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Abstract

Differentiable renderers have been used success-
fully for unsupervised 3D structure learning from
2D images because they can bridge the gap be-
tween 3D and 2D. To optimize 3D shape param-
eters, current renderers rely on pixel-wise losses
between rendered images of 3D reconstruction-
s and ground truth images from corresponding
viewpoints. Hence they require interpolation of
the recovered 3D structure at each pixel, visibili-
ty handling, and optionally evaluating a shading
model. In contrast, here we propose a Differen-
tiable Renderer Without Rendering (DRWR) that
omits these steps. DRWR only relies on a simple
but effective loss that evaluates how well the pro-
jections of reconstructed 3D point clouds cover
the ground truth object silhouette. Specifically,
DRWR employs a smooth silhouette loss to pull
the projection of each individual 3D point inside
the object silhouette, and a structure-aware repul-
sion loss to push each pair of projections that fall
inside the silhouette far away from each other. Al-
though we omit surface interpolation, visibility
handling, and shading, our results demonstrate
that DRWR achieves state-of-the-art accuracies
under widely used benchmarks, outperforming
previous methods both qualitatively and quantita-
tively. In addition, our training times are signifi-
cantly lower due to the simplicity of DRWR.

1. Introduction

Learning to represent and reconstruct 3D structure is a core
problem in 3D computer vision. Supervised deep learning
methods (Mescheder et al., 2019; Qi et al., 2017a;b; Wang
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et al., 2019) have been highly successful by directly learning
from 3D data provided as meshes, point clouds, or voxel
volumes. However, these methods require large amounts of
3D data in training, which is expensive and time consuming
to obtain. In contrast, unsupervised 3D structure learning,
that is, 3D structure learning without 3D supervision, is an
attractive and promising alternative because it requires only
images as training data.

Differentiable renderers (Insafutdinov & Dosovitskiy, 2018;
L. et al., 2019; Navaneet et al., 2019; Yifan et al., 2019)
are a core component of unsupervised 3D structure learning
methods. They can bridge the gap between 3D to 2D by
enabling the computation of gradients of 2D loss functions
with respect to 3D structure. 2D loss functions are usu-
ally defined based on differences in RGB pixel values or
pixel-wise silhouette coverage. By rendering a predicted 3D
structure from a specific view angle into an image, and then
evaluating a loss function based on the difference between
the rendered and ground truth image, the parameters of deep
learning models can be optimized to recover 3D structures
that are consistent with the ground truth image, as illustrated
in Fig. 1(a). To evaluate pixel-wise loss functions, previous
techniques render images using some form of interpolation
of the recovered 3D structure at each pixel, such as rasteri-
zation, visibility handling (e.g., z-buffering), and optionally
per-pixel shading. For point cloud reconstruction, differen-
tiable renderers have been proposed based on rasterizing
Gaussian functions into 3D grids (Insafutdinov & Dosovit-
skiy, 2018) and on 2D planes (L. et al., 2019; Navaneet et al.,
2019), or using surface splatting (Yifan et al., 2019). While
pixel-wise interpolation, visibility handling, and shading in
these approaches significantly increase the computational
cost, one of our main insights here is that these steps do not
actually contribute to accurate 3D structure learning.

To show this, we propose a Differentiable Renderer With-
out Rendering (DRWR) for unsupervised 3D point cloud
reconstruction from 2D silhouette images. In contrast to
pixel-wise losses in previous differentiable renderers, DR-
WR produces a loss only from the 2D projections of the 3D
points, without pixel-wise interpolation, visibility handling,
or shading, as shown in Fig. 1(b). Intuitively, the DRWR
loss captures how well the projected points cover the object
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Figure 1. Tllustration of the difference between rendering-based
differentiable renderers with a pixel-wise loss in (a) and DRWR
with a projection-based loss without rendering in (b).

silhouette, or the foreground. More specifically, the loss
function includes a unary and a pairwise loss. The unary
loss is designed to pull the projection of each 3D point into
the foreground, while the pairwise loss pushes each pair
of projections that lie inside the foreground far away from
each other. This ensures that the entire foreground is cov-
ered and it prevents points from clumping. In addition, to
avoid getting stuck in a local minima, we construct a smooth
silhouette loss as the unary loss, which is designed to pro-
duce non-zero gradients for all points until their projections
move into the foreground. To make the optimization more
efficient and accurate, we also formulate the pairwise loss
in a structure-aware manner, where we adaptively take in-
to account the repulsion between each pair of projections
only when both of them appear in the foreground. Our
experiments show that DRWR outperforms all previous
methods in achieving state-of-the-art results under widely
used benchmarks. In summary, our main contributions are
as follows:

i) We propose DRWR to justify the idea of conducting
unsupervised 3D structure learning for point clouds
using a differentiable renderer without rendering, that
is, without pixel-wise interpolation of 3D structure,
visibility handling, or shading.

ii) We demonstrate that DRWR reduces training time
while improving the state-of-the-art accuracy of recon-
structed point clouds under widely used benchmarks.

iii) We introduce a smooth silhouette loss and a structure-
aware repulsion loss based on the projections of 3D
points. The resulting model can be trained efficiently
and robustly.

2. Related work

Deep learning models have made significant progress in
different 3D applications (Han et al., 2016; 2017a;b; 2018;
2019a;b;c;d;e;f;g; 2020a;b; Hu et al., 2019; 2020; Liu et al.,

2019d;e; Mescheder et al., 2019; Park et al., 2019; Qi et al.,
2017b; Wen et al., 2020a;b). Here, we briefly review differ-
entiable renderers for different 3D representations including
voxel grids, meshes, implicit functions and point clouds,
which is most related to our methods.

Voxel grids. Yan et al. (Yan et al., 2016) selected the maxi-
mum occupancy value along a ray to learn to reconstruct 3D
voxel grids from silhouette images. Gadelha et al. (Gadelha
et al., 2017) employed orthogonal projection using simple
projection function to bridge 3D voxel grids to silhouette
images. Tulsiani et al. (Tulsiani et al., 2017b) derived a dif-
ferentiable formulation by leveraging ray collision probabil-
ities. These methods work with known camera poses. Then,
Tulsiani et al. (Tulsiani et al., 2018) extended (Tulsiani et al.,
2017b) with an additional network to simultaneously predict
camera poses. Similarly, Gadelha et al. extended the pro-
jection (Gadelha et al., 2017) in the presence of viewpoint
uncertainties.

Meshes. OpenDR (Loper & Black, 2014) is the pioneer of d-
ifferentiable rendering based renderers, which approximates
gradients with respect to pixel positions to back-propagate.
With hand-crafted gradients, Kato et al. (Kato et al., 2018)
also achieved the adjustment of faces. To analytically com-
pute gradients, (Liu et al., 2018) and (Liu et al., 2019a)
back-propagated the image gradients to the face normals
which are further used to update vertex positions via chain
rule. Liu et al. (Liu et al., 2019b) introduced SoftRas with
a probabilistic rasterization and assigned each pixel to all
faces of a mesh. Similarly, Chen et al. (Chen et al., 2019) re-
garded rasterization as interpolation of local mesh properties
by computing analytic gradients of foreground pixels.

Implicit functions. Implicit functions have been attracting
more research interests as a new 3D shape representation
to learn using deep learning models (Chen & Zhang, 2019;
Jiang et al., 2020; Mescheder et al., 2019; Michalkiewicz
et al., 2019; Oechsle et al., 2019; Park et al., 2019; Saito
etal., 2019; Wang et al., 2019), due to its great representa-
tive ability with voxels or signed distance function in high
resolutions. To reduce the computational cost on sampling
implicit surface required in training, Vincent et al. (Sitzman-
n et al., 2019) learned a mapping from world coordinates to
a feature representation of local scene properties. Based on
the idea of ray marching rendering, different differentiable
renderers (Jiang et al., 2020; Liu et al., 2020; Zakharov et al.,
2020) were proposed to render the signed distance function.
While Liu et al. (Liu et al., 2019¢) proposed a novel ray-
based field probing technique to mine supervision for 3D oc-
cupancy fields. With the implicit differentiation, (Niemeyer
et al., 2020) derived analytically in a differentiable rendering
formulation for implicit shape and texture representations.

Point clouds. Due to the compactness, point clouds are also
an important 3D representation in deep learning based 3D
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Figure 2. DRWR learns the structure of 3D point clouds from
multiple silhouette images. For clarity, we show only two points
n; and ;s and one silhouette image v;. The goal of uniformly
locating the projections p; inside v; is implemented by two losses:
(a) the first loss pulls all projections into the foreground (white
areas) by minimizing the error between 1 and the pixel value of
each projection v; (p; ). The second loss in (b) pushes each pair of
projections in the foreground far away from each other.

shape understanding. However, this also brings an issue
of sparseness among 2D projections of points. This issue
makes the images with these projections impossible to di-
rectly compare with the ground truth images, which is hard
to handle by differential renderers. To resolve this issue, d-
ifferent renderers mainly employed either dense points (Lin
et al., 2018) or different rendering approaches (Insafutdinov
& Dosovitskiy, 2018; L. et al., 2019; Navaneet et al., 2019;
Yifan et al., 2019) based on rasterization. Specifically, Lin
et al. (Lin et al., 2018) resorted to dense points and pro-
posed pseudo-renderer to model the visibility using pooling.
However, it is significantly affected by the number of points.
Instead, rendering based methods (Insafutdinov & Dosovit-
skiy, 2018; L. et al., 2019; Navaneet et al., 2019; Yifan et al.,
2019) approximated the distribution of point clouds using
surface splatting (Yifan et al., 2019) or gaussian functions
in 3D space (Insafutdinov & Dosovitskiy, 2018) and on 2D
images (L. et al., 2019; Navaneet et al., 2019). But render-
ing adds computational burden, while it is not clear whether
it contributes to improving the reconstruction accuracy.

Different from these methods, DRWR can be used to gener-
ate point clouds containing arbitrary numbers of points and
produces a loss for each point without rendering.

Moreover, DRWR is also much different from the previ-
ous methods (Cashman & Fitzgibbon, 2013; Tulsiani et al.,
2017; Tulsiani et al., 2017a) which did not leverage the
rendering strategy to reveal the 3D structures from 2D im-
ages. These methods require strong priors, such as 3D tem-
plate (Cashman & Fitzgibbon, 2013; Tulsiani et al., 2017)
or primitives (Tulsiani et al., 2017a), and the guidance of
2D and 3D key point correspondence obtained by manually
annotated (Cashman & Fitzgibbon, 2013) or algorithm (Tul-
siani et al., 2017). However, DRWR do not require any of
these.

3. Details of DRWR

Overview. Our goal is to learn the structure of 3D point
clouds IN formed by J points 12; only from I ground truth
silhouette images v;, where j € [1,J] and i € [1,I]. Cur-
rent differentiable renderers rely on rendering point clouds
N into raster images v, from the i-th view angle, which
would then be used to produce a loss by comparing v; and
v; pixel-by-pixel. We argue, however, that rendering with
pixel-wise interpolation of 3D structure, visibility handling,
and shading adds unnecessary computational cost, and ac-
curate results can be achieved without these steps.

To demonstrate this, we propose DRWR, a differentiable
renderer without rendering, providing a novel perspective
for unsupervised learning of 3D structure. Denoting the
projection of point 72; in view ¢ as p;-, DRWR computes
a loss by evaluating how well the sets of projected points
{pé. |7 € [1,J]} cover the object silhouette. The DRWR
loss consists of a unary and a pairwise term, as illustrated in
Fig. 2. Given a predicted 3D point cloud and a binary silhou-
ette image, we compute the loss as follows (only two points
for illustration): We first project the points p; (short for pé-)
onto the silhouette images v;, denoting the pixel value of
the projection p; as v;(p;). The unary loss penalizes points
outside the foreground by simply computing the difference
1 — v;(p;), assuming that the foreground in the binary sil-
houette image has value 1. Minimizing this loss will pull
all projections into the foreground. In addition, the pairwise
loss adjusts the spatial distribution of projected points by
pushing pairs of projections in the foreground to be as far
from each other as possible, as shown in Fig. 2(b). DRWR
adjusts the 3D locations of points 72; through their projec-
tions p; by jointly optimizing these two losses. DRWR can
produce this loss and its gradients for any generative neural
network for 3D point clouds, enabling unsupervised training
as shown in Fig. 1(b).

3D-to-2D Projection. In our approach, we represent 3D
point clouds IN in an object centered coordinate system. Us-
ing the perspective transformation, we start by transforming
the coordinate of each point 12; into the projection pj on
each silhouette image v; from the ¢-th view angle. Using T;
as both extrinsic and intrinsic camera parameters of the i-th
camera pose, we conduct the projection below,

. 1" ~Tn; 17 (1)

Smooth Silhouette Loss. We model the unary loss as the
difference between 1 and the pixel value v; (p;) of each
projection pj on silhouette image v;. Here, we employ
bilinear interpolation to obtain vi(p;-) using the binary pixel
values of the nearest pixels around pz., as demonstrated
in Fig. 2(a). DRWR aims to pull all projections into the
foreground on all silhouette images v; by minimizing the



DRWR: A Differentiable Renderer without Rendering for Unsupervised 3D Structure Learning from Silhouette Images

loss . ‘
L(pj. vi) = |I1 —vi(P))]l- 2)

However, we found that it is impossible to pull all the pro-
jections into the foreground by minimizing I, (p’, v;) in
Eq. (2). As an example illustrated in Fig. 3, we optimize
a point cloud according to a silhouette image in Fig. 3(a).
Starting from randomly initialized points, whose projec-
tions are colored as red diamonds in Fig. 3(b), the poorly
optimized points are projected in Fig. 3(c).

This problem occurs because the gradient of the loss in E-
q.(2) is merely from the pixel intensity difference between
1 and the pixel value v; (p;) interpolated from the four n-
earby binary pixel values. This prohibits training if the
projections p§ are far from the foreground, which would
be a local minima. This issue also exists in motion estima-
tion (Bergen et al., 1992; Garg et al., 2016; Godard et al.,
2017; Zhou et al., 2017). Since these methods work on real
images which contain large variability in texture, a widely
used solution to resolve this issue is to employ an explicit
multi-scale and smoothness loss that derives gradients from
larger spatial regions directly. However, this solution cannot
resolve our issue, since silhouette images have no texture
variability in the background, which is still impossible to
derive gradients even from larger spatial regions.

J

(d)

To resolve this issue, we
introduce a smoothing
procedure for the pix-
el values on the ground
truth silhouette images v;
that we then use in the u-
nary loss. The key idea
behind our silhouette s-
moothing approach is to
establish a progressively
varying field in the back-
ground on v;, which lead-
s to non-zero gradients
anywhere in the back-
ground, while the pixel
values in the foreground
are not changed. We
achieve this using the
negative distance func-
tion as the smoothed val-
ues for each pixel  on
the background in v;,

Figure 3. Visualization of the s-
mooth silhouette loss. With bi-
nary pixel values in silhouette
image v; in (a), randomly ini-
tialized projections in (b) cannot
be pulled into the foreground, as
shown in (c). Using the smooth
silhouette loss based on v¢ in
(d), the projections in (e) can be
pulled into the foreground in (f).

G o 1, T € 9
vi (”’){ 1—d(@,00), zcQ @)
where Q = {z|v;(z) = 1} is the foreground, Q@ =
{z|v;(x) = 0} is the background, 99 is the boundary
of the foreground, and d(x, 9Q) is the L2 distance between

@ and its nearest 0f2, which is normalized by the resolution
of v;. We denote the smoothed silhouette images as v&
to distinguish them from the original silhouette images v;.
Moreover, we normalize the smoothed pixel values in the
background to lie in a range of 0 to 1 by minmax normaliza-
tion, such that v&(Q) = minmaz(vF(Q)). Finally, based
on Eq. (2), we define the smoothed silhouette loss as the
following unary loss,

L(ph,vi) = |11 — v (P))]. 4)

We illustrate this loss using the example in Fig. 3. With
the smooth silhouette values in Fig. 3(d), we can pull the
projections of all randomly initialized points in Fig. 3(e) into
the foreground by minimizing Eq. (4), as shown in Fig. 3(f).

Structure-aware Repulsion Loss. The smooth silhouette
loss is far from achieving our goal of uniformly locating
projections in the foreground, as shown in Fig. 3(f). To
better cover the silhouette and more accurately capture the
3D shape, DRWR includes a pairwise loss to model the
spatial relationship between each pair of projections. We
design the pairwise loss such that minimizing it pushes
projections inside the foreground far away from each other.

However, this pairwise loss is somewhat in conflict with the
smooth silhouette loss, which tends to pull all projections
close together, especially near the foreground boundaries.
In addition, near the foreground boundaries it is harder than
deep inside the foreground to push two projections away
from each other without pushing them into the background.
To resolve this issue, we propose a structure-aware repulsion
loss as a pairwise term. This structure-aware repulsion
loss adaptively weighs the repulsion between each pair of
projections according to the structure around the projections.
It increases repulsion for pairs of projections deep inside
the foreground, reduces repulsion for pairs of projections
around the foreground boundary, and cancels repulsion if
any projection is in the background.

Specifically, for each pair of projec-
tions p} and p’,, the L2 distance be-
tween them is d(p},p%) = |p; —
P/||2, which we further normalize ac-
cording to the resolution of the silhou-
ette image. DRWR aims to maximize i
the distance d(p’, p},), and we em- f
ploy a Gaussian function to obtain a
repulsion loss that decreases with in-
creasing distance. Hence we can min-
imize the repulsion loss along with
the smooth silhouette loss. For each
projection pz the structure-aware re-
pulsion loss models its spatial rela-
tionships to all the other projections

Ground truth silhouette image V;

Figure 4. Multi-
scale bilinear
interpolation  for
boundary bias 5;
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pz», as follows,

pJ7P;/)/0+5§-)’ 5)

Zwe

(p], {p] bvi) =

where w? and wj, are indicator
weights for projections pj and pj,,
o is the decay parameter, and J; is
the boundary bias for projection p.
The indicator weight w} represents
the degree to which projection pj is
located in the background. Small w}
or w; = 0 decreases or completely
removes the repulsion on p?, so that
the smooth silhouette loss can pull
p} into the foreground immediately.
The decay parameter o controls the
range of repulsion. The boundary bias 5;. controls the dis-
tance to the foreground boundary where the repulsion on
projection pj is reduced.

Result

Figure 5.
with both losses.

We compute the indicator weight wj- using bilinear interpola-
tion from nearby binary pixel values on the silhouette image
;, such that w} = v;(p}), as shown in Fig. 2(a). In addition,
we employ a multi-scale bilinear interpolation approach to
obtain the boundary bias (5; We use binary pixel values
from square neighborhoods at R scales around projection
p;- to conduct the interpolation, and take the mean of the
interpolations from all R scales as 6; This is demonstrated
in Fig. 4, where R = 2 scales around a projection (in red)
are shown. In this example, some pixels (in black) on the
two scales lie in the background (the shaded area), so the
boundary bias 53‘ is small, which accordingly reduces the
repulsion on the projection. This approach enables DRWR
to progressively decrease repulsion when pé approaches the
foreground boundary. As shown in Fig. 5, the structure-
aware repulsion loss combined with the smooth silhouette
loss successfully pulls all projections into the foreground
(as in Fig. 3(f)), while also uniformly covering the entire
foreground area.

Loss function. DRWR minimizes the following overall
loss function based on the two losses defined in Eq. (4) and
Eq. (5) to conduct unsupervised structure learning for 3D
point clouds,

km—‘

1 I J _ )
T ZZ ll pJv'UL /BZQ(p3'7{p;'/}av’i))7 (6)

where [ is a weight to balance the two losses and the total
loss L averages over all .J points from all I views.

4. Experiments and Analysis

Datasets and metrics. We conduct experiments involv-
ing 3D shapes in three categories from ShapeNet (Chang
et al., 2015), including chairs, cars, and airplanes, which
are commonly used for evaluation by our competitors. We
also follow the same train/test splitting as in (Insafutdinov
& Dosovitskiy, 2018; Tulsiani et al., 2017b), and we em-
ploy the five rendered views from each 3D shape and the
ground truth point clouds released by (Insafutdinov & Doso-
vitskiy, 2018). Specifically, we employ rendered views at
three different resolutions including 322, 642, and 1282, all
corresponding to the same set of ground truth point clouds
with different numbers of points.

We conduct numerical comparisons using the Chamfer dis-
tance (CD) between predicted and ground truth point clouds.
For differentiable renderers for meshes or voxel grids, we
also use volumetric IoU to conduct fair comparisons. Note
that all reported CD or IoU values reported in our experi-
ments are multiplied by 100 for better readability.

Details. For fair comparison, we employ exactly the same
neural network architecture as the one introduced by Insa-
futdinov et al. (Insafutdinov & Dosovitskiy, 2018), however,
replacing the differentiable renderer (Insafutdinov & Doso-
vitskiy, 2018) with DRWR. The approach by Insafutdinov
et al. (Insafutdinov & Dosovitskiy, 2018) implements struc-
ture learning of 3D point clouds using pairs of RGB images.
For each pair, the network first generates a point cloud from
the first RGB image, and then renders the predicted point
cloud from the view angle of the second image. Their differ-
entiable renderer produces a rendered silhouette image as
its output, as shown in Fig. 1(a), and the neural network is
trained by minimizing the pixel-wise error between the ren-
dered silhouette image and the silhouette of the second input
image. In our approach, we replace their rendering-based
differentiable renderer by DRWR, as shown in Fig. 1(b). We
omit rendering and simply leverage the projected positions
of the generated point clouds to produce the loss and gradi-
ent required in the training. At test time, the trained network
generates a 3D point cloud from a single RGB image.

We evaluate DRWR using this network with ground truth
camera poses during projection. In addition, we employ
RGB images with three different resolutions to train, and
accordingly evaluate the generated point clouds in three
resolutions including 2000, 8000, and 16000 points. We
train the network using the Adam optimizer with a batch
size of 16 rendered images (4 views of 4 shapes), where
we iterate over 1 x 10° batches in each experiment. We set
R =5 to calculate the boundary bias 6;- for all projections
during the optimization and set the decay parameter § = 1 to
decrease the repulsion between each pair of projections. We
balance the two losses using 8 = 3 in all our experiments.
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4.1. Comparison with the State-of-the-art

CD comparisons. We first compare DRWR with rendering-
based differentiable renderers in terms of CD. All compared
renderers produce silhouettes of the predicted shapes to
compute their loss with respect to ground truth silhouettes.
‘We conduct the comparison by training the networks using
silhouette images at three different resolutions as mentioned
previously.

We compare DRWR with Differentiable Ray Consistency
(DRC) (Tulsiani et al., 2017b), Efficient Point Cloud Gener-
ation (EPCG) (Lin et al., 2018), Continuous Approximation
Projection (CAP) (L. et al., 2019), and Differentiable Point
Clouds (DPC) (Insafutdinov & Dosovitskiy, 2018). The first
renderer is voxel-based, and it is only available for voxel
grids with a resolution of 323 because of the cubic com-
plexity of voxel grids. The other three renderers are point
cloud-based, which is the same as DRWR.

We report the quantitative comparison in Table 1. Our result-
s outperform all compared methods under all classes at all
three resolutions. DRWR shows obvious advantages over
voxel-based differentiable renderers including DRC and the
voxel-based counterpart “DPC-V” of DPC, where DRWR
recovers more geometry details in a more memory-efficient
manner. In addition, by omitting rendering, DRWR also
achieves higher accuracies of the reconstructed point clouds
compared to rendering-based differentiable point renderers,
such as CAP, DPC, and EPCG. These results further demon-
strate that DRWR is robust to changes in image resolutions
and number of points.

Fig. 8 shows a qual-
itative comparison 16
with the point cloud 13
renderers used in

CAP and DPC at a
resolution of 2000 3
points.  We find

that DRWR gen- ‘
eralizes better for
rarely seen shapes
and achieves higher
accuracies by more
uniformly distribut-
ing the recovered
3D points. In ad-
dition, we visualize
more high fidelity shapes at resolutions of 2000, 8000, and
16000 points in Fig. 9 (a), (b) and Fig. 7, respectively. We
find that DRWR can train networks to generate plausible
point clouds with different numbers of points from images,
while DRWR would recover more geometry details when
using more points to represent a shape.

No boundary bias
No indicator weight

Structure-aware repulsion|

2071000 2000 3000 4000 3000 6000 7000 8000 9000 10000
Step

Figure 6. The efficiency of structure-
aware repulsion.

Input CAP DPC Ours GT

Figure 8. Qualitative comparison with differentiable renderers for
point clouds.

(a) (b)

Figure 9. Randomly selected shapes with 2000 points in (a) and
8000 points in (b) from reconstructed shapes producing Table 1.

IoU comparisons. We further compare DRWR in terms
of IoU with rendering-based differentiable renderers for
other 3D representations, such as meshes and voxel grids.
The comparison includes Perspective Transform Nets (PT-
N) (Yan et al., 2016), Neural Mesh Renderer (NMR) (Kato
et al., 2018), SoftRasterizer (SoftR) (Liu et al., 2019b), and
Interpolation-based Differentiable Renderer (DIB-R) (Chen
et al., 2019). The former two methods are voxel-based,
while the latter two methods are mesh-based. We report the
results of NMR, SoftR and DIB-R from (Chen et al., 2019).
To produce our IoU, we voxelize the point clouds predicted
from images with a resolution of 1282 in Table 1 into voxel
grids with resolution 322 to compare to the same ground
truth as other methods.

The quantitative comparison is shown in the “unsupervised”
part of Table 2. Our results significantly outperform the
state-of-the-art differentiable renderers in terms of mean
IoU, where we achieve the best under airplanes and chairs.
For cars, our results are better than voxel-based renderers but
only comparable to mesh-based renderers. This is because
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Table 1. Comparison with point clouds renderers in terms of CD.

Resolution 32 (2000) Resolution 64 (8000) | Resolution 128 (16000)
DRC | CAP | DPC-V | DPC | Ours | DPC-V | DPC | Ours | EPCG | DPC | Ours
Plane | 8.35 | 6.34 5.57 4.52 | 4.01 4.94 3.50 | 3.18 | 4.03 2.84 2.66
Car 435 | 6.03 3.88 422 | 3.81 341 298 | 2.89 | 3.69 2.42 2.40
Chair | 8.01 | 6.11 5.57 5.10 | 4.66 4.80 4.15 | 4.02 | 5.62 3.62 3.49
Mean | 690 | 6.16 5.01 4.61 | 4.16 4.39 355 | 336 | 4.45 2.96 2.85
- Yo g7 > i » =~ m~
\

Figure 7. Visualization of randomly selected shapes with 16000 points in single image reconstruction in Table 1.

the mesh-based renderers are good at representing large
areas of flat surfaces, such as cars. Mesh-based approaches
are limited to a fixed (usually spherical) mesh topology,
however. This leads to inaccuracies when representing more
complex surfaces, such as chairs, which often exhibit non-
spherical topology.

We further conduct qualitative comparisons with the latest
differentiable renderers including point cloud-based DSS (Y-
ifan et al., 2019) and mesh-based SoftR in Fig. 10. For fair
comparison, we also produce results of DSS from four views
which keeps the same as DRWR in training, where DSS us-
es its own camera system to generate rendered images from
ground truth point clouds. In addition, we show our results
at a resolution of 16000 points and ground truth involved in
Table 1. Compared to DSS and SoftR, DRWR can reveal
more geometry details.

Supervised methods. Finally, we compare DRWR with
the latest supervised 3D structure learning methods. In
the first experiment, we compare with NOX (Sridhar et al.,
2019) for point clouds, where we report our results using
the evaluation code released by NOX (Sridhar et al., 2019).
Following the same setting, we employ the point clouds
reconstructed from input images with a resolution of 642
in Table 1, scale each predicted point cloud such that the

diagonal of its bounding box is one, and resample a ground
truth point cloud to 8000 points if there are more than 8000
points in it. Table 3 shows that our results significantly
outperform NOX under all three classes.

The “supervised” part in Table 2 reports the numerical com-
parison with the state-of-the-art supervised methods, where
we used the same approach as before to obtain our IoU
results. We significantly outperform supervised methods
under all three shape categories. Fig. 10 also shows a vi-
sual comparison with DISN, the best supervised method,
illustrating that we obtain similar quality.

Table 3. Comparison (CD) with latest supervised method NOX.

Cars | Airplanes | Chairs
NOX | 0.3331 0.2795 | 0.4637
Ours | 0.0446 | 0.0527 | 0.0540

4.2. Ablation studies and analysis

Ablation studies. We conduct ablation studies to justify the
effectiveness of each element in DRWR under airplanes at a
resolution of 2000 points in Table. 1. In Table 4, we report
our results with only the smooth silhouette loss in Eq. (4)
(“l1”), with only structure-aware repulsion loss in Eq. (5)
(“l3”), with binary pixel loss in Eq. (2) and structure-aware
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Figure 11. A shape reconstructed from a test image using network parameters in different steps.

Table 2. Quantitative comparison with differentiable renderers for different 3D representations and supervised methods in terms of IoU.

Unsupervised differentiable renderers Supervised structure learning methods
PTN | NMR | SoftR | DIB-R | Ours || DISN | OccNet | IMNET | 3DN | Pix2Mesh | R2N2 | AtlasNet | Ours
Car | 712 | 71.3 | 771 788 | 753 74.3 73.7 74.5 59.4 50.1 66.1 22.0 75.3
Plane | 55.6 | 58.5 58.4 570 | 622 || 575 57.1 554 543 51.5 42.6 39.2 62.2
Chair | 449 | 414 | 49.7 52.7 58.1 543 50.1 52.2 344 40.2 43.9 25.7 58.1
Mean | 57.2 | 57.1 61.7 62.8 65.2 || 62.0 60.3 60.7 49.4 473 50.9 29.0 65.2
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Figure 12. Interpolated shapes in the learned 3D feature space.

repulsion loss (“Pixel+l5”), with smooth silhouette pixel
loss in Eq. (4) and repulsion loss without indicator weights
(“ly+no wé”), and with smooth silhouette loss in Eq. (4) and
repulsion loss without boundary bias (“/;+no 5;”). We also
report results with fewer views of each shape in training,
such as [ = 2 and I = 3 views.

Table 4. Ablation studies in terms of CD.
‘ ‘ A Iy ‘ Pixel+l, ‘ 11410 w? ‘ 11410 07 H I=2[1=3 H
| CD | 19.50 | 139.10 | 2439 | 438 441 | 479 | 454 |

The ablation studies show that DRWR cannot learn the struc-
ture of shapes using only /; or l5, nor without the smooth
silhouette loss because of the local minimum issue. The
structure awareness brought by indicator weights and bound-
ary bias also contributes to the reconstruction accuracy and
optimization efficiency, which is also demonstrated by the
loss L comparison in the first 10000 steps in Fig. 6. The
loss comparison shows that the structure awareness signif-
icantly decreases the conflict with the smooth silhouette
loss, which leads to lower loss and faster convergence. In
addition, using fewer views than our I = 4 views in training
also degenerates the structure learning performance.

Table 5. Efficiency comparison in terms of training time.

327 image | 647 image 1282 image
Modality | Rendering | 2000 points/ | 8000 points/ | 16000 points/
323 voxels | 64° voxels 1283 voxels
DRC Voxel Yes ~14h ~60h Out of memory
DPC | Points Yes ~14h ~24h ~72h
Ours Points No ~7h ~12h ~36h

Efficiency. We highlight the efficiency of DRWR by com-
paring our network training time with state-of-the-art differ-
entiable renderers for 3D shapes. The voxel-based method
of DRC (Tulsiani et al., 2017b) suffers from a huge com-
putation burden due to the cubic complexity of voxel grids,
which limits it to work only in low resolutions such as 323
and 64> with slow convergence. Although the point cloud-
based method of DPC (Insafutdinov & Dosovitskiy, 2018)
does not require 3D convolution layers as DRC, which im-
proves the efficiency and enables to work in higher resolu-
tion, the rendering procedure still requires intensive com-
putation with discrete 3D grids. Therefore, DPC requires
more time (6 x 10° mini-batch iterations) during training
than DRWR (1 x 10° mini-batch iterations), thanks to the
removal of rendering.

Optimization. We visualize the optimization process in
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Figure 10. Qualitative comparison with differentiable renderers
for different 3D representations and supervised learning methods.
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Figure 13. Qualitative demonstration of shapes reconstructed from
real images.

Fig. 11. We use the parameters learned in different steps
during training to reconstruct a shape from a corresponding
image in the test set. In addition, we show the 2D projections
on four views. Using an image from the test rather than
training set can better demonstrate the generalization ability
learned in optimization, justifying our effectiveness.

Adaptation to real images. We evaluate the adaptation
ability to real images in the network trained using DRWR
in Fig. 13. Using the parameters learned in Table 1, we
reconstruct shapes at a resolution of 16000 points from
real images selected from the Internet. The high fidelity
of reconstructed shapes demonstrates that DRWR can train
networks to adapt to real images very well.

Latent space. We visualize the latent space learned in the
network that we train using DRWR. We employ a trained
network to reconstruct shapes using 1024-dimensional latent
codes that are interpolated from two known codes of two

shapes. As shown in Fig. 12, the interpolated shapes in the
smooth transformation show that DRWR helps the network
to learn a meaningful latent space.

5. Conclusion

We propose DRWR for unsupervised 3D structure learn-
ing using point clouds. DRWR successfully removes the
rendering step that is commonly used in state-of-the-art dif-
ferentiable renderers. While rendering requires additional
computation, a key observation from our experiments is that
it does not contribute to improving accuracy in 3D structure
learning. DRWR achieves this by minimizing a unary and
a pairwise loss. The unary loss uses a smooth silhouette
loss to pull all projections into the foreground by effectively
resolving the severe local minimum issue, while the pair-
wise loss uses structure-aware repulsion to efficiently push
pairs of projections in the foreground away from each oth-
er by adaptively weighting the repulsion according to the
2D structure. The effectiveness of DRWR is justified by
superior experimental results over the state-of-the-art.
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