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Abstract

Reconstructing continuous surfaces from 3D
point clouds is a fundamental operation in 3D
geometry processing. Several recent state-of-the-
art methods address this problem using neural
networks to learn signed distance functions (SDF-
s). In this paper, we introduce Neural-Pull, a new
approach that is simple and leads to high quality
SDFs. Specifically, we train a neural network to
pull query 3D locations to their closest points on
the surface using the predicted signed distance
values and the gradient at the query locations,
both of which are computed by the network itself.
The pulling operation moves each query location
with a stride given by the distance predicted by
the network. Based on the sign of the distance,
this may move the query location along or against
the direction of the gradient of the SDF. This is a
differentiable operation that allows us to update
the signed distance value and the gradient simul-
taneously during training. Our outperforming re-
sults under widely used benchmarks demonstrate
that we can learn SDFs more accurately and flex-
ibly for surface reconstruction and single image
reconstruction than the state-of-the-art method-
s. Our code and data are available at https:
//github.com/mabaorui/NeuralPull.

1. Introduction

Signed Distance Functions (SDFs) have been an important
3D shape representation for deep learning based 3D shape
analysis (Park et al., 2019; Mescheder et al., 2019; Milden-
hall et al., 2020; Michalkiewicz et al., 2019; Saito et al.,
2019; Rematas et al., 2021; Sitzmann et al., 2020; Ost et al.,
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2020; Takikawa et al., 2021; Martel et al., 2021; Oechsle
et al., 2021; Azinovic et al., 2021; Dupont et al., 2021),
due to their advantages over other representations in rep-
resenting high resolution shapes with arbitrary topology.
Given ground truth signed distance values, it is intuitive to
learn an SDF by training a deep neural network to regress
signed distance values for query 3D locations, where an im-
age (Michalkiewicz et al., 2019; Park et al., 2019) or a point
cloud (Jia & Kyan, 2020; Erler et al., 2020) representing
the shape can serve as a condition which is an additional
input of the network. It has also been shown how to learn
SDFs from multiple 2D images rather than 3D information
using differentiable renderers (Liu et al., 2020; Jiang et al.,
2020b; Zakharov et al., 2020; Wu & Sun, 2020). In this
paper, we address the problem of learning SDFs from raw
point clouds and propose a new method that outperforms
the state-of-the-art on widely used benchmarks.

Current solutions (Gropp et al., 2020; Chibane et al., 2020b;
Atzmon & Lipman, 2020a;b) aim to estimate unsigned dis-
tance fields by leveraging additional constraints. The ratio-
nale behind these solutions is that an unsigned distance field
can be directly learned from the distances between a set of
query 3D locations and their nearest neighbors on the 3D
point clouds, while the signs of these distances require more
information to infer, such as geometric regularization (Grop-
p et al., 2020), sign agnostic learning (Atzmon & Lipman,
2020a;b), or analytical gradients (Chibane et al., 2020b).

In this paper, we propose a method to learn SDFs directly
from raw point clouds without requiring ground truth signed
distance values. Our method learns the SDF from a point
cloud, or from multiple point clouds with conditions by
training a neural network to learn to pull the surrounding
3D space onto the surface represented by the point cloud.
Hence we call our method Neural-Pull. Specifically, given
a 3D query location as input to the network, we ask the
network to pull it to its closest point on the surface using
the predicted signed distance value and the gradient at the
query location, both of which are calculated by the network
itself. The pulling operation is differentiable, and depending
on the sign of the predicted distance, it moves the query
location along or against the direction of the gradient with
a stride given by the signed distance. Since our training
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objective involves both the signed distance and its gradient,
it leads to highly effective learning. Our experiments using
widely used benchmarks show that Neural-Pull can learn
SDFs more accurately and flexibly when representing 3D
shapes in different applications than previous state-of-the-
art methods. Our contributions are listed below.

i) We introduce Neural-Pull, a novel approach to learn
SDFs directly from raw 3D point clouds without ground
truth signed distance values.

ii) We introduce the idea to effectively learn SDFs by
updating the predicted signed distance values and the
gradient simultaneously in order to pull surrounding
3D space onto the surface.

iii) We significantly improve the state-of-the-art accuracy
in surface reconstruction and single image reconstruc-
tion under various benchmarks.

2. Related Work

Deep learning models have been playing an important role
in different 3D computer vision applications (Han et al.,
2019c;a; Wen et al., 2020b; Han et al., 2020c; 2019d; Liu
et al., 2019¢; Hu et al., 2020; Wen et al., 2020b; Groueix
et al., 2018; Tretschk et al., 2020; Bednarik et al., 2020;
Han et al., 2019¢; Tancik et al., 2020; Han et al., 2019b;
2020a; Badki et al., 2020; Mi et al., 2020; Han et al., 2020b;
Wen et al., 2021b;a; Jiang et al., 2020b; Wen et al., 2020a;
Liu et al., 2021). In the following, we will briefly review
work related to learning implicit functions for 3D shapes in
different ways.

Learning from 3D Ground Truth Globally. Some tech-
niques aim to learn implicit functions that represent condi-
tional mappings from a 3D location to a binary occupancy
value (Mescheder et al., 2019; Chen & Zhang, 2019) or
a signed distance value (Michalkiewicz et al., 2019; Park
et al., 2019). Early work requires the ground truth occupan-
cy values or signed distance values as 3D supervision. For
single image reconstruction, a single image (Wang et al.,
2019b; Saito et al., 2019; Chibane et al., 2020a; Littwin &
Wolf, 2019; Genova et al., 2019; Han et al., 2020c) or a
learnable latent code (Park et al., 2019) can be a condition
to provide information about a specified shape. For surface
reconstruction (Williams et al., 2019; Liu et al.; Mi et al.,
2020; Genova et al., 2019), we can leverage a point cloud
as a condition to learn an implicit function which further
produces a surface (Jia & Kyan, 2020; Erler et al., 2020).

Learning from 3D Ground Truth Locally. To improve
the performance of learning implicit functions, a local s-
trategy was also explored that focuses on more local shape
information. Jiang et al. (Jiang et al., 2020a) introduced the
local implicit grid to improve the scalability and generality.

Similarly, PatchNet (Tretschk et al., 2020) was proposed
to learn a patch-based surface representation to get more
generalizable models. With a grid of independent latent
codes, deep local shapes (Chabra et al., 2020) was proposed
to represent 3D shapes without prohibitive memory require-
ments. Using locally interpolated features, convolutional
occupancy networks (Songyou Peng, 2020) learn occupancy
network for 3D scene reconstruction. Other local deep im-
plicit functions (Genova et al., 2020) are learned by inferring
the space decomposition and local deep implicit function
learning from a 3D mesh or posed depth images.

Learning from 2D Supervision. We can also learn implicit
functions from 2D supervision, such as multiple images.
Vincent et al. (Sitzmann et al., 2019) learned a mapping
from world coordinates to a feature representation of local
scene properties, which reduces the computational cost on
sampling points for implicit surface learning. Inspired by ray
marching rendering, different differentiable renderers (Liu
et al., 2020; Jiang et al., 2020b; Zakharov et al., 2020) were
introduced to render signed distance functions into images.
In addition, ray-based field probing (Liu et al., 2019b) or
aggregating detection points on rays (Wu & Sun, 2020)
were employed to mine supervision for 3D occupancy fields.
With the implicit differentiation, Niemeyer et al. (Niemeyer
et al., 2020) analytically derived in a differentiable rendering
formulation for implicit shape and texture representations.
For view synthesis, radiance fields were learned first, and
then rendered using the differentiable volume rendering to
calculate the loss (Mildenhall et al., 2020).

Learning from Point Clouds. Without ground truth signed
distance values or occupancy values, learning implicit func-
tions directly from raw point clouds is more challenging.
Current methods learn signed or unsigned distance fields
with additional constraints, such as geometric regulariza-
tion (Gropp et al., 2020), sign agnostic learning with a spe-
cially designed loss function (Atzmon & Lipman, 2020a) or
constraints on gradients (Atzmon & Lipman, 2020b), and an-
alytical gradients (Chibane et al., 2020b). A recent cocurrent
work (Chibane et al., 2020b) learns to predict unsigned dis-
tances and infers the surface by pulling sampled queries to
the surface. While our method directly learns SDFs which
can be used to directly predict 3D shapes during testing,
especially for applications without knowing point clouds
during inference, such as single image reconstruction.

3. Method

Problem Statement. We employ a neural network to learn
SDFs that represent 3D shapes. An SDF f predicts a signed
distance value s € R for a query 3D location g = [z, v, z].
Optionally, we provide an additional condition c as input,
such that f(c, g) = s. Given ground truth signed distances
as supervision, current methods (Michalkiewicz et al., 2019;
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Figure 1. Demonstration of pulling surrounding 2D space to a
surface, where gradients g; and signed distance value s are from
neural network f.

Park et al., 2019) can employ a neural network to learn f as
a regression problem. Different from these method, we aim
to learn SDF f in a 3D space directly from 3D point cloud

P = {pjvj €[1,J]}

Overview. We introduce Neural-Pull as a neural network
to learn how to pull a 3D space onto the surface represent-
ed by the point cloud P. Rather than leveraging unsigned
distances as previous methods (Gropp et al., 2020; Chibane
et al., 2020b; Atzmon & Lipman, 2020a;b), Neural-Pull
trains an SDF f to predict signed distances using the point
cloud P and the gradient within the network itself to rep-
resent 3D shapes. Neural-pull tries to learn to pull a query
location g; which is randomly sampled around the surface
to its nearest neighbor ¢; on the surface, where the query
locations form a set Q = {q;,? € [1,1]}. The pulling op-
eration pulls the query location g; with a stride of signed
distance s;, along or against the direction of the gradient g;
at q;, obtained within the network.

We demonstrate our idea using a 2D surface in Fig. 1, where
the 2D surface splits the space into inside and outside of the
shape. We train a neural network to employ the predicted
signed distances s; (or s2) to pull the query location g (or
@2) to its nearest neighbor ¢; (or ¢, ) against (or along) the
gradient g; (or gs ) at the query location q; (or g3).

Pulling Query Points. We pull a 3D query location g;
to its nearest neighbor ¢; on the surface using the pre-
dicted signed distance s; and the gradient g; at g; with-
in the network. The gradient g; is a vector whose com-
ponents are the partial derivatives of f at g;, such that
gi = [8f(C, ‘L)/axa 5‘f(c, ql)/aya 3f(c, Qz)/az]’ which
is also denoted as V f(c, q;), where ¢ is a condition. It is
the direction of the fastest signed distance increase in 3D

space. Therefore, we can leverage this property to move a
query location along or against the direction of gradient g;
to its nearest point on the surface. We leverage the following
equation to pull query locations q;,

t;=qi — f(c,q) x VF(c,a)/lIVf(c,qi)ll2, (1)
where ¢ is the pulled query location g; after pulling, ¢
is the condition to represent ground truth point cloud P,
and Vf(e,q:)/|IVf(c,qi)l|2 is the direction of gradient
Vf(e,q;). Since f is a continuously differentiable function,
we can obtain V f(c, g;) in the back-propagation process
of training f. As Fig. 1 demonstrates, for query locations
inside of the shape P, if the sign of the signed distance value
is negative, and the network will move the query location g;
along the direction of gradient to ¢; on P using ¢, = q; +
|f(c,q:)| xVf(e,q)/|IVf(c,qi)l|2- Instead, the network
will move query locations outside of P against the direction
of gradient due to the positive signed distance value, using

ti=q; —|f(c,q)| x Vf(c,q)/|IVSf(c, a2

Query Locations Sampling. We randomly sample query
locations around each point p; of the ground truth point
cloud P. For each point p; € P, we establish an isotropic
Gaussian function A (p;, 0%) to form a distribution, accord-
ing to which we randomly sample 25 query locations, where
o2 is the parameter to control how far away from the surface
we can sample query locations. Here, we employ an adap-
tive way to set o as the square distance between p; and
its 50-th nearest neighbor, which reflects location density
around p;. The sampled query locations can cover the area
around the surface represented by the point cloud P, both in-
side and outside of the shape. Our preliminary results show
that sampling near the surface will improve the learning
accuracy, since it is hard for the network to predict accurate
signed distance and gradient to move a query location that
is far from surface to its nearest neighbor on the surface.
We will elaborate on the details of leveraging these query
locations sampled around P during training later.

Loss Function. Neural-pull aims to train a network to learn
to pull a query location g; to its nearest neighbor ¢; on the
point cloud P. So, we leverage a square error to minimize
the distance between the pulled query location ¢} obtained
in Eq. 1 and the nearest neighbor £; among p; on P below,

Z 18] — ][5, )

zE[l 1)

d({ti}, {ti}) =

Convergence to SDF. One question that is not answered
yet is that why the learned function f can converge to a
signed distance field. Obviously, Eq. 1 is also satisfied in an
unsigned distance field. We illustrate the difference between
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Figure 2. The illustration of the difference between signed distance
field and unsigned distance field in terms of distance sign in (a),
(c) and gradient in (b), (d).
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Figure 3. Optimization visualization on a 2D case.

(@)

signed distance field and unsigned distance field near a 2D
surface in Fig. 2, where the location is shown in 1D. For a
query point g on the surface, the signed distance field near g,
q + A\q, is changing the sign of distance when going across
the surface in Fig. 2(a), while keeping the gradient the same
in Fig. 2(b). In contrast, the direction of the gradient for the
region of ¢ + Agq in an unsigned distance field is changing
in Fig. 2(d) since the unsigned distance is increasing in both
sides of the surface in Fig. 2(c). According to this difference,
we have the following theorem indicating that a continuous
function implemented by MLP can automatically converge
to an SDF using our loss.

Theorem 1. A continuous function f implemented by MLP
which is trained to minimize Eq. 2 can converge to a signed
distance function if Eq. 3 is satisfied at any point p on the

surface (f(p) = 0), where N is the norm of p, || At]| < u
and p indicates a small range.
flp— NAt) = —f(p+ NA?). 3)

Proof: Since f is a continuous function representing SDF,
if Vf(p) # 0, we have N = Vf(p)/||Vf(p)||2. Assume
Ap = N At, using the definition of gradient, we have

Jim (f(p+4p) = f(0)/Ap = N+ [V f(P)ll2- (4)

We can rewrite the equation above by removing lim into

(f(p+ALp) = f(p)/Ap = N «||Vf(p)ll2 +, (5)

where « is infinitesimal when Ap — 0. We can further
have f(p+Ap) = f(p) = (N*[[Vf(p)ll2+ )« Ap # 0

by multiplying Ap on both sides, since Ap approaches 0
but never equals to 0. Similarly, we also have f(p — Ap) —

f(p) = —=(Nx||Vf(p)||]2+ @) * Ap. Since f(p) = 0, we
have

f(p—A4p) =—f(p+ Lp). (6)
We can further replace Ap into N At to get Eq. 3 proofed.

Next, we will further proof our loss can significantly penal-
ize Vf(p) = 0. Assume V f(p) = 0, so limapo(f(p +
Ap) — f(p))/Ap = 0. Since f(p) = 0, f(p + Ap) is
higher order infinitesimal of Ap. If we pull p + Ap to
p, our loss is [[p — (p + Ap — f(p + &p) x Vf(p +
Ap)/||IVf(p + Ap)||2)]|3, which can be rewritten into
|1Ap = f(p+ Ap) x V(p+Lp)/||[Vf(p+ Ap)lla|l3-
However, this equation can not be 0 since f(p + Ap) X
Vi(p+Ap)/||Vf(p+Ap)||2 is still higher order infinites-
imal of Ap. So, Vf(p) # 0.

Optimization Visualization. We demonstrate the optimiza-
tion using a 2D case in Fig. 3. We learn a circle P in Fig. 3
(a) using query locations q; sampled in Fig. 3 (b), where
the color of g; is used to track the pulled query locations
t; in Fig. 3 (c). The consistent color indicates that our loss
can correctly pull the queries onto the surface. Additionally,
we visualize the unsigned distances of the learned signed
distance field in Fig. 3 (d) and their signs in Fig. 3 (e). Fig. 3
justifies the effectiveness of our method.

Training. We randomly sample J = 2 x 10* points p;
from point clouds formed by 1 x 10° points released by
OccNet (Mescheder et al., 2019) as the ground truth point
cloud P for each shape, where j € [1,J]. As mentioned,
we sample 25 3D query locations g; around each point p;
to form the corresponding query location set @, such that
i€[l,I]and I =5 x 10°. During training, we randomly
select 5000 query locations from @ as a batch to train the
network. We try two different ways to select the 5000 query
locations. One way is to randomly select from @, the other
is to uniformly sample 5000 points on the ground truth point
cloud P, and then select one query location around each
sampled point, where the second way can better cover the w-
hole shape in each batch. Our preliminary results show that
both of the two ways achieve good learning performance.

We employ a neural network similar to OccNet (Mescheder
et al., 2019) to learn the signed distance function (more
details can be found in our supplemental material). We
use the Adam optimizer with an initial learning rate of
0.0001, and train the model in 2500 epochs. Moreover, we
initialize the parameters in our network using the geometric
network initialization (GNI) (Atzmon & Lipman, 2020a) to
approximate the signed distance function of a sphere, where
the sign of the signed distance inside of the shape is negative
and positive outside.
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4. Experiments and Analysis
4.1. Surface Reconstruction

Details. We employ Neural-Pull to reconstruct 3D surfaces
from point clouds. Given a point cloud P, we do not lever-
age any condition c in Fig. 1 and overfit the neural network
to the shape by minimizing the loss in Eq. 2, where we re-
move the network for extracting the feature of the condition.
Hence our method does not require any training procedure
under the training set, which differentiates our method from
the previous ones (Atzmon & Lipman, 2020a; Chibane et al.,
2020b; Liu et al.; Erler et al., 2020). After overfitting on
each shape, our neural network learns an SDF for the shape.
Then, we use the marching cubes (Lorensen & Cline, 1987)
algorithm to reconstruct the mesh surface.

Dataset and Metric. For fair comparison with other meth-
ods, we leverage three widely used benchmarks to evaluate
our method in surface reconstruction.

Table 1. Reconstruction comparison in terms of L2-CD (x100).

Dataset | DSDF | ATLAS | PSR | Points2Surf | IGR | Ours
ABC 8.41 4.69 2.49 1.80 0.51 | 0.48
FAMOUS | 10.08 4.69 1.67 1.41 1.65 | 0.22
Mean 9.25 4.69 2.08 1.61 1.08 | 0.35

The first benchmark is the ABC dataset (Koch et al., 2019)
which contains a large number and variety of CAD models.
We use a subset of this dataset, released by Points2Surf (Er-
ler et al., 2020) with the same train/test splitting. The
second benchmark is FAMOUS which is also released by
Points2Surf (Erler et al., 2020). The FAMOUS dataset is
formed by 22 diverse well-known meshes.The last one is a
subset of ShapeNet (Chang et al., 2015) the same train/test
splitting released by MeshingPoint (MeshP) (Liu et al.).

To comprehensively evaluate our method with the state-
of-the-art methods, we leverage different metrics for fair
comparison. Following Points2Surf (Erler et al., 2020),
we leverage the L2-Chamfer distance (L2-CD) to evaluate
the reconstruction error between our reconstruction and the
1 x 10* ground truth points under the ABC and FAMOUS
datasets, where we also randomly sample 1 x 10* points on
our reconstructed mesh. Besides the L1-Chamfer distance
(L1-CD), we also follow MeshP (Liu et al.) to leverage

Table 2. Surface reconstruction comparison in terms of L2-CD
(x100).

Class PSR | DMC | BPA | ATLAS | DMC | DSDF | DGP | MeshP | NUD | SALD | Ours
Display | 0.273 | 0.269 | 0.093 | 1.094 | 0.662 | 0.317 | 0.293 | 0.069 | 0.077 - 0.039
Lamp | 0.227 | 0.244 | 0.060 | 1.988 | 3.377 | 0.955 | 0.167 | 0.053 | 0.075 | 0.071 | 0.080
Airplane | 0.217 | 0.171 | 0.059 | 1.011 | 2.205 | 1.043 | 0.200 | 0.049 | 0.076 | 0.054 | 0.008
Cabinet | 0.363 | 0.373 | 0.292 | 1.661 | 0.766 | 0.921 | 0.237 | 0.112 | 0.041 - 0.026
Vessel | 0.254 | 0.228 | 0.078 | 0.997 | 2.487 | 1.254 | 0.199 | 0.061 | 0.079 - 0.022
Table 0.383 | 0.375 | 0.120 | 1.311 1.128 | 0.660 | 0.333 | 0.076 | 0.067 | 0.066 | 0.060
Chair | 0.293 | 0.283 | 0.099 | 1.575 | 1.047 | 0.483 | 0.219 | 0.071 | 0.063 | 0.061 | 0.054
Sofa 0.276 | 0.266 | 0.124 | 1.307 | 0.763 | 0.496 | 0.174 | 0.080 | 0.071 | 0.058 | 0.012
Mean | 0.286 | 0.276 | 0.116 | 1.368 | 1.554 | 0.766 | 0.228 | 0.071 | 0.069 | 0.062 | 0.038
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Figure 4. Comparison under FAMOUS in surface reconstruction.
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Figure 5. Comparison under ABC in surface reconstruction.

L2-CD, Normal Consistency (NC) (Mescheder et al., 2019),
and F-score (Tatarchenko et al., 2019) to evaluate the re-
construction error, where we compare the 1 x 10° points
sampled on the reconstructed shape with the 1 x 10° ground
truth points released by OccNet (Mescheder et al., 2019).
Note that L2-CD leverages the L2 norm to evaluate the dis-
tance between each pair of points, while L1-CD leverages
the L1 norm.

Comparison. We compare our method with state-of-the-art
classic and data-driven surface reconstruction methods un-
der the FAMOUS and ABC datasets, including DeepSDF
(DSDF) (Park et al., 2019), AtlasNet (ATLAS) (Groueix
et al., 2018), Screened Poisson Surface Reconstruction (P-
SR) (Kazhdan & Hoppe, 2013), Points2Surf (Erler et al.,
2020), and IGR (Gropp et al., 2020). We report the results
of DSDF, ATLAS, PSR and Points2Surf from the paper of
Points2Surf (Erler et al., 2020), while reproducing the result-
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s of IGR using the official code. The L2-CD comparison in
Table 1 shows that our method can significantly increase the
surface reconstruction accuracy under each dataset due to
better inference of the surface learned in the pulling process.

We visually compare our method with IGR (Gropp et al.,
2020) and Points2Surf (Erler et al., 2020) under the FA-
MOUS and ABC dataset in Fig. 4 and Fig. 5, respectively.
We train IGR using its released code with the same set-
tings as ours, and generate surface reconstruction using the
trained parameters released by Points2Surf. The comparison
in Fig. 4 demonstrates that our method can reveal geometry
details in higher accuracy than other methods. Moreover,
the comparison in Fig. 5 shows that our method can recon-
struct a smoother plane than Points2Surf, but Points2Surf is
good at reconstructing sharp edges.

Similarly, we compare the state-of-the-art classic and data-
driven methods under the ShapeNet subset, including P-
SR (Kazhdan & Hoppe, 2013), Ball-Pivoting algorithm (B-
PA) (Bernardini et al., 1999), ATLAS (Groueix et al., 2018),
Deep Geometric Prior (DGP) (Williams et al., 2019), Deep
Marching Cube (DMC) (Liao et al., 2018), DeepSDF (DSD-
F) (Park et al., 2019), MeshP (Liu et al.), Neural Unsigned
Distance (NUD) (Chibane et al., 2020b), SALD (Atzmon &
Lipman, 2020b), Local SDF (GRID) (Jiang et al., 2020a),
and IMNET (Chen & Zhang, 2019). We conduct the nu-
merical comparison in terms of different metrics including
L2-CD in Table 2, normal consistency in Table 3, and F-
score with a threshold of y in Table 4, 2p in Table 5. We
report the results of PSR, MC, BPA, ATLAS, DMC, DSDF,
DGP, MeshP from the paper of MeshP (Liu et al.), while
reporting the results of SALD, GRID, IMNET from their
original papers and reproducing the results of NUD using
the same experimental settings. The comparison shown in
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Figure 7. Comparison in single image reconstruction.

Table 2, 3, 4, 5 demonstrates that our method can reconstruct
more accurate surfaces in terms of CD and F-Score, where
we set the threshold p as 0.002 in the F-Score calculation.
Although our normal consistency results are comparable to
MeshP, MeshP directly does the meshing without learning
an implicit function, which requires dense and clean point
clouds to guarantee the performance.

We visually compare our method with the-state-of-the-art
MeshP (Liu et al.) under Airplane, Chair, Table and Vessel
classes in Fig. 6. We use the parameters trained by MeshP.
The comparison shows that our method can reconstruct more
complete surfaces, especially for thin structures or sharp
corners, which achieves much higher accuracy.

In addition, we also report our L1-CD results by compar-
ing with 3D-R2 (Choy et al., 2016), PSGN (Fan et al.,
2017), DMC (Liao et al., 2018), Occupancy Network (Oc-
cNet) (Mescheder et al., 2019), SSRNet (Mi et al., 2020)
and DDT (Luo et al., 2020) under the ShapeNet subset in
Table 6. The comparison shows that our method achieves
the best performance.

4.2. Single Image Reconstruction

Details. We further employ Neural-Pull to reconstruct 3D
shapes from 2D images. We regard the 2D image as a condi-
tion, which corresponds to a 3D shape represented as a point
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Table 3. Surface reconstruction comparison in terms of normal

Table 6. Reconstruction comparison in terms of L1-CD.

consistency. 3D-R2 | PSGN | DMC | OccNet | SSRNet | DDT | Ours
Class | PSR | DMC | BPA | ATLAS | DMC | DSDF | MeshP | GRID | IMNET | Ours 0169 | 0202 | 0.117 | 0.079 0.024 | 0.020 | 0.011
Display | 0.889 | 0.842 | 0.952 | 0.828 | 0.882 | 0.932 | 0.974 | 0.926 0.574 | 0.964
Lamp | 0876 | 0.872 | 0.951 | 0.593 | 0.725 | 0.864 | 0.963 | 0.882 | 0592 | 0930
Airplane | 0.848 | 0.835 | 0.926 | 0.737 | 0.716 | 0.872 | 0.955 | 0.817 | 0550 | 0947
Cabinet | 0.880 | 0.827 | 0.836 | 0.682 | 0.845 | 0.872 | 0.957 | 0.948 0.700 | 0.930
Vessel | 0.861 | 0.831 | 0.917 | 0.671 | 0.706 | 0.841 | 0.953 | 0847 | 0574 | 0.941 ﬁ ~ AL = |
Table | 0.833 | 0.809 | 0.919 | 0783 | 0.831 | 0.901 | 0.962 | 0.936 | 0.702 | 0.908 i Lo e m 71

Chair | 0.850 | 0.818 | 0.938 | 0.638 | 0.794 | 0.886 | 0.962 | 0.920 | 0.820 | 0.937
Sofa 0.892 | 0.851 | 0.940 | 0.633 | 0.850 | 0.906 | 0.971 | 0.944 | 0.818 | 0.951
Mean | 0.866 | 0.836 | 0.923 | 0.695 | 0.794 | 0.884 | 0.962 | 0.903 | 0.666 | 0.939

Table 4. Surface reconstruction comparison in terms of F-score
with a threshold of .

Class PSR | DMC | BPA | ATLAS | DMC | DSDF | DGP | MeshP | NUD | GRID | IMNET | Ours
Display | 0.468 | 0.495 | 0.834 | 0.071 | 0.108 | 0.632 | 0.417 | 0.903 | 0.903 | 0.551 | 0.601 | 0.989
Lamp | 0455 | 0.518 | 0.826 | 0.029 | 0.047 | 0.268 | 0.405 | 0.855 | 0.888 | 0.624 | 0.836 | 0.891
Airplane | 0.415 | 0.442 | 0.788 | 0.070 | 0.050 | 0.350 | 0.249 | 0.844 | 0.872 | 0.564 0.698 | 0.996
Cabinet | 0.392 | 0.392 | 0.553 0.077 | 0.154 | 0.573 | 0.513 | 0.860 | 0.950 | 0.733 0.343 0.980
Vessel | 0.415 | 0.466 | 0.789 | 0.058 | 0.055 | 0.323 | 0.387 | 0.862 | 0.883 | 0.467 | 0.147 | 0.985

Table | 0.233 | 0.287 | 0.772 | 0.080 | 0.095 | 0.577 | 0.307 | 0.880 | 0.908 | 0.844 | 0425 | 0.922
Chair | 0.382 | 0433 | 0.802 | 0.050 | 0.088 | 0.447 | 0.481 | 0.875 | 0913 | 0.710 | 0.181 | 0.954
Sofa 0.499 | 0.535 | 0.786 | 0.058 | 0.129 | 0.577 | 0.638 | 0.895 | 0.945 | 0.822 0.199 | 0.968
Mean | 0.407 | 0.446 [ 0.769 | 0.062 [ 0.091 | 0.468 | 0.425 | 0.872 | 0.908 | 0.664 | 0.429 | 0.961

cloud P. During training, we leverage a condition and a set
of query locations @ to minimize the loss in Eq. 2. During
testing, we reconstruct a 3D shape from an input image with
a given condition using marching cube (Lorensen & Cline,
1987). We leverage the 2D encoder used by SoftRas (Liu
et al., 2019a) to infer the 2D image conditions.

Dataset and Metric. We use the ShapeNet subset released
by Choy et al (Choy et al., 2016) to evaluate the perfor-
mance in single image reconstruction, where the dataset
also contains rendered RGB images in 13 shape classes and
a train/test split. After getting the reconstructed meshes, we
first leverage the L1-CD and Normal Consistency (NC) to
evaluate the reconstruction error between the reconstructed
shapes and the 1 x 10° ground truth points released by Occ-
Net (Mescheder et al., 2019), where we uniformly sample
1 x 10° points on the reconstructed shapes. To evaluate
our method in a multi-scale way, we also uniformly sample
2048 points on both of reconstructed shapes and 1 x 10°
point ground truth to evaluate reconstruction error using
Earth Mover Distance (EMD).

Comparison. We report numerical comparisons with
3D-R2 (Choy et al., 2016), PSGN (Fan et al., 2017),
Pix2Mesh (Wang et al., 2018), ATLAS (Groueix et al.,
2018), OccNet (Mescheder et al., 2019), IMNET (Chen

Table 5. Surface reconstruction comparison in terms of F-score
with a threshold of 2.

Class PSR | DMC | BPA | ATLAS | DMC | DSDF | DGP | MeshP | NUD | Ours
Display | 0.666 | 0.669 | 0.929 | 0.179 | 0.246 | 0.787 | 0.607 | 0.975 | 0.944 | 0.991
Lamp | 0.648 | 0.681 | 0.934 | 0.077 | 0.113 | 0.478 | 0.662 | 0.951 | 0.945 | 0.924
Airplane | 0.619 | 0.639 | 0.914 | 0.179 | 0.289 | 0.566 | 0.515 | 0.946 | 0.944 | 0.997
Cabinet | 0.598 | 0.591 | 0.706 | 0.195 | 0.128 | 0.694 | 0.738 | 0.946 | 0.980 | 0.989
Vessel | 0.633 | 0.647 | 0.906 | 0.153 | 0.120 | 0.509 | 0.648 | 0.956 | 0.945 | 0.990
Table 0.442 | 0462 | 0.886 | 0.195 | 0.221 | 0.743 | 0494 | 0.963 | 0.922 | 0.973
Chair | 0.617 | 0.615 | 0913 | 0.134 | 0.345 | 0.665 | 0.693 | 0.964 | 0.954 | 0.969
Sofa 0.725 | 0.708 | 0.895 | 0.153 | 0.208 | 0.734 | 0.834 | 0.972 | 0.968 | 0.974
Mean | 0.618 | 0.626 | 0.885 | 0.158 | 0.209 | 0.647 | 0.649 | 0.959 | 0.950 | 0.976

Figure 8. Reconstruction from real images

& Zhang, 2019), 3DN (Wang et al., 2019a), DISN (Wang
et al., 2019b) in Table 7. The comparison in terms of L1-
CD and Normal Consistency shows that our method can
significantly improve the reconstruction performance un-
der almost all shape classes by providing more geometry
details on the 3D shapes in higher resolution. The EMD
comparison also shows our outperforming results over other
methods under a sparse point setting. We further present
a visual comparison with ATLAS (Groueix et al., 2018),
OccNet (Mescheder et al., 2019) and SoftRas (Liu et al.,
2019a) in Fig. 7 under Airplane, Chair and Lamp classes,
which shows that we can reconstruct shapes with smoother
surface in higher accuracy.

Reconstruction from Real Images. We collect some real
images and reconstruct shapes using our model trained un-
der synthetic data in Fig. 8. The high fidelity reconstructions
show that our method can generalize well to real images.

4.3. Analysis

Ablation Study. We conduct ablation studies in surface re-
construction under FAMOUS dataset. First, we explore the
contribution made by the geometric network initialization
(GNI). We report the result without GNI as “No GNI” using
the random network initialization in Table 8. The degenerat-
ed result compared to our method of “Ours” demonstrates
that GNI can help the network to better understand the shape.
Moreover, we highlight the strategy that we use in the query
location sampling near the ground truth point clouds. We re-
place our sampling by randomly sampling query locations in
the entire 3D space, where the number of query locations is
kept the same. We report this result as “Space sampling” in
Table 8, which demonstrates that it is more effective to use
the query locations near the surface to probe the space for
the learning. We also try to leverage an additional constraint
introduced by IGR (Gropp et al., 2020) to keep the normal
of gradient to be 1, but the result of “Gradient constraint”
shows that the constraints bring no improvement.

The Effect of Noise. We further explore the effect of noise
on the ground truth point clouds under the ABC and FA-
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Table 7. Single image reconstruction comparison in terms of different metrics.

L1-CD,10” points Normal Consistency,10° points EMD x100,2048 points
3D-R2 PSGN Pix2Mesh ATLAS OccNet Ours | 3D-R2  Pix2Mesh ATLAS OccNet Ours | IMNET 3DN Pix2Mesh ATLAS DISN Ours
Airplane | 0227 0.137  0.187 0104 0147 0016 | 0629 0759 0836 0840 0858 | 290 330 298 339 267 132
Bench 0.194 0181  0.201 0138  0.155 0016 | 0678 0732 0779 0813 0820 | 280 298 258 322 248 137
Cabinet | 0217 0215  0.196 0175 0.167 0.018 | 0782  0.834 0850 0879 0.888 | 314 321 344 336 304 L62
Car 0213 0169 0180 0141 0159 0022 | 0714 0756 0836 0852 0861 | 273 328 343 372 267 156
Chair 0270 0247 0265 0209 0228 0.024 | 0663 0746 0791 0823 0810 | 301 445 352 386 267 203
Display | 0314 0284 0239 0198 0278 0.020 | 0720 0830 0858 0854 0.867 | 281 391 292 312 273 1.64
Lamp 0778 0314 0308 0305 0479 0.021 | 0560 0666 0694 0731 0867 | 585 399 515 529 438 285
Loudspeaker | 0318 0316 0285 0245 0300 0.032| 0711 0782 0825 0832 0849 | 380 447 356 375 347 210
Rifle 0.183 0134 0164 0115 0141 0019 | 0670 0718 0725 0766 0811 | 265 278  3.04 335 230 141
Sofa 0229 0224 0212 0177 0194 0019 | 0731 0820 0840  0.863 0856 | 271 331 2.70 314 262 151
Table 0239 0222 0218 0190 0189 0.025 | 0732 0784 0832 0858 0810 | 339 394 352 398 311 199
Telephone | 0.195 0161  0.149 028  0.140 0.018 | 0.817 0907 0923 0935 0946 | 214 270 266 319 206 123
Vessel 0238 088 0212 0151 0218 0027 | 0629 0699 0756 0794 0827 | 275 392 394 439 277 171
Mean 0278 0215 0216  0.175 0215 0.021 | 0695 0772 0811 0834 0851 | 3.3 356 334 367 284 172
Input Input
Table 8. Ablation studies in terms of L2-CD (x100).

No GNI | Space sampling | Gradient constraint | Ours Y

0.35 0.80 1.15 0.22 kS

Z

MOUS datasets in surface reconstruction. We conduct ex- o

periments using the “ABC max-noise” and “FAMOUS max- %5

noise” with strong noise, “ABC var-noise” with varying
noise strength, and “FAMOUS med-noise” with a constant
noise strength, all of which are released by Points2Surf (Er-
ler et al., 2020). We report our results under these datasets
in Table 9, where we show that our method can better resist
the noise than the state-of-the-art results. We also visual-
ly compare our results with noise and without noise under
“FAMOUS med-noise” in Fig. 9. The slight degeneration
further demonstrates our ability of learning signed distance
functions from point cloud with noise.

Table 9. Comparison with noise in terms of L2-CD (x100).

Dataset DSDF | ATLAS | PSR | Points2Surf | Ours
ABC var-noise 12.51 4.04 3.29 2.14 0.72
ABC max-noise | 11.34 4.47 3.89 2.76 1.24
F-med-noise 9.89 4.54 1.80 1.51 0.28
F-max-noise 13.17 4.14 341 2.52 0.31
Mean 11.73 4.30 3.10 2.23 0.64

The Effect of Query Location Resolution. The number of
query locations is also a factor that affects the learning. We
explore its effect by merely adjusting the number of query
locations under FAMOUS in surface reconstruction, such
that I = {1,2.5,5,10} x 10°. We report the comparison in
Table 10, where the best result is achieved with I = 10x 106.
Moreover, we test the time used in training in one epoch for
different numbers of query locations. Although the result
with I = 10 x 106 is better than the one with I = 5 x 108
which is used in our previous experiments, it takes much
more time in training.

The Effect of GT Point Cloud Resolution. We also ex-
plore how the resolution of ground truth point clouds affects
the performance under the FAMOUS dataset in surface re-

Noise

Clean

Figure 9. Demonstration of resisting noise.

Table 10. Effect of I in terms of L2-CD (x100) and time.

x10° 1 2.5 5 10
Accuracy | 0.434 | 0.394 | 0.223 | 0.221
Time (s) 103 210 530 | 1020

construction in Table 11. We keep the number of query
locations the same to I = 5 x 10, but employ ground truth
point clouds with different numbers. Results in Table 11
show that higher resolutions of the ground truth can help
our method to better infer the surface, but it also takes much
more time to search the nearest neighbor on the ground truth
point cloud when calculating the loss, especially in real ap-
plications. Moreover, we also compare our method with
DSDEF, ATLAS, PSR, Points2Surf under FAMOUS sparser
(“F-sparser”) and FAMOUS denser (“F-denser”) dataset-
s released by Points2Surf (Erler et al., 2020). Table 12
demonstrate that our method also achieves the best.

The Effect of Query Locations Range. Finally, we discuss
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Table 11. Effect of J in terms of L2-CD (x100).

x103 1 2.5 5 10 20 40

0.293 | 0.266 | 0.236 | 0.233 | 0.223

Table 12. Resolution comparison in terms of L2-CD (x100).

Dataset | DSDF | ATLAS | PSR | Points2Surf | Ours
F-sparse | 10.41 491 2.17 1.93 0.84
F-dense 9.49 4.35 1.60 1.33 0.22

Mean 9.60 4.66 1.98 1.62 0.44

the effect of the query location range. We use the parameter
o2 to control the maximum range of query locations around
each point on the ground truth point cloud. We use several
o? candidates, including {0.2502,0.502, 02, 202, 40%}, to
randomly sample the same number of query locations. We
report the results under the FAMOUS dataset in surface
reconstruction in Table 13. The comparison shows that a
too small or too large query location range will degenerate
the surface reconstruction performance. Since it is hard to
use the query locations to probe the area around the surface
if the query location range is too small, while it is also hard
to push the network to produce the accurate direction and
distance to move the query locations to the surface if the
query locations are too far away from the surface.

Table 13. Effect of o2 in terms of L2-CD (x 100).
xa2 ] 025 [ 0.5 1 2 4
0.348 | 0.304 | 0.223 | 0.243 | 0.271

Latent Space Visualization. We visualize the latent space
learned by our network in single image reconstruction under
ShapeNet subset. We randomly select two reconstructed
shapes in the test set of Airplane class or Chair class, and
regard their latent codes as two ends to interpolate six new
latent codes between them. We leverage these interpolated
latent codes to generate novel shapes by the trained point
decoder. We visualize these shape interpolations under each
one of Airplane and Chair classes in Fig. 10, which shows
that our method can reconstruct complex shapes with arbi-
trary topology. Moreover, the smooth transformation from
one shape to another shape demonstrates that our method
can help the network to learn a semantic latent space.

Loss Visualization. We further visualize the loss curves in
surface reconstruction under ABC, Famous and ShapeNet
dataset in Fig. 11. We can see that our method can effective-
ly train a network to smoothly approach to the convergence.

5. Conclusion

We introduce Neural-Pull to learn signed distance functions
from 3D point clouds by learning to pull 3D space onto the

A A ~ie nd
A AN )
\

s s e . . B B W

P - o = 9/? 3 7’ ro’
/ ‘ A \ \\% ‘.ﬁ
7~ ~ 2 A -4 9 9 i s -
'ﬂr/f -~ -y - - - - -
VR PP T AR R

Figure 10. Interpolated shapes in single image reconstruction.
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Figure 11. Training loss in surface reconstruction.

surface. Without the signed distance value ground truth, we
can train a network to learn an SDF by pulling a sampled
query location to its nearest neighbor on the surface. We
effectively pull query locations along or against the gradient
within the network with a stride of the predicted signed dis-
tance values. Being able to directly predict signed distances,
our method successfully increases the 3D shape representa-
tion ability during testing. Our outperforming performance
in single image reconstruction and surface reconstruction
shows that we can reconstruct shapes and surfaces more
accurately and flexibly than the state-of-the-art methods.
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