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Abstract

Learning to generate 3D point clouds without 3D su-
pervision is an important but challenging problem. Cur-
rent solutions leverage various differentiable renderers to
project the generated 3D point clouds onto a 2D image
plane, and train deep neural networks using the per-pixel
difference with 2D ground truth images. However, these so-
lutions are still struggling to fully recover fine structures of
3D shapes, such as thin tubes or planes. To resolve this
issue, we propose an unsupervised approach for 3D point
cloud generation with fine structures. Specifically, we cast
3D point cloud learning as a 2D projection matching prob-
lem. Rather than using entire 2D silhouette images as a
regular pixel supervision, we introduce structure adaptive
sampling to randomly sample 2D points within the silhou-
ettes as an irregular point supervision, which alleviates the
consistency issue of sampling from different view angles.
Our method pushes the neural network to generate a 3D
point cloud whose 2D projections match the irregular point
supervision from different view angles. Our 2D projec-
tion matching approach enables the neural network to learn
more accurate structure information than using the per-
pixel difference, especially for fine and thin 3D structures.
Our method can recover fine 3D structures from 2D silhou-
ette images at different resolutions, and is robust to differ-
ent sampling methods and point number in irregular point
supervision. Our method outperforms others under widely
used benchmarks. Our code, data and models are available
at https://github.com/chenchaol5/2D projection_matching.
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1. Introduction

It is important to learn to generate 3D point clouds in
different 3D computer vision applications, such as single
image reconstruction [34, 39, 57, 17, 83] and novel shape
generation [30, 6, 93, 63]. The latest supervised meth-
ods [12, 64, 65, 48, 30] leverage deep neural networks to
learn to generate 3D point clouds from latent codes using
3D ground truth. However, it is expensive and tedious to
obtain large scale 3D ground truth data sets, which signifi-
cantly affects the supervised learning performance.

Unsupervised methods [34, 41, 39, 57, 83, 17] provide
a more promising solution for 3D point cloud generation.
Similar to unsupervised methods for other 3D representa-
tions, such as triangle meshes [42, 43, 36, 44, 9], voxel
grids [92, 13, 79, 76], and implicit functions [69, 47, 35,
94, 45], these methods also leverage various differentiable
renderers to learn to generate 3D point clouds using 2D im-
ages as supervision. In order to recover the 3D structure,
the differentiable renderers project the generated 3D point
clouds onto a 2D image plane with [34, 41, 39, 57, 83] or
without [17] rendering to compare with the 2D supervision
to obtain the per-pixel difference in training, such as den-
sity [34, 41, 39, 17, 83] or color [34, 57, 83] error. But
these methods are still struggling to recover detailed 3D
structures, especially for fine structures like thin tubes or
planes.

To resolve this issue, we introduce a novel perspective
for unsupervised learning of 3D point cloud generation with
fine structure. Different from the current methods, which
transform the generated 3D point clouds onto a 2D image
plane to compare with regular pixel supervision, we dis-
cretize the area covered by the silhouette into discrete and
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irregular 2D points to compare with the 2D projections of
the generated 3D point clouds. Without using the per-pixel
difference obtained by various differentiable renderers, we
cast the learning of 3D point cloud generation from silhou-
ette images as a 2D projection matching problem. Specif-
ically, rather than using an entire 2D silhouette image as
a regular pixel supervision, we discretize the silhouette by
randomly sampling a 2D point set within it, which we re-
gard as an irregular point supervision. Then, we push the
neural network to generate 3D point clouds whose 2D pro-
jections on this silhouette image match the irregular point
supervision. One advantage of the irregular point supervi-
sion is that it can still capture detailed structure information
using sampled points even if fine structures are represented
by only few pixels in the silhouette, which is hard for other
differentiable renderers to leverage. Our irregular point su-
pervision is robust to different sampling methods and the
number of sampled points. Our outperforming results under
widely used benchmarks show that our method can recover
fine 3D structures from 2D silhouette images at different
resolutions. Our contributions are as follows:

i) We introduce a method to enable the unsupervised
learning of 3D point cloud generation with fine struc-
tures by 2D projection matching. Instead of using the
per-pixel difference, we introduce irregular point su-
pervision which is sampled from GT silhouettes.

ii) We justify the feasibility of the unsupervised learning
of 3D point cloud generation using irregular 2D points
rather than widely used regular 2D images. This helps
to provide more detailed information for fine 3D struc-
tures which are represented by only few pixels.

iii) We demonstrate that our method can significantly im-
prove the state-of-the-art accuracy in 3D point cloud
generation applications by recovering finer structures
under various benchmarks.

2. Related Work

Deep learning-based 3D shape understanding has
achieved very promising results in different tasks [61, 54,
56, 88, 26, 16, 75, 4, 74, 27, 3, 91, 52, 30, 48, 33, 31, 18,
89, 86, 87, 49, 20, 22, 25, 21, 23, 32, 28, 24, 19, 50, 29,
67, 62, 53, 72, 60, 68, 85, 84]. Without 3D supervision,
current unsupervised structure learning methods leveraged
various differentiable renderers for different 3D raw rep-
resentations. Differentiable renderers first render a recon-
structed 3D shape into 2D silhouette or RGB images, and
then, calculate the error between the rendered and GT im-
ages to train the neural networks.

Differentiable Renderers for Voxel Grids. By casting per-
spective rays through voxel grids, some differentiable ren-
derers rendered images using the maximum occupancy val-

ues along each ray [92] or the derived ray collision prob-
abilities [79]. While other differentiable renderers employ
orthogonal projection using simple projection function [13].
These methods work with known camera poses [92, 79, 13],
camera poses estimated from a separate network [76], or in
the presence of viewpoint uncertainties [14].

Differentiable Renderers for Triangle Meshes.
OpenDR [51] was introduced to approximate gradi-
ents with respect to pixel positions in back-propagation.
Using hand-crafted gradients, Kato et al. [36] were able
to adjust faces on 3D meshes. Similarly, [42] and [43]
analytically leveraged computed gradients from images to
update face normals along with vertex positions via chain
rule. By introducing more advanced rasterization, such as
probabilistic rasterization [44] or regarding rasterization as
interpolation of local mesh properties [9], the pixel value
error compared to GT 2D images is used to update mesh
reconstruction.

Differentiable Renderers for Implicit Functions. Implicit
functions can represent 3D shapes using occupied voxels or
signed distance functions in high resolution, which makes
them very popular for deep learning models [66, 82, 54, 10,
59, 61, 55, 35, 26, 73, 2]. To reduce the computational cost
on sampling points for implicit surface learning, Vincent et
al. [69] learned a mapping from world coordinates to a fea-
ture representation of local scene properties. Similar to ray
marching, various differentiable renderers [47, 35, 94] were
proposed to render signed distance functions into images.
In addition, ray-based field probing [46] or aggregating de-
tection points on rays [90] was leveraged to mine supervi-
sion for 3D occupancy fields. With implicit differentiation,
Niemeyer et al. [58] analytically derived in a differentiable
rendering formulation for implicit shape and texture repre-
sentations. Moreover, the naturally differentiable volume
rendering was also employed to render a learned implicit
radiance fields for view synthesis [56].

Differentiable Renderers for Point Clouds. Compactness
is an advantage of 3D point clouds, which, however, brings
an issue of sparseness among 2D projections of points in
rendering. This issue makes it more difficult for differen-
tial renderers to directly compare the images rendered from
these 2D projections with the ground truth images.

To resolve this issue, different renderers mainly em-
ployed either dense 3D points [41] or various rendering ap-
proaches [34, 39, 57, 83, 40, 38, 15, 70, 1] based on ras-
terization. Specifically, Lin et al. [41] proposed a pseudo-
renderer to render dense points by modeling the visibil-
ity using pooling. However, it is significantly affected
by the number of points. Instead, rendering based meth-
ods [34, 39, 57, 83] rasterized point clouds using surface
splatting [83], Gaussian functions in 3D space [34] or on
2D images [39, 57]. CapNet [39] also leveraged a loss
to match rendered pixels and GT pixels, however, the ren-



dered pixels are interpolated from multiple 3D point loca-
tions, which makes the loss not effective to reveal accurate
fine structures by adjusting each 3D point location. With-
out pixel-wise interpolation, visibility handling, or shading
in rendering, DRWR [17] introduced a loss function to di-
rectly infer losses for each 3D point from pixel values and
2D projection relationship.

All these methods leveraged per-pixel difference to cal-
culate the gradient in training. This makes it hard to fully
recover fine 3D structures. To resolve this issue, we directly
match the 2D projections of the generated 3D point clouds
to 2D points randomly sampled from the GT silhouette.
Methods without Differentiable Rendering. Some earlier
methods [7, 77, 78] did not leverage the rendering strategy
to infer 3D structures from 2D images. However, they re-
quire strong priors, such as 3D templates [7, 77] or primi-
tives [78], and the guidance of 2D and 3D key point corre-
spondences obtained by manual annotation [7] or automatic
methods [77], which also makes our method much different.

3. Method

Problem Statement. We aim to learn to generate a 3D point
cloud M formed by J points p; only using I ground truth
silhouette images v;, without knowing 3D ground truth G,
where j € [1,J] and i € [1,]].

Supervised methods [12, 64, 65, 48, 30] can directly

train neural networks by minimizing the Chamfer dis-
tance (CD) between the generated 3D points M and the
3D ground truth G. Without G, previous unsupervised
methods leveraged the per-pixel difference from the er-
ror [34, 41, 39, 83, 57] between an image vg rendered with
M from the the i-th view angle and a ground truth image
v; or from a loss [17] evaluated on v;.
Overview. Different from the previous differentiable
rendering-based methods, we do not leverage the per-pixel
difference. Instead, we first discretize the ground truth sil-
houette images v; by randomly sampling K 2D points g,
and k € [1, K] within the silhouette, which we regard as an
irregular point supervision. Then, we directly push the 2D
projections {q;} of the generated 3D point cloud M on the
silhouette image v; to match with the irregular point super-
vision {g} }. To leverage the supervision from all I view
angles, we conduct this 2D projection matching procedure
on each of the views.

We demonstrate our method in Fig. 1. Our purpose is
to train a neural network to learn a mapping from an RGB
input to a 3D point cloud M formed by a set of 3D points
{p;}. To achieve this, we project the generated 3D points
{p,} onto one silhouette image v; to get 2D projections
{q}} of M. Then, we push projections {q}} to match the
irregular point supervision {g}}, which is randomly sam-
pled within the silhouette on v;.

Advantages. By removing the requirement of the per-pixel
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Figure 1. Overview of our method. We train the neural network to
learn to generate 3D point clouds {p; } by pushing its projection
{qg’} to match with irregular point supervision {gj,}. We obtain
{g}} by randomly sampling 2D points to cover a silhouette on
ground truth silhouette image.

difference, our method has several advantages over current
differentibale rendering based methods.

Our method is simpler, since we do not require any com-
plex and time consuming rendering procedures [34, 41, 39,
57, 83] such as surface interpolation, visibility handling,
and shading.

Although DRWR [17] does not require rendering either,
it is hard to force the 2D projections to uniformly cover the
silhouettes with fine structures by merely repulsing pairwise
projections within the silhouettes. In contrast, our method
is more effective by directly representing the fine structures
using irregular point supervision.

Rendering based methods [34, 41, 39, 57, 83] are sensi-
tive to the resolution of the ground truth silhouette images
since they need to compare in a pixel-by-pixel manner. In
contrast, we discretize the silhouette into irregular point su-
pervision that is independent of image resolution. This en-
ables us to formulate a loss based on 2D point matching,
which we find to be more effective in our experiments.

We highlight our advantages over current differentiable
renderers using an overfitting demonstration in Fig. 2. Cur-
rent differentiable renderers depend on the per-pixel differ-
ence to evaluate how well the 2D projections cover the sil-
houette by using a rendering based pixel loss [34, 41, 39,
57, 83] in Fig. 2 (a) or a rendering free based point loss [17]
in Fig. 2 (b). The projections shown on the top right in each
subfigure demonstrate that current differentiable renderers
cannot fully cover the fine structures on silhouette images,
compared to the ground truth in Fig. 2 (d), which signifi-
cantly affects the 3D point cloud generation.

Our method resolves this issue by directly matching 2D
projections with the explicitly irregular point supervision.
As shown in Fig. 3 (a), our irregular point supervision can
provide more specific and accurate supervision as dense
sampled points in the fine structure represented by merely
few pixels, which is more effective than minimizing per-
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Figure 2. Overfitting experiment using different loss functions.
Methods with rendering (a) and without rendering (b) leverage
per-pixel difference to the ground truth 2D supervision (d) to in-
fer 3D structures, while our method (c) provides a different per-
spective using 2D projection matching, where each of 16000 2D
projections is shown in red on silhouette images.
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Figure 3. Our dense sampled points (red) in (a) are more effective
supervision for projection (blue) to reveal fine structures (black)
than per-pixel difference with interpolated pixel values in (b). The

length of gradient for each point using our irregular point supervi-
sion or per-pixel difference is shown as color in (c¢) and (d).

b

pixel difference using interpolated pixel values shown in
Fig. 3 (b). During optimization, our much smaller length
(darker color) of gradient for each point in Fig. 3 (c) than the
gradient with per-pixel difference in Fig. 3 (d) demonstrates
that our irregular point supervision can provide a more clear
target for each point, which is much easier to achieve.
Projecting 3D Points. We generate a 3D point cloud M
in an object centered coordinate system. We leverage per-
spective projection to project 3D points {p,} on M as 2D
projections {q;} on each silhouette image v; from the i-th
view angle. We denote C;; as both extrinsic and intrinsic
camera parameters of the ¢-th camera pose, so we can per-
form the perspective projection as below,

¢, 1" ~Ci[p; 1]". (1)

Irregular Point Supervision. We aim to provide the train-
ing supervision by discretizing a silhouette on image v;
through sampling the silhouette into irregular point super-
vision {qé}, which fully covers the silhouette. According
to our preliminary results, we found that the consistency
of points sampled on different silhouette images affects the
performance, since the 2D projections on different silhou-
ette images are from the same generated 3D point cloud. Al-
though this issue can be alleviated by sampling very dense
points within each silhouette with many different sampling
methods, it would make the loss calculation more costly.
To improve the consistency of points sampled within the
silhouette from different view angles, we introduce a Struc-
ture Adaptive Sampling (SAS) method to sample points

within each silhouette. SAS first determines a ratio r to
indicate how much area each one of K sampled points can
cover within a silhouette. We calculate the area A of the
whole silhouette by counting the number of pixels with a
value of 1. So, the ratio r equals to A/K. Then, we cal-
culate the sampling step s as /7, which is the edge length
of the area that each sampled point covers. Finally, we start
the sampler from the coordinate of (0,0) with a stride of s,
and sample one point at each step if its interpolated pixel
value is larger than 0.5.
Loss Function. Our method casts the learning of 3D point
cloud generation into a 2D projection matching problem.
Therefore, we push the neural network to generate a 3D
point cloud M whose projections {q;} on the i-th view can
match the corresponding irregular point supervision {g; },
where we conduct the matching on each one of the I views.
On the ¢-th view, we leverage the CD to evaluate the dis-
tance between {q’} and {g},} as follows,

min ||g — ¢'l[3
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Our preliminary results show that the Earth Mover Distance
(EMD) can also get comparable results to CD when evalu-
ating the matching distance. But EMD requires the number
of the 2D projections and the number of irregular point su-
pervision to be the same, which may not be necessary to
sample many points within each silhouette.

We conduct the 2D projection matching on all I views
by minimizing a loss function L below,

i=1

L=7Y d({g}}, {gi})- 3)

i=1

4. Experiments, Analysis and Discussion
4.1. Experimental Details

Dataset. For the fair comparison with the previous meth-
ods [34, 41, 39, 57, 83], we evaluate our method using the
same three categories from ShapeNet [8], including chairs,
cars, and airplanes. We also keep the same train/test split-
ting as in [79, 34, 17], and we employ the benchmark re-
leased by [34], which is formed by the rendered images and
ground truth point clouds. For each 3D shape, there are
I = 5 rendered views at three different resolutions includ-
ing 322,642, and 1282, while all of them correspond to the
same ground truth point clouds. Note that the ground truth
point clouds have different numbers of points.
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Figure 4. Visual comparison (16000 points) with the state-of-the-
art methods using synthetic images.

Metric. We evaluate our results using the CD between the
predicted and the ground truth 3D point clouds. To com-
pare with differentiable renderers for different 3D represen-
tations such as meshes or voxel grids, we also use volumet-
ric IoU at a resolution of 32 to conduct fair comparisons.
For better readability, we multiply all CD or IoU values re-
ported in our experiments by 100.

Setup. We realize that the neural network structure may af-
fect the performance. Therefore, we employ the same neu-
ral network which was also employed by the previous dif-
ferentiable renderers [34, 17] in evaluation. We will elabo-
rate on the network structure in our supplemental material.

For training, we use image pairs from the same 3D shape
to leverage the supervision from multiple views as the pre-
vious methods [34, 17]. For each pair of the [ = 5 views,
we use one RGB image as the input to generate a 3D point
cloud M from the network, and then project M onto the
other image to push the 2D projections {q;} to match with
the corresponding irregular point supervision {g} }.

We project the generated 3D point cloud M using the
known camera pose although we can also leverage another
network to estimate the camera pose from the input RGB
image as [34, 76]. This is because camera pose estimation
itself is another challenging problem which may affect the
evaluation of 3D structure learning performance.

In addition, we train our network using all the three kinds
of image resolutions provided in the benchmark [34] re-
spectively, and accordingly generate point clouds at three
different resolutions J € [2000, 8000, 16000].

We train our network using the Adam optimizer with a
learning rate of 0.0001. Each batch contains 16 rendered
images which are equally from 4 shapes, where we iterate
over 5x 10° batches in each experiment. We initially sample
K = 5000 points within each silhouette from each view
angle to form the irregular point supervision.

4.2. Single Image Reconstruction

We first evaluate our method in single image reconstruc-

tion. We train the neural network using the rendered im-
ages from the benchmark, while testing the network using
the synthetic image or real image respectively.
Synthetic Image Testing. We compare our method with
the latest methods leveraging the per-pixel difference.
These methods include Differentiable Surface Splatting
(DSS) [83], Differentiable Ray Consistency (DRC) [79],
Efficient Point Cloud Generation (EPCG) [41], Continu-
ous Approximation Projection (CAP) [39], Differentiable
Point Clouds (DPC) [34], and Differentiable Renderer with-
out Rendering (DRWR) [17]. DRC is voxel-based, and it is
only available for voxel grids at a resolution of 323 because
of the cubic complexity of voxel grids. The other four ren-
derers are point cloud-based.

We first report the numerical comparison in terms of
CD in Table 1. Our results are the best under all classes
at all three resolutions. Our method shows significant
improvement over voxel-based differentiable renderers in-
cluding DRC and the voxel-based counterpart “DPC-V” of
DPC [34]. Moreover, our method also reconstructs much
more accurate point clouds compared to differentiable point
renderers using per-pixel difference, such as CAP [39],
DPC [34], and EPCG [41]. By leveraging 2D projec-
tion matching, our method is able to reconstruct 3D struc-
tures with high accuracy, especially for fine structures like
thin planes and tubes. To demonstrate this, we conduct
visual comparison with DSS [83], CAP [39], DPC [34],
DRWR [17] in Fig. 4 using the reconstructed shapes in the
test set, where DSS reconstructed point clouds with 16000
points from 5 views (“DSS-5") which are the same ones
used by other methods or 12 views (“DSS-12”). The com-
parison shows that our method can reveal more 3D structure
details, such as the complex structures on the chairs, cars
and airplanes. Please see more point cloud reconstructions
in our supplemental material.

Moreover, we also compare our method with the lat-
est supervised 3D point cloud generation method called
NOX [71]. We report our results using the same evaluation
code and setting released by NOX [71] in Table 2. Specif-
ically, we scale the point clouds reconstructed from input
images at a resolution of 642 in Table 1, so that the diago-
nal of the bounding box of each reconstructed point cloud
is one. We also resample the ground truth point cloud in the
benchmark released by [34] to 8000 points which keeps the



Table 1. Numerical comparison with differentiable renderers in terms of CD.

Image-322, Shape-2000 Image-642, Shape-8000 Image-1282, Shape-16000
DRC | CAP | DPC-V | DPC | DRWR | Ours | DPC-V | DPC | DRWR | Ours | EPCG | DPC | DRWR | Ours
Plane | 835 | 634 | 557 | 452 | 401 | 337 | 494 | 350 | 318 | 294 | 403 | 284 | 266 | 2.08
Car | 435 | 603 | 3.88 |422 | 381 | 350 | 341 | 298| 289 | 281 | 3.69 | 242 | 240 | 2.25
Chair | 801 | 6.11 | 557 | 510 | 466 | 416 | 480 | 415 | 402 | 394 | 562 | 3.62 | 349 | 3.10
Mean | 690 | 6.16 | 501 | 461 | 416 | 3.68 | 439 | 355 | 336 | 323 | 445 [ 296 | 285 | 2.48
number of points the same as NOX [71]. F = Ny NS
¢ J =» 04

Table 2. Comparison with supervised point generation method.

CD Cars | Airplanes | Chairs
NOX | 0.1569 | 0.1855 | 0.3803
Ours | 0.0421 | 0.0492 | 0.0529

Finally, we conduct a numerical comparison in terms
of IoU with other supervised or unsupervised 3D shape
generation methods for different 3D shape representations
including triangle meshes, voxel grids, point clouds and
implicit functions. The compared differentiable render-
ers include Perspective Transform Nets (PTN) [92], Neural
Mesh Renderer (NMR) [36], SoftRasterizer (SoftRas) [44],
Interpolation-based Differentiable Renderer (DIB-R) [9],
Implicit Surface renderer (IMRender) [45], Implicit Func-
tion renderer (IMFun) [90], and SDFDiff [35]. The first
method is voxel-based, the following two methods are
mesh-based, while the last three are implicit function based.
We report the results of NMR, SoftR and DIB-R from [9],
and the rest from the original papers. The supervised meth-
ods in comparison include DISN [82], OccNet [54], IM-
NET [10], 3DN [81], Pix2Mesh [80], R2N2 [11], and At-
lasNet [16]. To report our IoU results, we voxelize the
point clouds predicted from images at a resolution of 1282
in Table 1 into voxel grids at a resolution 322 to compare
to the same ground truth as other methods. Our outper-
forming results in Table 3 demonstrate our advantage in
fine structure generation for 3D shapes. Note that although
SDFDiff performs a little bit better under the Chair class,
it uses RGB images as the supervision signal and requires
to know the illumination and surface reflectance model,
while our method does not require any such information.
Fig. 5 demonstrates that our method can learn more com-
plex structures on chairs than methods for meshes (“Atlas-
Net”,“Softras”) and implicit functions (“OccNet”), where
we produced their results using the trained models released
from their papers [16, 44, 54].

Real Image Testing. Next, we evaluate our trained neu-
ral network by testing its adaptation to real images con-
taining fine 3D structures. We randomly select some real
images from the Internet, and use them as input to gener-
ate 3D point clouds at a resolution of 16000 points using
the parameters learned in Table 1. As a comparison, we
also generate the point clouds at the same resolution from
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Figure 5. Visual comparison with the state-of-the-art supervised
and unsupervised methods for different 3D representations.

Ours

Figure 6. Visual reconstruction comparison using real images.
the same images using parameters learned by DRWR [17].
Fig. 6 demonstrates that our method can adapt better to real
images and reconstruct high fidelity 3D point clouds with
more accurate fine structures than DRWR, such as the thin
wings of airplanes and the thin legs of chairs.

4.3. Novel Shape Generation

We further evaluate our method in another task of novel
shape generation. We conduct this experiment under the
Chair class to learn to generate novel point clouds at a reso-
lution of 16000 from 1282 images. Specifically, we modify
our current encoder-decoder network structure by adding a
KL loss on the latent code between the image encoder and
the point decoder, which makes it very similar to the struc-



Table 3. Numerical comparison with supervised and unsupervised 3D shape generation methods in terms of IoU.

Unsupervised differentiable renderers Supervised structure learning methods
PTN | NMR | SoftRas | DIB-R | IMRender | IMFun | SDFDiff | DRWR | Ours || DISN | OccNet | IMNET | 3DN | Pix2Mesh | R2N2 | AtlasNet | Ours
Car | 712 | 713 77.1 78.8 78.2 66.0 80.0 75.3 80.2 74.3 73.7 74.5 59.4 50.1 66.1 22.0 80.2
Plane | 55.6 | 58.5 58.4 57.0 65.1 533 68.7 62.2 69.9 || 575 57.1 55.4 543 515 42.6 39.2 69.9
Chair | 449 | 414 49.7 52.7 54.8 44.4 64.4 58.1 62.7 || 54.3 50.1 522 34.4 40.2 43.9 25.7 62.7
Mean | 57.2 | 57.1 61.7 62.8 66.0 54.6 71.0 65.2 71.0 62.0 60.3 60.7 49.4 47.3 50.9 29.0 71.0
improvement compared to our original setting (“NN(1,1)”).
- Table 4. Ablation studies in terms of CD.
o Ist | 2nd | NN(5,1) | NN(1,5) | NN(5,5) | NN(L,1)
o CD | 24.47 | 8.49 4.25 4.32 4.29 4.16

Figure 7. Visual comparison in novel shape generation.

ture of Variational Auto Encoder (VAE) [37]. We train this
network using a loss function formed by the matching loss
in Eq. 2 and the KL loss with a balance ratio of 1 : 5x 1076,
In this way, we map the latent code of each input RGB im-
age into a 32 dimensional Gaussian space during training
so that we can generate a novel 3D point cloud from a ran-
domly sampled latent code in the Gaussian space using the
trained point decoder during inference.

We compare our method with DPC [34] and DRWR [17]
by generating 3D point clouds using the randomly sampled
latent codes in Fig. 7, where the three point clouds in each
column are generated by the same latent code. The visual
comparison demonstrates that our method can help the net-
work to capture more fine 3D structures from the 2D su-
pervision during training, which can be further leveraged
to generate more reasonable and plausible 3D point clouds
with fine structures, such as thin legs of chairs. Please see
more point cloud generation in supplemental material.

4.4. Analysis and Discussion

Ablation Studies. We explore the effectiveness of the two
terms in the loss function in Eq. 2. We conduct these exper-
iments by merely using either one of the two terms to learn
to generate 3D point clouds at a resolution of 2000 from
322 images under the Chair class. The degenerated results
of “Ist” and “2nd” in Table 4 show that the one directional
distance loss cannot push the 2D projections to fully match
with the irregular point supervision. To explore whether we
can better resist the inconsistency among the irregular point
supervision from different view angles, we adjust the num-
ber of nearest neighbors involved in the two terms in Eq. 2.
We tried to leverage more nearest neighbors, such as 5 in
the first term and 1 in the second term (“NN(5,1)”), 1 in
the first term and 5 in the second term (“NN(1,5)”), or 5 in
both terms (“NN(5,5)”). However, we do not observe any

Resolution of Irregular Point Supervision. The resolu-
tion of irregular point supervision is also important in train-
ing. If the number of points in the irregular point supervi-
sion is too small, the inconsistency among different view
angles will be enlarged, which significantly affects the in-
ference of fine structures on the 3D point cloud. On the
other hand, if the number of points in the irregular point
supervision is too large, it may bring redundancy without
improving the learning performance, which also increases
the computational burden when calculating the loss. To ex-
plore the trade-off, we sample different numbers of points
within the silhouette to form the irregular point supervision,
such that K = {1000, 3000, 5000, 7000, 9000}. Using the
irregular point supervision at each resolution, we train a net-
work to learn to generate 3D point clouds at a resolution of
2000 from 322 images under the Chair class. The results in
Table 5 show that K = 5000 achieves the best accuracy and
no improvement is observed with a larger K. Therefore, we
use K' = 5000 to establish irregular point supervision un-
der different shape classes. In addition, the obtained results
are also robust to different resolutions, since the results just
change a little if the resolution is larger than K = 3000.

Table 5. Resolution of irregular point supervision comparison.

K | 1000 | 3000 | 5000 | 7000 | 9000
CD | 429 | 420 | 416 | 420 | 4.19

Sampling for Irregular Point Supervision. The sampling
for establishing irregular point supervision also affects the
performance because of the inconsistency among irregular
point supervision from different view angles. Our structure
adaptive sampling (“SAS”) can alleviate the inconsistency
to infer more accurate fine structures on 3D point clouds.
We produce irregular point supervision with K = 5000 to
generate shapes in 2000 points from 322 images under the
Chair class using random sampling (“Rand”), pixel sam-
pling (“Pixel”), pixel and random sampling (“Pix+Ran”),
and Poisson-Disk sampling (“Poisson”) [5].

Here, random sampling randomly samples a point on the
silhouette image, and leverages a threshold of 0.5 to deter-
mine whether keeping this point in irregular point supervi-



Figure 8. Shape interpolation demonstration to visualize the latent code space.

sion if its interpolated pixel value is larger than 0.5, until the
number of sampled points reaches K = 5000. While pixel
sampling just leverages the pixel locations with an interpo-
lated pixel value larger than 0.5. If the number of pixels is
smaller than K = 5000, we will repeat the sampled pixel
locations. “Pix+Ran” is similar to pixel sampling, but it
uses randomly sampled points to replace the repeating pro-
cedure. Moreover, we also tried to do random sampling in
a dynamic way, which aims to randomly sample K = 5000
points in each epoch to alleviate the impact of inconsistency
using the randomness, as shown by the result of “Dynamic”.
The comparison in Table 6 shows that our SAS sampling
achieves the best inference performance for 3D fine struc-
tures during training due to the produced more consistent
irregular point supervision. Random sampling in a dynamic
way cannot improve the performance either. Moreover, we
found that our method is robust to different sampling meth-
ods although SAS sampling could help the neural network
to learn the most accurate structure. This is because the re-
sults with different sampling methods do not change a lot,
and more importantly, all of them are better than the state-
of-the-art result of 4.66 obtained by DRWR in Table 1.

Table 6. Sampling for irregular point supervision.
Rand | Pixel | Pix+Ran | Poisson | Dynamic | SAS
CD | 423 | 420 422 4.35 4.36 4.16

Latent Code Visualization. We visualize the latent space
learned in the network which is trained to produce our re-
sults of 16000 points in Table 1. We randomly select two
reconstructed point clouds in the test set, and employ their
latent codes to interpolate seven new latent codes between
them which are further used to generate seven novel shapes
by the trained point decoder. We visualize two pairs of
shape interpolation under each one of Airplane and Chair
classes in Fig. 8. The smooth transformation from one
shape to another shape demonstrates that our method can
help the network to learn a meaningful latent space.

Robustness to 2D supervision resolution. Without using
the per-pixel difference, our method is more robust to the
resolution of 2D supervision. To demonstrate this, we train
the neural network under the Chair class to generate 3D
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Figure 9. Robustness to the 2D supervision resolution.
point clouds at a resolution of 16000 points from 322 im-
ages, rather than 1282 images shown in Table 1. Due to
the degenerated structure information caused by the lower
resolution of 2D supervision, it is reasonable to obtain de-
generated results. Therefore, we compare our method with
DPC [34] and DRWR [17] in terms of degeneration in Ta-
ble 7. The degeneration of each method is the difference be-
tween the results obtained with 322 and 1282 images. The
least degeneration shows that the 2D projection matching
can help our method to become more robust to the resolu-
tion of 2D supervision, Our degeneration is shown in Fig. 9.

Table 7. Robustness to 2D supervision resolution.

Resolution | DPC | DRWR | Ours
322 5.01 3.95 341
1282 3.62 3.49 3.10

Degeneration | 1.39 0.46 0.31

5. Conclusion

We introduce a novel perspective to learn to generate
fine structures for 3D point clouds in an unsupervised way.
Current differentiable renderers depend on the per-pixel dif-
ference to infer 3D structures from 2D supervision, which
however cannot fully capture 3D structures, especially for
fine structures. Our method successfully resolves this is-
sue by casting this problem into a 2D projection matching
problem. By discretizing the continuous area covered by
the silhouette into irregular point supervision, our method
effectively pushes the neural network to learn to generate
3D point clouds whose 2D projections can match the irreg-
ular point supervision as accurately as possible. We also
demonstrate that the irregular point supervision can reveal



more specific structure information to learn, especially for
fine 3D structures. Our outperforming experimental results
show that our method can significantly improve the struc-
ture generation performance for 3D point clouds.
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