helping doctors to recommend prescriptions to patients. They
proposed a supervised reinforcement learning framework, which combined the advantages of deep
learning and reinforcement learning to deal with the complex relationship among three factors of
drugs, diseases, and patients.
Although those recent studies have fully considered the users’ preferences and the attractions’

characteristics, they only calculated the best matched attractions with users’ preferences through
learning the history records, focusing on short-term matches without considering the user gain
in a longer time span where users’ preferences may shift and evolve. We believe reinforcement
learning is able to weigh the long-time benefits in addition to the short-term immediate accuracy
of recommendation results. Therefore, this study incorporated a reinforcement learning technique
into the TRACE recommender system to overcome the shortcomings mentioned above.

3 USER BEHAVIOR ANALYSIS AND FEATURE CONSTRUCTION
In this section, we first analyzed the users’ behavior from historical data and found the impact of
real-time locations and the shift of preferences may affect the users’ choices on attractions. Besides,
to comprehensively represent the users’ characteristics, we proposed a hybrid preference learning
model, which can track both the users’ long-term and short-term preferences.

3.1 User Behavior Analysis: An Example User of TripAdvisor
To comprehensively understand the behavior patterns and characteristics of real-world travelers,
we collected the user data from TripAdvisor, one of the largest online travel platforms in the world
with hundreds of millions of user records, as the use case for research.

3.1.1 User Preference Shifts. In reality, most of the tourists may not always choose the same type
of attractions, and sometimes they would like to explore new attractions that may be different from
their past preferences. The following is an example of a user in TripAdvisor traveled to Japan from
March 15 to March 26, 2020, and left a series of trip records on the website each day (as shown in
Figure 1).

Fig. 1. Travel Sites of an Example User in Japan

After analyzing the types of different attractions visited by the user for each day, as shown
in Figure 2, we found that in the first four days of the trip, the most visited attraction type was
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"landmark architecture", and from the 5th to the 7th day was mainly "natural landscape" sites, while
in the last four days was "ancient site" attractions. Therefore, even in a few-day trip, users may
shift their preferences.

Fig. 2. Attraction Types of the Example User

3.1.2 Influences of Location Context. In addition to individuals’ preferences, users’ selections may
often be affected by the distance, traffic of attractions, or the experiences from other tourists. Travel
distance is the reflection of the cost and time (Wei et al. [30]). Users may sometimes choose the
attractions nearby rather than the attractions they preferred. For example, as shown in Figure 3,
there are several comments of Ginza from the TripAdvisor website. These comments indicated the
reasons of visiting "Ginza" was the proximity of its location to where the users were. As a result,
we conclude that the users’ current location plays an important role in users’ next-round choice of
attractions.

Fig. 3. User Comments on Ginza
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3.2 Preference Extraction
In this subsection, we introduce our preference extraction method, including long-term and short-
term extraction models, which will be exploited to develop a comprehensive representation of
users’ preferences based on their historical travel records.

3.2.1 Long-term Feature Extraction. With the explosive growth of online travel platforms, tourists
are now more and more familiar with sharing travel experiences and commenting on attractions.
As a result, it is easy for us to obtain users’ ratings and their traces of attractions from the online
platforms. A user comment set is formed by merging this user’s all comments on all the attractions,
representing as 𝐶𝑢 = {𝑒1, 𝑒2, ..., 𝑒𝑛}, in which 𝑒𝑖 represents the embedding of i-th word generated
by the skip-gram algorithm [19] in the comment set after removing the stop words. Compared
with traditional textual modeling methods, such as TF-IDF, naïve Bayes and LDA, conventional
neural network (CNN) has advantages in considering the semantic relatedness and similarity
between different words, and effectively reducing a high-dimensional word embedding matrix to
a low-dimensional feature matrix (Kim [13]; Zhang, & Wallace [37]). Therefore, we construct a
word vector matrix𝑀𝑢 from user’s comment set on all attractions 𝐶𝑢 , and leverage a CNN-based
feature extraction model to extract features from the user’s comments, as shown in Figure 4. The
dimension of word vector matrix 𝑀𝑢 is n×dim, and it is user specific. The size of convolutional
kernel 𝐾 𝑗 is h×dim.

𝑞 𝑗 [𝑖] = 𝑡𝑎𝑛ℎ(𝑀𝑢 [𝑖 : 𝑖 + ℎ − 1, ∗] ⊙ 𝐾 𝑗 + 𝑏 𝑗 ) (1)

where 𝑖 ∈ [1, 𝑛−ℎ+1], 𝑗 ∈ [1, 𝐽 ] denotes the number of convolutional kernels, and ⊙ is Frobenius
inner product. A new feature matrix 𝑄𝑢 = [𝑄1, 𝑄2, ..., 𝑄 𝐽 ] can be generated for each convolution
kernel and the output vector ℎ𝑢 is computed by max pooling:

ℎ𝑢 = (𝑄𝑢 [∗, 𝑗]), 𝑗 ∈ [1, 𝐽 ] (2)

where ℎ𝑢 is the representation of the user u long-term feature extracted from his/her historical
comment text.

Fig. 4. Long-term feature extraction based on CNN

At the same time, in the same way, the feature vector representation of an attraction ℎ𝑝 can also
be obtained by forming a vector matrix𝑀𝑝 from the attraction’s comment set 𝐶𝑝 .
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3.2.2 Short-term Feature Extraction. Since there may be a large time span in users’ travel history,
it is necessary for recommender systems to focus on the most recent travel records and users’
behavior. Therefore, in order to help systems more accurately capture the users’ current preferences,
a short-term feature extraction module using attention mechanism is proposed to improve the
efficiency of recommender systems.

Specially, we compute a user’s general preferences𝑚𝑠 based on the user’s sequence of traveled
attractions in time order 𝑋𝑡 = {𝑥1, 𝑥2, ..., 𝑥𝑡 }, where 𝑥𝑖 is the attraction visited by the user at time t.
To extract the user’s short-term preferences, the attention mechanism is used to increase weights of
attractions that is similar to the user’s the most recent visited attraction 𝑥𝑡 and reduce the influence
of attractions far back. The weight of each attraction is calculated as follows:

𝑎𝑖 =𝑊0𝜎 (𝑊1𝑥𝑖 +𝑊2𝑥𝑡 + 𝑏𝑎) (3)

𝛼𝑖 = (𝑎𝑖 ) =
𝑒𝑥𝑝 (𝑎𝑖 )∑
𝑖 𝑒𝑥𝑝 (𝑎𝑖 )

(4)

where𝑊0,𝑊1,𝑊2 are the weight matrixes, 𝑏𝑎 is the bias term, and 𝛼𝑖 (𝑖 ∈ [1, 𝑛]) represents the
weight of each attraction after the adjustment of attention mechanism. The general preference
expression can be calculated as follows:

𝑚𝑠 =
∑𝑛

𝑖=1𝛼𝑖𝑥𝑖 (5)

Then, a Multi-Layer Perceptron (MLP) is leveraged to obtain the hidden vector of general
preference ℎ𝑠 , which will be used to calculate the probability distribution of users’ interests on
attractions in the future. The hidden vector of the most recent attraction ℎ𝑡 based on 𝑥𝑡 :

ℎ𝑠 = 𝑡𝑎𝑛ℎ(𝑊𝑠𝑚𝑠 + 𝑏𝑠 ) (6)

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑡𝑥𝑡 + 𝑏𝑡 ) (7)
where𝑊𝑠 ,𝑊𝑡 are the weight matrixes, 𝑏𝑠 and 𝑏𝑡 are the bias terms. Finally, the hidden vector

of the general preference ℎ𝑠 and the hidden vector of the most recent attraction ℎ𝑡 are merged to
generate the short-term preference expression of this user u at time t.

𝑢𝑡 =
1
2
ℎ𝑠 +

1
2
ℎ𝑡 (8)

The structure of short-term feature extraction module is shown in Figure 5:

Fig. 5. Short-term Feature Extraction Module based on Attention Mechanism
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4 LOCATION-AWARE USER CONTEXT LEARNING
Most of the existing travel recommender systems only focus on the preferences of users without
considering the impact of real-time location, missing the valuable opportunities for systems to
track the preferences shift of users. In this paper, we propose a location-aware user context learning
model to dynamically capture and update users’ real-time context. The context learning model
consist of two modules: the distance sensitive learning module and the order sensitive learning
module.

4.1 Distance Sensitive Learning Module
The purpose of distance sensitive learning module is to integrate the information of location
relationship between attractions and users, and recommend the most appropriate attractions for
users. In reality, the distance of a user’s current location from each attraction plays an important
role in a user’s selection of attractions. They could be more likely to choose a closer attraction to
visit (Aydin, & Telceken [4]; Sun, et al. [26]). For example, if a tourist has just visited the Imperial
Palace in Tokyo, Ginza would be highly likely to be his next visit site, which is closer to the Imperial
Palace than Tokyo Tower and Tsukiji Market, as shown in Figure 6. Therefore, we propose a distance
sensitive learning module. The principle of distance sensitive context learning module in this paper
is that the farther the distance between the user and the attraction, the less probability that the
attraction will be selected.

Fig. 6. Distance of Attractions around Ginza

First of all, we get the distance matrix𝑀𝐷 = 𝑑1, 𝑑2, ..., 𝑑𝑛 of all the attractions, where the vector
𝑑𝑖 = 𝑑𝑖1, 𝑑𝑖2, ..., 𝑑𝑖𝑛 represents the distance between each attraction. This distance matrix 𝑀𝐷 is a
mask layer, which served as a look-up matrix to record pairwise attractions’ distance (Wu et al.
[32]). As shown in Equation (9), 𝑢𝑟 is a one-hot vector which extracts the corresponding column
from the look-up matrix𝑀𝐷 , and generates a distance vector 𝑑𝑟 between the current location and
other attractions.

𝑑𝑟 = 𝑀𝐷𝑢𝑟 (9)

Second, based on the distance vector 𝑑𝑟 calculated in Equation (9), we set the values in vector 𝑑𝑟
to be the reciprocals, and obtain the distance weight vector 𝑎𝑑 = { 1

𝑑𝑟1
, 1
𝑑𝑟2
, ..., 1

𝑑𝑟𝑛
}.
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Finally, the context representation of travel route at time t, 𝑔_𝑙𝑜𝑐𝑡 , is calculated by summing up
the production of 𝑎𝑑 and attraction p.

𝛼𝑡𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑎𝑑𝑖 ) =
𝑒𝑥𝑝 (𝑎𝑑𝑖 )∑
𝑖 𝑒𝑥𝑝 (𝑎𝑑𝑖 )

(10)

𝑔_𝑙𝑜𝑐𝑡 = 𝜶𝒉𝒑 (11)
where 𝛼𝑡 𝑖 , 𝑖 ∈ [1, 𝑛] represents the weight of each attraction on the user’s location context. Since

the users will update the current location information every time a recommendation request is
made, the recommender system should also recalculate a new distance matrix𝑀𝐷 . It will lead to
huge computational and time cost, and reduce the response speed of the recommender system. In
order to simplify the calculation, this paper assumes that users will generate new recommendation
demands as soon as finishing the visit of the current attractions. Therefore, the users’ real-time
locations of a new recommendation request will be located near the current attractions. That
way, the recommender system only needs to obtain the distance matrix of attractions𝑀𝐷 at the
beginning and no longer needs to recalculate it in following recommendation rounds. The algorithm
of distance sensitive learning module is presented in Algorithm 1.

Algorithm 1: Distance Sensitive Learning Module

Input: 𝑢𝑟 ,𝑀𝐷 , ℎ𝑝
Output: 𝑔_𝑙𝑜𝑐𝑡
1: While update 𝑢𝑟 do
2: Select 𝑑𝑟 = 𝑀𝐷𝑢𝑟
3: Compute 𝑎𝑑 = { 1

𝑑𝑟1
, 1
𝑑𝑟2
, ..., 1

𝑑𝑟𝑛
}

4: Compute 𝛼𝑡𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑎𝑑𝑖 ) = 𝑒𝑥𝑝 (𝑎𝑑𝑖 )∑
𝑖 𝑒𝑥𝑝 (𝑎𝑑𝑖 )

5: Generate 𝑔_𝑙𝑜𝑐𝑡 = 𝜶𝒉𝒑
6: Return 𝑔_𝑙𝑜𝑐𝑡

4.2 Order Sensitive Learning Module
In addition to the distance of attractions, the travel order of attractions is believed to be another
important factor when travelers make a travel plan. Often, travelers consult to other tourists’ travel
orders and the popularity of attractions (Song et al. [25]). For example, Tom just visited Ginza in
Tokyo, and now he requests the system to recommend the next attraction for him. There are two
candidate attractions: Tsukiji Market and Tokyo Tower. Tsukiji Market is far closer to Ginza than
Tokyo Tower, as shown in Figure 6. However, according to the analysis of users’ travel records,
almost all of the tourists who have visited Ginza did not choose Tsukiji market as the next attraction,
but went to Tokyo Tower instead, as shown in Figure 7.

In this paper, we propose an order sensitive learning module based on the frequent sequences of
visited attractions. The order sensitive context learning module sets one day as the time window
and generates a Markov transition matrix (1st order) between attractions 𝑀𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛},
where vector 𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, ..., 𝑣𝑖𝑛) represents the frequencies of the attraction i followed by other
attractions. Similar to the algorithm of distance sensitive learning module, the directed graph matrix
𝑀𝑉 is used as a mask layer, which generates relationship vectors between the current location and
other attractions based on real-time location 𝑢𝑟 . The relationship vector 𝑣𝑟 indicates that the more
popular the attractions are, the greater the impacts of those attractions having on users.

𝑣𝑟 = 𝑀𝑉𝑢𝑟 (12)
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Fig. 7. Popular Travel Route around Ginza, Tokyo

Finally, the context representation of travel route at time t 𝑔_𝑤𝑎𝑦𝑡 is calculated by summing up
the production of 𝑣𝑟 and attraction p.

𝛽𝑡𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑣𝑟𝑖 ) =
𝑒𝑥𝑝 (𝑣𝑟𝑖 )∑
𝑖 𝑒𝑥𝑝 (𝑣𝑟𝑖 )

(13)

𝑔_𝑤𝑎𝑦𝑡 = 𝜷𝒉𝒑 (14)
where 𝛽𝑡𝑖 , 𝑖 ∈ [1, 𝑛] represents the weight of each attraction on a user’s route context, 𝜷 =

(𝛽𝑡1, 𝛽𝑡2, ..., 𝛽𝑡𝑛). Algorithm 2 shows the algorithm of order sensitive learning module.

Algorithm 2: Order Sensitive Learning Module

Input: 𝑢𝑟 ,𝑀𝑉 , ℎ𝑝
Output: 𝑔_𝑤𝑎𝑦𝑡
1: While update 𝑢𝑟 do
2: Select 𝑣𝑟 = 𝑀𝑉𝑢𝑟

3: Compute 𝛽𝑡𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑣𝑟𝑖 ) = 𝑒𝑥𝑝 (𝑣𝑟𝑖 )∑
𝑖 𝑒𝑥𝑝 (𝑣𝑟𝑖 )

4: Generate 𝑔_𝑤𝑎𝑦𝑡 = 𝜷𝒉𝒑
5: Return 𝑔_𝑤𝑎𝑦𝑡

In summary, the purpose of the location-aware context learningmodel is to help the recommender
system compute the expression of the users’ real-time context by considering the travel orders of
other tourists as well as the influence of hot travel routes.

4.3 User Context Update Mechanism
After obtaining the user’s location context 𝑔_𝑙𝑜𝑐𝑡 and route context 𝑔_𝑤𝑎𝑦𝑡 , we calculated the
comprehensive context expression 𝑠𝑡 at time t by integrating 𝑔_𝑙𝑜𝑐𝑡 , 𝑔_𝑤𝑎𝑦𝑡 , the user’s short-term
feature vector 𝑢𝑡 , and his/her long-term feature expression ℎ𝑢 .

𝑠𝑡 = 𝜆(𝑔_𝑙𝑜𝑐𝑡 + 𝑔_𝑤𝑎𝑦𝑡 + 𝑢𝑡 ) + (1 − 𝜆)ℎ𝑢 (15)

where 𝜆 is a hyperparameter to control the impact of two parts. At the same time, except for the
user’s long-term feature ℎ𝑢 , the location-aware context learning module and the short-term feature
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extraction module are both dynamically updated by the user’s real-time travel condition. In order
to improve the learning efficiency of our model, we simplified the updated location information
as the position of the user’s last visited attraction, in which the location-aware context learning
and short-term feature extraction module shared the same updated information. As a result, we
designed a user context update mechanism to help the system dynamically track the condition of
the user. The algorithm is defined as Algorithm 3.

Algorithm 3: User Context Update Mechanism

Input: 𝑢𝑟 ,𝑀𝐷 ,𝑀𝑉 , ℎ𝑝 , 𝑋𝑡−1, ℎ𝑢
Output: 𝑠𝑡
1: While update user real-time location 𝑢𝑟 do
2: Reset 𝑥𝑡
3: Remove 𝑥1 from 𝑋𝑡−1
4: Add 𝑥𝑡 to the bottom of 𝑋𝑡−1 → 𝑋𝑡

5: Compute 𝑢𝑡 according to Equation (3)-(8)
6: Compute 𝑔_𝑙𝑜𝑐𝑡 and 𝑔_𝑤𝑎𝑦𝑡 according to Eqation (9)-(14)
7: Generate 𝑠𝑡 = 𝜆(𝑔_𝑙𝑜𝑐𝑡 + 𝑔_𝑤𝑎𝑦𝑡 + 𝑢𝑡 ) + (1 − 𝜆)ℎ𝑢
8: Return 𝑠𝑡

5 TRAVEL REINFORCEMENT RECOMMENDATION BASED ON LOCATION-AWARE
CONTEXT EXTRACTION

In order to dynamically capture the preferences from real-time interactions between users and
recommender systems, a novel recommender framework called TRACE (Travel Reinforcement
Recommendation Based on Location-Aware Context Extraction) is proposed in this section.

5.1 TRACE Framework
As mentioned above, to model the users’ dynamic demands, we aim to construct a context-aware
recommender system, which not only extracts user preferences from historical records, but also
obtain the real-time states from user context (shown in Figure 8). Therefore, the problem definition
of this study is given a user set𝐶𝑢 , an item set𝐶𝑝 , a distance matrix for attractions𝑀𝐷 , a transition
matrix for attractions𝑀𝑉 , and users’ real-time location 𝑢𝑟 as the input, the recommender system
will generate a list of recommended attractions 𝐴 upon users’ requests. However, most of the
existing travel recommender systems only compute the correlation or similarity between the
features of attractions and preferences of users, which fails to consider the current context of users
and track the shift of preferences. Therefore, how to integrate the representation of real-time user
state and user preference together is a big challenge in this research.
Inspired by an existing algorithm Actor-Critic framework (Konda, & Tsitsiklis [14]; Lillicrap et

al. [17]), which can automatically learn the optimal strategies from users’ real-time feedbacks, we
propose a framework of TRACE (TravelReinforcement Recommendation Based on Location-Aware
Context Extraction) to address the challenge of preference shifting in the process of user-system
interactions. In this paper, the Actor component of strategy generating is replaced by an attraction
recommendation module to find out the most suitable attractions based on the users’ real-time
context. The Critic component is used to calculate users’ feedbacks on the recommendation list
and evaluate the effect of the Actor component. At last, the feedback is defined as users’ ratings on
recommended attractions and will be treated as reward to update the parameters in both the Actor
component and the Critic component respectively.
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Fig. 8. Context-aware Recommender System

Furthermore, to track the preference shifting in the process of user-system interactions, we
model the recommendation process using the MDP and then deploy the recommender system in
a reinforcement learning framework. As shown in Figure 9, our TRACE model consists of two
components: the Actor component and the Critic component. The real-time state of a user in
the framework is defined as the user’s comprehensive context expression 𝑠𝑡 , which includes the
user’s preferences and location. The action options in the critic component is defined as the vector
representation of attractions ℎ𝑝 , and the reward is defined as the user’s selection of attractions and
the ratings of the attractions r.

5.2 Actor Component
The function of the Actor component is to obtain the candidate action set from all attraction
set based on the users’ current states and reduce the computational complexity of the Critic
component. In this paper, we define the state of a user at time t as the user’s comprehensive
context representation 𝑠𝑡 . As shown in Figure 9, the Actor component can be divided into three
parts: CNN-based comments extraction model for user long-term preference, attention-based travel
sequence learning model for user short-term preference, and location-aware context learning model
for user real-time state.
Due to the dynamic demands from tourists, the travel recommender system needs to take the

current state and short-term preference of users into account. Therefore, in order to recommend
a suitable attraction to users, we calculate the similarity between the user’s comprehensive state
expression and the attraction vector expression. The similarity between attractions and the users’
context is defined as follows:

𝑠𝑐𝑜𝑟𝑒𝑡 = 𝜎 (𝑠𝑡 · ℎ𝑝 ) (16)
where 𝜎 (·) denotes the sigmoid function. Finally, we obtain the probability distribution 𝑧𝑡 of the
user’s choice on attractions at time t by using the Softmax function to normalize the similarity
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Fig. 9. Framework of TRACE, an Actor-Critic based Recommender System

score between users and attractions.

𝑧𝑡 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑠𝑐𝑜𝑟𝑒𝑡 ) (17)

After calculating the probability of user’s choice 𝑧𝑡 on all attractions p, we select top-K attractions
as a candidate action subset 𝐴 = {𝑎1𝑡 , . . . , 𝑎𝑘𝑡 } and generate a recommendation list for the user. In
this paper, the Actor component in fact serves as a travel recommendation engine. After the users
give feedbacks to the recommendation list generated by the Actor component, the Critic component
will evaluate the rewards of all possible recommendations. Therefore, the training of the Actor
component relies on the rewards value calculated by the Critic component. The loss function of
the Actor component is defined as follows:

𝐿𝑎𝑐𝑡𝑜𝑟 = −𝐸𝑠𝑡 ,𝑎𝑡 [𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝑊𝑐 )] (18)

where 𝐸 denotes the expectation of Q-value function,𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝑊𝑐 ) denotes the rewards value ob-
tained from the Critic component. The function of 𝐿𝑎𝑐𝑡𝑜𝑟 is to maximize rewards value𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝑊𝑐 ),
so we set 𝐿𝑎𝑐𝑡𝑜𝑟 to negative value.

5.3 Critic Component
The function of the Critic component is to evaluate the recommendation list generated by the Actor
component by calculating the reward values of the user’s actions. The key of the Critic component
is to obtain the reward function 𝑄 (𝑠, 𝑎) for the Actor component based on the Behrman equations,
and optimize the parameters in the Actor component to improve the recommendation efficiency.
The reward function 𝑄 (𝑠, 𝑎) based on Bellman equations aims to calculate the maximum expected
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rewards by an optimal policy and is defined as follows:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝐸𝑠𝑡+1 [𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1) |𝑠𝑡 , 𝑎𝑡 ] (19)

where 𝑟𝑡 is the reward of the set of recommended attractions on users at current t time, 𝛾 is the
reward discount for the future potential rewards 𝑄 (𝑠𝑡+1, 𝑎𝑡+1). However, to compute the maximum
future potential reward 𝑄 (𝑠𝑡+1, 𝑎𝑡+1), we must at first calculate all the possible states 𝑠𝑡+1 and
candidate action 𝑎𝑡+1 in the future, which has computational complexity of 𝑂 (𝑛2), a huge cost of
calculation. However, since the Actor component has generated a list of candidate attractions, it
provides a smaller-scale action subset for the Critic component and reduces the computational
complexity to 𝑂 (𝑛). As reward function 𝑄 (𝑠, 𝑎) is non-linear, we will use a neural network to
calculate the loss function, defined as:

𝐿𝑐𝑟𝑖𝑡𝑖𝑐 = 𝐸𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 [(𝑦𝑡 −𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝑊𝑐 ))2] (20)

where𝑦𝑡 is the target network and shares the weights with the main network𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝑊𝑐 ), which
can also be defined as:

𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1;𝑊𝑐 ) (21)
However, due to the user’s real-time context 𝑠𝑡 is updated dynamically, the reward function

𝑄 (𝑠, 𝑎) based on the Behrman equation will be extremely unstable and hard to converge in training.
Therefore, to solve the problem, we will leverage the method of separate target network in Deep Q
Network (DQN) to stabilize the training process by fixing weights𝑊 ′

𝑐 of 𝑦𝑡 . The loss function of
the Critic component is therefore defined as:

𝐿𝑐𝑟𝑖𝑡𝑖𝑐 = 𝐸𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 [(𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1;𝑊 ′
𝑐 ) −𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝑊𝑐 ))2] (22)

Algorithm 4: Travel Reinforcement Recommendation based on Location-Aware Context

Input: 𝑠𝑡 , ℎ𝑝
Output: recommendation list A, action-value Q
1: While update Q do
2: Compute 𝑠𝑐𝑜𝑟𝑒𝑡 = 𝜎 (𝑠𝑡 · ℎ𝑝 )
3: Compute 𝑧𝑡 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑠𝑐𝑜𝑟𝑒𝑡 )
4: Select top K actions as 𝐴 = {𝑎1𝑡 , . . . , 𝑎𝑘𝑡 }
5: Observe reward 𝑟 = 𝑟𝑐𝑙𝑖𝑐𝑘 · 𝑟𝑟𝑎𝑡𝑒
6: if reward 𝑟 > 0 do
7: Update 𝑠𝑡 → 𝑠𝑡+1
8: end if
9: Compute 𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝐸𝑠𝑡+1 [𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1) |𝑠𝑡 , 𝑎𝑡 ]
10: Return A, Q

5.4 Reward Update Mechanism
In our TRACE model, the mechanism of tracking users’ feedback is the key of user-system interac-
tions. After the recommender system generating a recommended list, the user will give feedback
to the list, including whether to click or rate. In this paper, the reward of click is defined as
𝑟𝑐𝑙𝑖𝑐𝑘 = {0, 1}, and the reward of each rating is defined as 𝑟𝑟𝑎𝑡𝑒 = {1, 2, 3, 4, 5}. The total reward of
users’ feedback 𝑟𝑐𝑙𝑖𝑐𝑘 and 𝑟𝑟𝑎𝑡𝑒 is defined as Equation (23).

𝑟 = 𝑟𝑐𝑙𝑖𝑐𝑘 · 𝑟𝑟𝑎𝑡𝑒 (23)
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The system will store the users’ feedbacks information as a tuple ((𝑠𝑡 , 𝑎𝑡 ) → 𝑟 ). At last, the
TRACE model will update the parameters of the Actor and Critic components based on the total
reward r. The training mechanism of the TRACE model is shown in Algorithm 4.

6 EXPERIMENTS
In this section, we will introduce the evaluation method of our proposed TRACE model through
online and offline experiments.

6.1 Dataset
TripAdvisor is one of the largest online travel platforms in the world with more than 7 million
attractions and hundreds of millions of user records around the world. Therefore, due to the
abundant data, TripAdvisor is an ideal platform for analyzing users’ travel preferences. We crawled
the travel data related to Tokyo from the online platform TripAdvisor, which contained users and
attractions information between January 1, 2017 and March 31, 2019. The basic statistics of the
crawled dataset is shown in Table 2.

Table 2. Statistics of the TripAvisor Dataset

Description Amount

Number of TripAdvisor users 20,473
Number of registered user nationalities 53
Number of attractions in Tokyo 5,396
Number of user comments 437,310
Average number of words per comment 452
Average number of words per attraction] 36,632
Average number of words written by a user 9,655
Average number of attractions visited by a user 21

6.2 Experiment Design
6.2.1 Offline Experiment. We first conducted an offline experiment on the dataset collected from
TripAdvisor and evaluated our proposed TRACE. Among the total 437,310 pieces of user comments,
the training set and test set are separated by time order in the proportion of 4:1. The predictors
of TRACE model includes users’ comment vector matrix 𝑀𝑢 , users’ travel sequence 𝑋𝑡 , users’
real-time locations 𝑢𝑟 , attractions’ comment vector matrix𝑀𝑝 , attractions’ distance matrix𝑀𝐷 , and
attractions’ directed graph matrix𝑀𝑉 . The target of the model is the normalized similarity score
between users and attractions 𝑧𝑡 . In this paper, we set the dimension of word embedding 200 and
the window size of the convolutional kernel 3×200. We trained the CNN-based feature extraction
model for 200 epochs. Moreover, the K value in the recommendation list is set to be 5 or 10 in this
paper, which means the system will recommend the top 5 or 10 best matched attractions to users.

6.2.2 Online Experiment. In the real-time online experiment, we deployed the recommender
system on the website of our laboratory, and invited the faculty and students as the experimental
participants. The opening page of our online recommender system is shown in Figure 10 below.
Users were able to choose whether to click or give ratings (range from 0 to 5) on the attractions in
the radio boxes on the right. The recommended list would update if the user was not satisfied with
any attraction in it.
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Fig. 10. Interface of TRACE

6.3 Baselines
To investigate the performance of TRACE, the following seven baseline models, including conven-
tional machine learning models and deep reinforcement learning models, are selected to compare
with TRACE in both the offline and online experiments.

• FM: is Factorization Machines, which combines advantages of MF (Matrix Factorization)
and SVM (Support Vector Machines), and is a state-of-art context-aware recommendation
method [21, 22]. In this paper, the users’ rating matrices on attractions are set as input.

• LR: is the Logistic Regression model, which is a linear regression method and often used to
deal with the classification tasks. In this paper, the logistic regression model takes the user’s
historical records as input.

• NCF: is Neural Collaborative Filtering, which is another state-of-art recommendation method
based on deep neural network to capture user-item interaction feature [9], and takes the
user’s historical travel records as input.

• RNNs: is the Recurrent Neural Network, which is widely used in dealing with time series
data [28]. In this paper, we set the users’ historical travel record 𝑋𝑡 as the input of the RNN
model.

• DQN: is Deep Q Network, which combines the advantages of deep learning and Q-learning.
It calculates the value of current iteration based on the state of users and is a state-of-art
reinforcement learning-based approach in recommendation problem [20, 38, 39].

• w/o Attention: is a simplified TRACE model without short-term feature extraction module.
The w/o Attention model only uses the long-term feature extraction module and location-
aware context learning mechanism to do the travel recommendations, and excludes the user’s
short-term preferences.

• w/o Location: is a simplified TRACE model without context learning mechanism using
user’s real-time location. The w/o Location model makes the recommendations only based
on long-term and short-term feature extraction module and removes the real-time location
information of users.
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The parameter settings of the best performance are determined by gradient optimization. The
detailed parameter setting of each model is shown in Table 3 below. It is noteworthy that the w/o
Attention, w/o Location, and the TRACE model have the same parameter setting.

Table 3. Parameter Setting

Model Parameter Setting

FM Number of dimensions of FM 200
NCF Number of hidden layers 128
RNNs Number of units of RNN 50
DQN Reward discount 𝛾 0.4

Kernel size of CNN 3
TRACE Reward discount 𝛾 0.4

Impact factor 𝜆 0.5

6.4 Evaluation Metrics
In this paper, we use the metrics of Ave-Recall (Average Recall), MRR (Mean Reciprocal Rank) and
Ave-Rating (Average Ratings) to evaluate the performance of each model. These metrics are widely
used in the recommender research community.

• Ave-Recall@K: Represents the proportion of the number of correct recommendations from
the top-K attractions of all the recommendations. Where 𝑛ℎ𝑖𝑡 donates the number of correct
attractions recommended in the list, N donates the number of total recommendations.

𝐴𝑣𝑒 − 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =
𝑛ℎ𝑖𝑡

𝑁
(24)

where 𝑛ℎ𝑖𝑡 donates the number of correct attractions recommended in the list, N donates the
number of total recommendations.

• MRR@K: The value of it will be set to 0 if there is no matched attraction in the top-K
recommendation list. MRR@K is used for all the experiments and is defined as:

𝑀𝑅𝑅@𝐾 =
1
𝑁

∑ 1
𝑅𝑎𝑛𝑘 (𝑝ℎ𝑖𝑡 )

(25)

where 𝑝ℎ𝑖𝑡 represents the correct attractions recommended in the list. The higher the value
of MRR@K, the higher quality of the ranking in the recommendation list.

• Ave-Rating@K: In the online real-time recommendation experiment, users offer ratings on
the recommended attractions. Therefore, we calculate the average ratings of users to measure
the users’ satisfaction on recommendation results. Ave-Rating@K represents the average
ratings of the users on the top-K recommended attractions. The value of Ave-Rating@K will
be set to 0 if the users does not select any attractions from the current recommendation list.

𝐴𝑣𝑒 − 𝑅𝑎𝑡𝑖𝑛𝑔@𝐾 =
1
𝑛ℎ𝑖𝑡

∑
𝑟𝑟𝑎𝑡𝑒 (26)

where 𝑛ℎ𝑖𝑡 represents the number of correct attractions recommended in the list. From
Equation (26), the higher the value of Ave-Rating@K, the greater the user satisfaction in
recommendation service, which indicates the better performance of the recommender system.
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6.5 Results
6.5.1 Offline Experiment. The Ave-Recall@K and MRR@K results of the offline experiment are
shown in Table 4.

Table 4. Ave-Recall and MRR while K= 5 & 10 (%)

Ave-Recall@5 MRR@5 Ave-Recall@10 MRR@10

FM 44.31 27.14 54.12 28.45
LR 39.22 19.61 47.06 20.67
NCF 53.14 24.35 60.59 24.96
RNNs 54.31 27.67 63.53 29.80
DQN 45.10 17.65 54.90 23.91

w/o Attention 45.29 39.33 47.25 39.70
w/o Location 54.90 32.94 76.47 34.83
TRACE 64.57 43.39 78.84 45.08

Our proposed TRACE model has the best performance in both Ave-Recall and MRR compared
with the baseline models. At the same time, by further investigating the experimental results
in Table 4, we can draw a conclusion that RNNs model based on a deep learning algorithm has
a relatively higher Ave-Recall and MRR among all baseline models. The results show that the
user travel data do have the time sequence nature, which affects users’ selections on attractions.
Moreover, the TRACE model has a better performance compared with w/o Location model on
Ave-Recall. It indicates that the context of real-time location has impacts on the users’ selections
of attractions. The real-time location-aware context learning mechanism can better target users’
interests. In addition, by comparing with the TRACE model and w/o Attention model, it can be
found that w/o Location model has the lowest MRR. It demonstrates that the users’ real-time
location can not only improve the prediction accuracy, but also help the system optimize the
ranking of the recommendation list.

6.5.2 Online Experiment. In the online recommendation experiment, we noticed that most of the
users selected at least one attraction in the recommendation list and gave the ratings. Therefore
the metric of average recall (Ave-Recall) is not suitable for evaluating the online experiment. We
will leverage the average ratings of users (Ave-Rating) and MRR to evaluate the performance of
recommendation results. Table 5 illustrates the Ave-Rating and MRR of each model in the online
real-time experiment, in which K is set to be 10 and 20 respectively.
From Table 5, the proposed TRACE model outperformed all the baseline models in both Ave-

Rating and MRR. Furthermore, the following conclusions can be also drawn from the online
real-time recommendation experiment: First, compared with other baselines, NCF model and
RNN model based on a deep learning algorithm have a lower MRR in online recommendation
experiments. As the NCF model and RNN model only extract users’ long-term preferences from
historical records, these two methods have disadvantages in tracking users’ real-time preference
and can easily recommend repeated or similar attractions to users. Second, the Ave-Rating of
w/o Attention model is much lower than the TRACE model. It demonstrates that users will be
significantly affected by their most recent preferences when making the decision. At last, the MRR
of w/o Location model is much lower than TRACE model. It confirms that the context of users’
real-time location has a significant impact on the performance of travel recommendation.
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Table 5. Ave-Rating and MRR while K = 10 & 20

Ave-Rating@10 MRR@10 Ave-Rating@20 MRR@20

FM 3.55 69.40% 3.58 70.55%
LR 3.33 45.83% 3.50 51.11%
NCF 3.70 51.67% 3.75 54.17%
RNNs 3.88 53.32% 3.91 62.22%
DQN 3.53 69.47% 3.56 66.65%

w/o Attention 3.67 78.92% 3.61 74.84%
w/o Location 3.83 68.26% 3.89 61.10%
TRACE 4.08 86.00% 3.97 83.65%

To further investigate whether the context learning mechanism based on real-time location
information optimizes the distance of recommended attractions to users, we observe the distance
between the recommended attractions and the users’ current locations with a recommendation
list of 10 attractions. Figure 11 shows the average distance between the recommended attractions
of each model and the users’ locations. As shown in Figure 11 the w/o Attention model and the
TRACE model have an average distance less than 3 km, which is significantly smaller than other
models. It shows that the user context learning mechanism based on real-time location information
effectively addresses the relationship between attractions and users.

Fig. 11. Average Distance of each Model for K=10

Above all, the offline simulation recommendation and online real-time recommendation ex-
periments in this section shows that our proposed TRACE model can significantly improve the
effectiveness of the travel recommendation system, since it has the best performance in Ave-Recall,
MRR and Ave-Rating.
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7 CONCLUSION
In this paper, we first analyzed the crawled dataset from the TripAdvisor platform, and found
that (1) users’ preferences of attractions have shifted over time, and (2) users’ current location
would affect the decisions on attractions to visit. According to the analysis of data, this paper
proposed and implemented a recommender system called TRACE. The contributions are (1) to
address user preferences shifting, a short-term preferences learning model was added, which
strengthened the weights of users’ most recent records by using a attention mechanism; (2) to
consider the impact of distance relationship between attractions and the relationship of travel
order, the constructed location-aware user context learning mechanism based on real-time location
information was incorporated; and (3) to track the short-term preferences in human-computer
interaction and evaluate the long-term benefits in attraction recommendation, the Actor-Critic
framework is leveraged. The offline and online experiments were conducted on real-world data and
six effective baseline algorithms were implemented to compared with TRACE model. The results
indicate that our proposed TRACE model achieves the best performance in average recall, mean
reciprocal ranking and average score of attractions, which proves the effectiveness of the TRACE
model. For the future work, on one hand, we will focus on optimizing the representation of user’s
context. In this paper, while learning the user’s context of real-time location, we only consider the
location relationships between attractions and ignore the time of tour. Therefore, in the future,
we will further consider the time cost, including the commuting time between attractions and the
dwell time in each, which may optimize the performance of recommendation systems. On the
other hand, in the actual model training process, we found that the model cannot optimize the
weight parameters and obtain the preferences of users due to a number of users lacking feedback
information. In order to solve this problem, we plan to add a module generating part of user
feedback information to enrich the training data set and improve the recommendation effect of the
model.
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