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Abstract

We study reinforcement learning in mean-field
games. To achieve the Nash equilibrium, which
consists of a policy and a mean-field state, ex-
isting algorithms require obtaining the optimal
policy while fixing any mean-field state. In prac-
tice, however, the policy and the mean-field state
evolve simultaneously, as each agent is learning
while playing. To bridge such a gap, we propose
a fictitious play algorithm, which alternatively up-
dates the policy (learning) and the mean-field state
(playing) by one step of policy optimization and
gradient descent, respectively. Despite the nonsta-
tionarity induced by such an alternating scheme,
we prove that the proposed algorithm converges
to the Nash equilibrium with an explicit conver-
gence rate. To the best of our knowledge, it is
the first provably efficient algorithm that achieves
learning while playing.

1. Introduction

Multi-agent reinforcement learning (MARL) (Shoham et al.,
2007; Busoniu et al., 2008; Hernandez-Leal et al., 2017;
2018; Zhang et al., 2019) aims to tackle sequential decision-
making problems in multi-agent systems by integrating
the classical reinforcement learning framework with game-
theoretical thinking (Basar & Olsder, 1998). Powered by
deep learning, MARL recently has achieved striking empir-
ical successes in games (Silver et al., 2016; 2017; Vinyals
et al., 2019; Berner et al., 2019; Schrittwieser et al., 2019),
robotics (Yang & Gu, 2004; Busoniu et al., 2006; Leottau
et al., 2018), transportation (Kuyer et al., 2008; Mannion
et al., 2016), and social science (Leibo et al., 2017; Jaques
etal., 2019; Cao et al., 2018; McKee et al., 2020).

Despite the empirical successes, MARL is known to suffer
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from the scalability issue. Specifically, in a multi-agent
system, each agent interacts with the environment and the
other agents, with the goal of maximizing its own expected
total return. Consequently, for each agent, its reward and
state transition also depend on the states and actions of
all the other agents. As the number of agents increases,
the size of the joint state-action space grows exponentially,
leading to severe computational and statistical challenges
for reinforcement learning algorithms. Such challenges are
sometimes referred to as the “curse of many agents” (Sonu
etal., 2017).

To circumvent these challenges, a popular approach is
through mean-field approximation, which imposes symme-
try among the agents and specifies that, for each agent, the
joint effect of all the other agents is summarized by a popu-
lation quantity, which is oftentimes given by the empirical
distribution £ of the local states and actions of all the other
agents, or by a functional of this empirical distribution. Un-
der symmetry, the reward function and local state transition
function are the same for each agent, and they are both func-
tions of the local state-action and the population quantity.
Under the mean-field approximation, a multi-agent system
is modeled as a mean-field game (MFG) (Huang et al., 2003;
Lasry & Lions, 2006a;b; 2007; Huang et al., 2007; Guéant
et al., 2011; Carmona & Delarue, 2018), which is readily
scalable to an arbitrary number of agents.

In this work, we aim to find the Nash equilibrium (Nash,
1950) of MFG with an infinite number of agents via rein-
forcement learning. An MFG consists of a population of
symmetric agents, each of which has an infinitesimal effect
over the whole population. By symmetry, it suffices to find
a symmetric Nash equilibrium, where each agent adopts the
same policy. Therefore, we can focus on a single agent,
known as the representative agent, and view MFG as a game
between the representative agent’s local policy 7 and the
mean-field state £, where £ aggregates the collective effect
of the population. Specifically, the representative agent aims
to find the optimal policy m when the mean-field state is
fixed to £, which reduces to solving a Markov decision pro-
cess (MDP) induced by £. Simultaneously, the mean-field
state £ evolves according to the transition kernel when all
the agents adopt policy 7. The Nash equilibrium of this two-
player game, (7*, £*), corresponds to a symmetric Nash
equilibrium 7* of the original MFG.
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In principle, the Nash equilibrium (7*,£*) can be ob-
tained via fixed-point iteration, which generate a sequence
{(¢, L4) }1>0 as follows. In the ¢-th iteration, one solves
for the optimal policy 7; of the MDP induced by £;. Then
L1 is computed as the next mean-field state resulting from
every agent following the policy 7, at the current mean-field
state £,. Under appropriate assumptions, the mapping from
L to L1 is a contraction (Saldi et al., 2018b; Anahtarci
et al., 2020b; 2019), hence the above iterative algorithm con-
verges to the unique fixed-point £* of this mapping. Various
reinforcement learning methods are proposed to approxi-
mately implement the fixed-point iteration to find the Nash
equilibrium; see e.g. Guo et al. (2019; 2020); Anahtarci et al.
(2019).

The above approach typically leads to an algorithm with a
double-loop: each iteration requires (approximately) solving
a standard reinforcement learning problem, namely learning
the optimal policy of the MDP induced by the current mean-
field state L;; this sub-problem itself is often solved by an
iterative algorithm such as Q-learning (Watkins & Dayan,
1992; Mnih et al., 2015; Bellemare et al., 2017) or actor-
critic methods (Konda & Tsitsiklis, 2000; Haarnoja et al.,
2018; Schulman et al., 2015; 2017). A major challenge here
is that the inner loop requires fixing the mean-field state
at L;, which is difficult to implement since the mean-field
state evolves simultaneously as agents play and updates
their policy. Moreover, when the state space is enormous,
function approximation tools such as deep neural networks
are equipped to represent the value and policy functions in
the reinforcement learning algorithm, making solving each
inner subproblem computationally demanding.

To develop a practical and computationally efficient algo-
rithm for MFG, we seek to answer the following question:

Can we design an online reinforcement learning algorithm
for solving MFG which updates the policy and mean-field
state simultaneously in each iteration?

In particular, such an algorithm does not require fixing the
mean-field state across iteration. We provide an affirma-
tive answer to this question by proposing a fictitious-play
style policy optimization algorithm, where the policy 7 and
mean-field state £ are viewed as two players and updated
simultaneously. Fictitious play (Brown, 1951) is a general
algorithm framework for solving games, where each player
first infers the opponent’s strategy based on past behaviors
and then improves its own policy accordingly. In the context
of MFG, in each iteration, the policy player 7 first infers
the mean-field state implicitly by performing policy evalu-
ation of 7 under the MDP induced by the current £. Then
the policy 7 is updated via a single step of proximal policy
optimization (PPO) (Schulman et al., 2017), with entropy
regularization to ensure the uniqueness of the Nash equi-
librium. Meanwhile, the update direction of the mean-field

state £ is given by how the state distribution of the agents
evolves when the agents collectively execute policy 7, and
L is updated towards this direction with some stepsize. This
algorithm is single-loop and online, as the mean-field state
L is updated immediately when 7 is played and updated.

When the stepsizes for policy and mean-field state updates
are properly chosen, we prove that our algorithm converges
to the entropy-regularized Nash equilibrium at an O(T~1/%)
rate, where T is the total number of iterations and O (+) hides
logarithmic terms. To our best knowledge, this is the first
single-loop, online reinforcement learning algorithm for
mean-field games with finite-time convergence guarantee.

We remark that the mean-field £ is a distribution over
the state space S; when S is continuous, £ is an infinite-
dimensional object, making it computationally challenging
to store and manipulate £. To overcome this challenge, our
algorithm can be optionally coupled with the kernel mean
embedding approach (Smola et al., 2007; Gretton et al.,
2006; Sriperumbudur et al., 2010), which provides a suc-
cinct representation of £ by mapping it to an element in a
reproducing kernel Hilbert space (RKHS). This approach
allows for the flexibility of choosing the reproducing kernel
appropriately for computationally efficient representation of
the mean-field state.

Our Contributions. The contributions of this paper are
two-fold.  Algorithmically, we propose a single-loop
fictitious-play style algorithm that updates both the policy
and the mean-field state simultaneously in each iteration,
where the policy is updated via entropy-regularized proxi-
mal policy optimization. Kernel mean embedding can be in-
corporated to represent the mean-field states, and the policy
update subroutine can readily employ any function approx-
imation schemes for efficient representation of the value
and policy functions, which makes our method a general
algorithmic framework for learning MFG with continuous
state space. Theoretically, we establish rigorous guarantees
that the policy and mean-field state sequence generated by
the proposed algorithm converges to the Nash equilibrium
of the MFG at an explicit O(T /%) rate.

Related Works. Our work belongs to the literature on
discrete-time MFG. A variety of works have focused on the
existence of a Nash equilibrium and the behavior of Nash
equilibrium as the number of agents goes to infinity under
various settings of MFG. See, e.g., Gomes et al. (2010);
Tembine & Huang (2011); Moon & Basar (2014); Biswas
(2015); Saldi et al. (2018b;a; 2019); Wigcek (2020) and
the references therein. Our work is closely related to the
line of research that aims to solve MFG via reinforcement
learning methods. Most of the existing works propose to
find the Nash equilibrium via fixed-point iterations in space
of the mean-field states, which requires solving an MDP
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induced by a mean-field state within each iteration (Guo
et al., 2019; 2020; Anahtarci et al., 2019; 2020b; Fu et al.,
2020; uz Zaman et al., 2020; Anahtarci et al., 2019). Among
these works, Guo et al. (2019; 2020); Anahtarci et al. (2019;
2020b) propose to solve each MDP via Q-learning (Watkins
& Dayan, 1992) or approximated value iteration (Munos
& Szepesvari, 2008), whereas Fu et al. (2020); uz Zaman
et al. (2020) solve each MDP using actor-critic (Konda &
Tsitsiklis, 2000) under the linear-quadratic setting.

Most related to our work are Elie et al. (2020); Perrin et al.
(2020), which study the convergence of a version of ficti-
tious play for MFG. Similar to our algorithm, their fictitious
play also regards the policy and the mean-field state as the
two players. However, for policy update, they compute
the best response policy to the current mean-field state by
solving, to near optimality, the MDP induced by the mean-
field state, and the obtained policy is added to the set of
previous policy iterates to form a mixture policy. As a
result, their algorithm is double-loop in essence due to solv-
ing an MDP in each iteration. In contrast, our algorithm
is single-loop where each iteration involves policy evalua-
tion rather than finding the optimaly policy; in particular,
the policy is updated via a single PPO step in each itera-
tion, and the mean-field state is updated before the policy
converges to the optimum of the MDP associated with the
current mean-field state. We remark that some recent works
also consider single-loop algorithms. In particular, Subra-
manian & Mahajan (2019) propose a policy-gradient based
approach to update policy; however, only asymptotic conver-
gence guarantee is established via two-timescale stochastic
approximation. The algorithm introduced by Angiuli et al.
(2020) updates Q-function in each iteration like Q-learning,
and can be applied to learn mean field games and control
problems; however, no convergence guarantee is provided.

Notations. We use ||-|; to denote the vector £;-norm, and
A(D) the probability simplex over D. The KL divergence
between p1,ps € A(A) is defined as Dky,(p1]|p2) =
Y acabi(a)log g;gzg .Let 1,, € R™ denote the all-one vec-
tor. For two quantities « and y that may depend on problem
parameters (|.A|,~, etc.), if > Cy holds for a universals
constant C' > 0, we write x 2 y, = Q(y) and y = O(z).

We use O(+) to denote O(-) ignoring logarithmic factors.

2. Background and Preliminaries

In this section, we first review the standard setting of mean-
field games (MFG), and then introduce a general MFG with
mean embedding and entropy regularization.

2.1. Mean-Field Games

Consider a discrete-time Markov game involving an infi-
nite number of identical and interchangeable agents. Let

S C R?% and A C RP be the state space and action space,
respectively, that are common to all the agents. We as-
sume that S is compact and A is finite. The reward and
the state dynamic for each agent depend on the collec-
tive behavior of all agents through the mean-field state,
i.e., the distribution of the states of all agents. As the
agents are homogeneous and interchangeable, one can fo-
cus on a single representative agent of the population. Let
r: S8 xAxA(S) = [0, Rnax] be the (bounded) re-
ward function and P: § x A x A(S) — A(S) be the
state transition kernel. At each time ¢, the representative
agent is in state s, € S, and the probability distribution
of s, denoted by £; € A(S), corresponds to the mean-
field state. Upon taking an action a; € A, the agent re-
ceives a reward r(s¢, at, £1) and transitions to a new state
St+1 ~ P(:|s¢, ar, L4). A Markovian policy for the agent
is a function 7 : S — A(A) that maps her own state to a
distribution over actions,! i.e., 7(a|s) is the probability of
taking action a in state s. Let II be the set of all Markovian
policies.

When an agent is operating under a policy 7 € II and the
population distribution flow is £ := (L£;)¢>0, we define
the expected cumulative discounted reward (or value func-
tion) of this agentas V™ (s, £) := E[>;° (v'r(s¢, ar, Ly) |
so = s|, where a; ~ w(-[s;), si11 ~ P(-|sy, ar, L), and
v € (0,1) is the discount factor. The goal of this agent is to
find a policy 7 that maximizes V™ (s, £) while interacting
with the mean-field L.

We are interested in finding a stationary (time-independent)
Nash Equilibrium (NE) of the game, which is a policy-
population pair (7*, £*) € II x A(S) satisfying the follow-
ing two properties:

* (Agent rationality) v (s, L*) > V™(s,L*),Vm €
II,seS.

 (Population consistency) £; = L£*,Vt under policy 7*
with initial mean-field state Lo = L£*.

That is, 7* is the optimal policy under the mean-field £*,
and £* remains fixed under 7*. We formalize the notion of
NE in Section 2.3 after introducing a more general setting
of MFG.

2.2. Mean Embedding of Mean-Field States

Note that the mean-field state £ is a distribution over S, i.e.,
L € A(S), where A(S) is a continuous space. To learn
the NE for |S| < oo, prior work (Guo et al., 2019) uses a

'In general, the policy may be a function of the mean-field
state £; as well. We have suppressed this dependency since our
ultimate goal is to find a stationary equilibrium, under which the
mean-field state remains fixed over time. See Guo et al. (2019);
Anabhtarci et al. (2020a) for a similar treatment.
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discretization method that maintains an e-net in A(S) and
projects mean-field state updates to the e-net. When the state
space is continuous, the NE (7%, £*) is an infinite dimen-
sional object, posing challenges for learning and tracking
the NE. For instance, the discretization method seems com-
putationally intractable. To overcome this challenge, one
can optionally make use of a succinct representation of the
mean-field via mean embedding, which embeds the mean-
field states into a reproducing kernel Hilbert space (RKHS)
(Smola et al., 2007; Gretton et al., 2006; Sriperumbudur
et al., 2010).

Specifically, given a positive definite kernel k : S x § —
R, let H be the associated RKHS endowed with the inner
product (-,-),, and norm ||-||,,. For each £ € A(S), its
mean embedding pi € H is defined as

wr(s) :=Epor [k(z,8)], VseS.

Let M := {pg : L € A(S)} C H be the set of all possible
mean embeddings, which is convex. Note that when k is the
identity kernel, we have us = £ and M = A(S). Adopt-
ing mean-embedding of the state distribution allows one to
track the mean-field via sample-based kernel regression (Sz-
abo et al., 2015) when needed. On the other hand, when & is
more structured (e.g., with a fast decaying eigen spectrum),
M has significantly lower complexity than the set A(S) of
raw mean-field states.

We assume that the MFG respects the mean embedding
structure, in the sense that the rewardr : S X A x M —
[0, Rimax| and transition kernel P : S x A x M — A(S)
(with a slight abuse of notation) depend on the mean-field
state £ through its mean embedding representation p .. In
particular, at each time ¢ with state s; and mean-field state
L, the representative agent takes action a; ~ 7(-|s¢), re-
ceives reward r(s¢, at, f1z,) and then transitions to a new
state s;+1 ~ P(:|s¢, as, pz,). The NE of the game is de-
fined analogously. As mentioned, when k is the identity
kernel, the above setting reduces to the standard setting in
Section 2.1 with raw-mean field states.

We impose a standard regularity condition on the kernel k.

Assumption 1. The MFG respects the mean embedding
structure with a kernel k : S X S — R, which is bounded
and universal, in the sense that k(s,s) < 1,Vs € S and the
corresponding RKHS H is dense w.r.t. the L, norm in the
space of continuous functions on S.

The boundedness of the kernel in Assumption 1 is standard
in the kernel learning literature (Caponnetto & De Vito,
2007; Muandet et al., 2012; Szabé et al., 2015; Lin et al.,
2017). When the kernel is bounded, the embedding of each
L e A(S) satisfies [|pclly, < [ k()] dz < 1.
When one uses a universal kernel (e.g., Gaussian or Laplace
kernel), the mean embedding mapping is injective and hence

each embedding ¢ € M uniquely characterizes a distribu-
tion £ in A(S) (Gretton et al., 2006; 2012).

2.3. Entropy Regularization

An entropy regularization approach, which augments the
standard expected reward objective with an entropy term of
the policy, has been used extensively in MDPs (Geist et al.,
2019; Nachum et al., 2017). Recent work has shown that
such regularization can accelerate the convergence of policy
gradient algorithms (Cen et al., 2020; Shani et al., 2019). In
particular, policy gradient algorithms can converge linearly
when computing optimal value functions of the regularized
MDP—a significant improvement over the non-regularized
setting. For mean-field games, recent work by Anahtarci
et al. (2020a) shows that with regularization, the NE is
unique under quite mild assumptions as opposed to the
unregularized case. To ensure the uniqueness of the NE
and achieve fast algorithmic convergence, we thus consider
entropy regularization. In particular, we define the entropy-
regularized value function as

VT (s) = E| D 2" [r(sssar p) — Mogm(ay|si)]lso = s,
t=0

where a; ~ 7(-|8t), st41 ~ P(:|s¢, as, i), the parameter
A > 0 controls the regularization level and y is the mean-
embedding of some given mean-field state (fixed over time).
Equivalently, one may view Vlj‘“ as the usual value function
of 7 with an entropy-regularized reward

A,

T

(s,a) :=r(s,a,pu) — Alogm(als), Vs,a. (1)

Also define the Q)-function of a policy 7 as

Qf)’”(s, a) =r(s,a,p) +E [VP:\’”(sl) | so = s,a0 = a] ,

which is related to the value function as

Vu’\’”(s) =Eonn(ls) [ij”(s, a) — Mlog W(a\s)]

=(Qu7(s,),m(-]s)) + AH (x(]s)), ()

where H (7(-|s)) := — ), 7(als)logm(als) is the Shan-

non entropy of the distribution 7(-|s). Since the reward

function r is assumed to be R,,.x-bounded, it is easy to

show that the Q-function is also bounded as ||Q)™|| <
Qmax := (Rmax + YA 1log|A])/(1 — 7); see Lemma 6.

Single-Agent MDP. When the mean-field state and its
mean-embedding remain fixed over time, i.e., £; = £ and
le, = W, Vt, a representative agent aims to solve the opti-
mization problem

v 3
Tr:SIE)aAX(.A) m (S) ®)
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for each s € S.  This problem corresponds to
finding the (entropy-regularized) optimal policy for a
single-agent discounted MDP, denoted by MDP, :=
(S, A,P(|, - p), (- p),7), that is induced by p € M.
Let ﬂl’)** be the optimal solution to the problem (3), that
is, the optimal regularized policy of MDP,,. The optimal
policy is unique whenever A > 0. One can thus define a
mapping I'Y : M — II via I'}(u) = m,"* , which maps
each embedded mean-field state x4 to the optimal regularized
policy 7,* of MDP,,. Let @, be the optimal regularized

. . . . )\7*
Q-function corresponding to the optimal policy 7.

Throughout the paper, we fix a state distribution vy € A(S),
which will serve as the initial state of our policy optimization
algorithm. For each u € M and a policy 7 : § — A(A),
define

() 1= Egny [V (5)] 4)

as the expectation of the value function V#/\’Tr (s) of policy 7
on the regularized MDP,,. We define the discounted state
visitation distribution p7; induced by a policy m on MDP,
as:

Pp(s) = (1 =)D ' P(si = s), 5)

t=0

where P(s; = s) is the state distribution when s¢ ~ v and
the actions are chosen according to 7.

Mean-field Dynamics. When all agents follow the same
policy 7, we can define another mapping I's : IIx M — M
that describes the dynamic of the embedded mean-field state.
In particular, given the current embedding . corresponding
to some mean-field state £, the next embedded mean-field
state u = T'a(m, pt) is given by

pt =g,
L7(s") =/ ZE(s)w(a|s)P(s’\s,a,u)ds.
SacA

Note that the evolution of the mean-field depends on the
agents’ policy in a deterministic manner.

Entropy-regularized Mean-field Nash Equilibrium
(NE). With the above notations, we can formally define
our notion of equilibrium.

Definition 1. A stationary (time-independent) entropy-
regularized Nash equilibrium for the MFG is a policy-
population pair (7%, u*) € II x M that satisfies

(agent rationality) 7 =T7(u*),
(population consistency) p* = Ta(m™, u*).

When A\ = 0, the above definition reduces to that of the (un-
regularized) NE discussed in Section 2.1, which requires 7*
to the unregularized optimal policy of MDP ,-. For general
values of ), the regularized NE (7*, u*) approximates the
unregularized NE (Geist et al., 2019), in the sense that 7* is
an approximate optimal policy of MDP - satisfying

Alog | Al
1—v
That is, the approximation bias induced by entropy regu-

larization is small with a sufficiently small regularization
parameter .

0 A *
glea‘l_}l({‘];t* (ﬂ-)} - Ju* (7'(' ) <

(6)

One may further define the composite mapping A* : M —
M as A*(p) =T (I (w), 1) - When A is a contraction,
the regularized NE exists and is unique (Anahtarci et al.,
2020a). Moreover, the iterates { (7, /1) };~, given by the
two-step update

mo=T7 (1), pir1 = Do, 1)

converge to the regularized NE at a linear rate. Note that the
first step above requires an oracle for computing the exact
optimal policy wﬁ;*. In most cases, such an exact oracle is
not available; various single-agent reinforcement learning
algorithms have been considered for computing an approxi-
mate optimal policy, including Q-learning (Guo et al., 2019)
and policy gradient methods (Guo et al., 2020; Subramanian
& Mabhajan, 2019). The recent work by Elie et al. (2020)
considers fictitious play iterative learning scheme. We re-
mark that their convergence guarantee requires being able
to compute the approximate optimal policy to an arbitrary
precision with high probability.

3. Fictitious Play Algorithm for MFG:
Learning While Playing

In this section, we present a fictitious play algorithm, which
learns the optimal policy 7* of the NE while the mean-field
state evolves simultaneously with agents playing. As given
in Algorithm 1 for a representative agent, each iteration of
the algorithm involves three steps: playing (line 4), learning
through policy evaluation (line 6) and policy improvement
(line 7). Below we explain each step in more details.

Playing and Mean-field State Evolution. In the ¢-th it-
eration, to control the evolution of (embedded) mean-field
state towards the Nash equilibrium, the representative agent
adopts the following protocol: with probability 3;, she takes
an action according to the current policy 7, observes the re-
ward and the next state accordingly; with probability 1 — 53,
she does nothing and remains in the current state. With all
agents following this protocol, the underlying embedded
mean-field state evolves as follows:

per1 = (1 — Be)pe + Be - Talmy, pir).
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Algorithm 1 Mean-Embedded Fictitious Play
1: Input: initial policy-state pair (7o, o), step size se-
quence {c, ¢ }+>0, mixing parameter 7, entropy regu-
larization parameter \
2: Sample sg ~ po
for Iterationt =0,1,2,...,T do
4:  (Playing): with probability ; play action a; ~
m¢(+|s¢), observe reward r = (s, ay, p¢) and next
state s;11 ~ P(:|s¢,a, 1e); and with probability
1 — B; do nothing, s;11 = s
5:  Environment transitions:

bl

per1 = (1= B + Be - Talme, pe). (1)

6:  (Policy evaluation): Compute an approximate ver-
sion } of the Q-function Qﬁf” of policy
w.r.t. the regularized MDP,,,

7:  (Policy improvement): Update the policy by

Frar(fse) oc (me(]s0))' ™ exp (@) (51, )
3

Ter1(lse) = (L= n)Ter1 (clse) +n- 114 ()/]A|
)

8: end for

That is, the next (embedded) mean-field state ;4 is a
weighted average of the current y; and the mean-field state
Do (7¢, pt) induced by the current policy 7;. This evolution
can be viewed as a single step of the (soft) fixed point
iteration for the equation p = 'y (74, p), with step size S;.
We remark that unlike prior work that explicitly updates
and computes the (artificial) mean-field state, the mean-
field state in our algorithm corresponds to the real system
state, which evolves according to (7) as all agents play
according to the described protocol. Therefore, the mean-
field state can be estimated accurately from sampled states of
a sufficiently large number K of randomly selected agents.
In particular, the estimation error for the mean-embedding
of the mean-field state decays as 1/ VK (Muandet et al.,
2017).

Policy Evaluation. = We next evaluate the current pol-
icy m; with respect to the regularized single-agent MDP,,
induced by the current embedded mean-field state y;. In
particular, we compute an approximation Q7 : S x A —
[0, Qmax] of the true Q-function @ := Q™. Our theorem
characterizes how the convergence depends on the policy
evaluation error in this step. As the state space is continu-
ous, we can use either function approximation (e.g., linear,
RKHS or neural networks (Farahmand et al., 2016; Cai
et al., 2019)) or non-parametric method such as k-nearest
neighbor (Shah & Xie, 2018).

We remark that the policy evaluation step does not require
fixing the underlying mean-field state £; to get extra sam-
ples from the MDP induced by £, (equivalently, MDP,,,).
Specifically, in the ¢-th iteration, we equip each agent with
the same policy 7;. We can uniformly randomly select N
agents that actually play, and let s! denote the local state of
the i-th agent. Note that s¢ ~ L, and the i-th agent takes
action a? ~ (- | st), observes a reward r{ = (s, al, u;)
and the next state si_, ~ P(:|s, al, ), Vi € [N]. We thus
have N transition data {(s},a},r{,s},,),i € [N]} under
the policy 7; for MDP,,,, which can be used for any off-
the-shelf policy evaluation solver (e.g., TD(0) or LSTD) to
estimate the desired Q-function. For instance, the 63 error of
the Q-function under a variant of TD-learning decays at rate
1/ VN (Cai et al., 2019). Therefore, the policy evaluation
step in our algorithm can utilize the feedback information
of all agents through a single transition of the game under
policy 7;. On the other hand, since we only have samples
under the current policy 7y, it is difficult (if not infeasible)
to solve for the optimal policy of the MDP induced by L;.
This is exactly the advantage of our algorithm, which only
requires policy evaluation rather than finding the optimal
policy.

Policy Improvement. To update the policy estimate 7,
we first compute an intermediate policy 711 by a single
policy improvement step: for each s € S,

AA
{a(@s.) = Mogm(1s),

Ti1(+[s) = argmax

m(-|s)€A(A)
m(s) = m([s)) — D (x(-|s)llme(]5)) } (10)

where o > 0 is the stepsize. This step corresponds to one
iteration of Proximal Policy Optimization (PPO) (Schulman
etal., 2017). It can also be viewed as one mirror descent iter-
ation, where the shifted Q-function Q7 (s, -) — Alog 74 (+|s)
plays the role of the gradient. The maximizer 7; 11 in equa-
tion (10) can be computed in closed form as done in equa-
tion (8) in Algorithm 1. We then compute the new policy
m¢41 by mixing 7,1 with a small amount of uniform distri-
bution, as done in equation (9). “Mixing in” a uniform dis-
tribution is a standard technique to prevent the policy from
approaching the boundary of the probability simplex and
becoming degenerate. Doing so allows us to upper bound
a quantity of the form Dgy, (p || m¢+1(+|s)) (cf. Lemma 2),
which otherwise may be infinite. It also ensures that the KL
divergence satisfies a Lipschitz condition (cf. Lemma 3).

We remark that our algorithm is similar to the classical ficti-
tious play approach for finding NEs, where each agent plays
a response to the empirical average of its opponent’s past
behaviors. In our algorithm, the representative agent views
the population of all agents collectively as an opponent.
Expanding the recursion (8) and ignoring the difference
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between 71;11 and 7441, we can write the policy ;41 as

met1(+[s) o< exp <zt:w7@;\(5a '))

7=0

for some positive weights {w, }. Therefore, the representa-
tive agent is playing a policy that responds to the (weighted)
average of all previous Q functions, which reflects the repre-
sentative agent’s belief on the aggregate population policy.
Such a soft-max policy gives a good response, while ensur-
ing the policy does not change too quickly. The evolution
of the mean-field is controlled in a similar manner.

Our algorithm is online in the sense that it alternatively
updates the mean-field state (playing) by one step of gradient
descent, and improves the policy (learning) by one step of
policy optimization using the feedback information from
playing the game. Note that our algorithm only performs
a single policy improvement step to compute the updated
policy 7y 1. It is unnecessary to compute the exact optimal
policy 7 = T'}(u) under p; (which would require an
inner loop for solving MDP,, by fixing the mean-field state
1), as (i is only an approximate anyway of the true NE
mean-field p*.

4. Main Results

In this section, we establish the theoretical guarantees on
learning the regularized NE (7*, u*) of the MFG for our
fictitious play algorithm. To state our theorem, we first
discuss several regularity assumptions on the MFG model.
Recall the definition (5) of the discounted state visitation
distribution and let p* := pz* € A(S) be the visitation
distribution induced by the NE (7*, 1*). We make use of the
following distance metric between two policies 7, 7’ € II:

D(m, ') = Eunpe [I7Cls) = 7' ([9)],]. (1)

To ensure the convergence of learning algorithms, we con-
sider mean-field games where the NE exists. For discrete-
time unregularized MFG, some prior works investigate suf-
ficient conditions on the system parameters (i.e., transi-
tion kernel and reward function) for the NE operator (i.e.,
I' : M — M) being contractive (Adlakha et al., 2015;
Anahtarci et al., 2020b; 2019; Saldi et al., 2018b; 2019),
which guarantees the existence of NE. For the regularized
MFG considered in this paper, recent work by Anahtarci
et al. (2020a) shows that the NE exists under quite mild
assumptions as opposed to the unregularized case. In partic-
ular, when both the reward function and the Markov transi-
tion kernel are Lipschitz continuous, one can show that for
any mean-field state, the corresponding optimal policy is
Lipschitz continuous w.r.t. the mean-field term. Moreover,
the NE operator is contractive under certain condition on
the Lipschitz constants of the reward and transitions kernel.

We are thus motivated to assume Lipschitzness for the two
mappings I'} : M — Il and I'y : IT x M — M defined in
Section 2.3.

Assumption 2 states that '} (1) is Lipschitz in the mean-
embedded mean-field state p with respect to the RKHS
norm; Assumption 3 states that I'o(m, 1) is Lipschitz in
each of its arguments when the other argument is fixed.

Assumption 2. There exists a constant di > 0, such that
Sforany p, i’ € M, it holds that

D (P} (), T (1)) < dullpe = 1l -

Assumption 3. There exist constants do > 0,d3 > 0 such
that for any policies w, 7' € Il and embedded mean-field
states ji, ' € M, it holds that

Ty (m, ) = To(n', p)||4, < doD (m,7'),
[T (7, 1) = Ta(m, i)l < dsllpw— 1/l -

Assumptions 2 and 3 immediately imply Lipschitzness of
the composite mapping A* : M — M, which we recall is
defined as A*(u) = I's (I} (1), 1) . The proof is provided
in Section A. We remark that the operator A is contractive if
dydy + d3 < 1, which holds if the transition kernel and re-
ward function are Lipschitz and the corresponding Lipschitz
constants are small enough.

Lemma 1. Suppose Assumptions 2 and 3 hold. Then for
each y, 1’ € M, it holds that

[AAN () = A ()|, < (dada +ds) ([ — 1|l -

We next impose an assumption on the boundedness of
certain concentrability coefficients. This type of assump-
tion, standard in analysis of policy optimization algorithms
(Kakade & Langford, 2002; Shani et al., 2019; Bhandari
& Russo, 2019; Agarwal et al., 2020), allows one to define
the policy optimization error in an average-case sense with
respect to appropriate distributions over the states.

Assumption 4 (Finite Concentrability Coefficients). There
exist two constants C,, C, > 0 such that for each u € M,

X, % X, *

pi’ P (s)
=sup|————| <C,,
p* s [ p*(s) g
o0
i 91y 1/2
[} <o
ol i (s)

Finally, our last assumption stipulates that the state visitation
distributions are smooth with respect to the (embedded)
mean-field states of the MFG. This assumption is analogous
to those in the literature on MDP and two-player games
(Fei et al., 2020; Radanovic et al., 2019), which requires the
visitation distributions to be smooth w.r.t. the policy.
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Assumption 5. There exists a constant dg > 0, such that
Sfor any p, 1/ € M, it holds that the discounted state visi-
tation distributions induced by the correspondmg optimal
policy 7r)‘ * for regularized MDP , and 71' ¥ for regularized
MDP, satlsfy

X,
w'

s
— py,’

L

LS dolln=pll -

We now state our theoretical guarantees on the convergences
of the policy-population sequence {m¢, 11; } in Algorithm 1
to the NE {#n*, u*}. For the embedded mean-field states,
it is natural to consider the distance |[z; — p*||,, in RKHS
norm. For convergence to NE policy p*, recall that p* is
the optimal policy to MDP,,«, and each iteration of our
algorithm involves a single policy improvement step to up-
date m; rather than solving MDP,,, to its optimal policy

= T'}(11¢). As such, we analyze the difference between
these two policies in terms of D (m;, 7;), where the metric

D is defined in equation (11). Also let pj := ng denote
the discounted visitation distribution induced by the optimal
policy m; of MDP,,,.> With the above considerations in
mind, we have the following theorem, which is proved in
Section C.

Theorem 1. Suppose that Assumptions 1-5 hold with d =
dids + d3 < 1 and that the error in the policy evaluation
step in Algorithm 1 satisfies

2
Bomp: [[@05,) = Qs )12 ] <23, wee ).
With the choice of
n= ch_l, ar=a=c, T2 B,=8= cﬂT_‘1/57

for some universal constants c,; > 0, co, > 0 and cg > 0 in
Algorithm 1, the resulting policy and embedded mean-field
state sequence { (s, i) Yo satisfy

1T*1 1T71 1T*1
D(TZM’ TZW’T) < TZD(M,W:)
t=0 t=0 t=0
]. =4
57’( 1ogT~T*1/0+,F€Q), (12)
lT—l 1T—1
|72 =], < D e = wlhe
t=0 t=0
1
57-( 1ogT.T*1/5+,ﬁsQ). (13)

Proof outline: To analyze the convergence behavior of
the policy-population sequence { (7, ui¢) }, we keep track
of two error terms: 0% := E,px [Dxr (77 (+|5) |7 (-] 5))]

The subscript in p; emphasizes that p} only depends on the
mean-field state j; at time ¢ through 7} = T'} ().

(the gap between the current policy and the optimal pol-
icy under the current mean field) and o}, := ||p; — p* (|3,
(the gap between the current mean field and equilib-
rium mean field). The key step is showing that the
pohcy gap satisfies the bound il < (1 — \a)ol +

O (le+1 — mell5, + e@a + @?). Per our update rule for
the mean field, it is ensured that || ;11 — 4[5, < 28. Com-
bining with the previous bound establishes the recursion

1 5
o<y (o — o) +O( 152 1 ),

which implies convergence of o under our choice of step
sizes («, ). We remark that the convergence relies on the
distinction of time-scales between « and 5. This bound
for ol can be further translated to an error bound in the
distance metric D(-, -), as stated in the theorem, under the
concentrability coefficient assumption. On the other hand,
we show that the mean field gap satisfies the bound
ot < O(l (!

-8

M I‘ t+1) + )

which together with the bound for o implies convergence
of O’Z. O

Theorem 1 bounds the distance between 7; and the optimal
policy 7; of MDP ,». By directly measuring the distance
between 7, and the NE policy 7*, we can define the notion
of an #-approximate NE of the game.

Definition 2. For each 0 > 0, a policy-population pair
(m, ) is called an 0-approximate (entropy-regularized) NE
of the MFG if

D(m,m*) <0 and ||p—p*||, <0.

The following corollary of Theorem 1 states that after 7 iter-
at1ons of our algorithm, the average policy-population pair

( Zt o Ty S0t ) is an O (T~1/5)-approximate

Corollary 1. Under the assumptions of Theorem 1, we have
= ) =

Dz m) + |7 2m -

<\ﬁ . (\/@-T_lm + \/572)

We prove this corollary in Section D.

The above results require an ¢5-error of €¢ for policy evalu-
ation. A variety of algorithms have been shown to achieve
such guarantees, including TD(0) and LSTD (Bhandari et al.,
2018). It is also worth emphasizing that the convergence rate
to the regularized NE scales inverse proportionally with v/,
implying that convergence can be accelerated with a higher
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level of entropy regularization. On other hand, the approxi-
mation error of the regularized NE for the original unregu-
larized NE scales proportionally with A (cf. (6)). Therefore,
it is desirable to choose the regularization parameter A that
balances the target accuracy level and convergence rate.

We also remark that the /., condition on concentrability
coefficient in Assumption 4 can be relaxed to an ¢5 condi-

-
tion of the form {E[|p," (5)/p*(5)|2] }1/2 < C), under
which we can establish an O(7~1/9) convergence rate; see

Theorem 2 and Corollary 2 in Section E in the Supplemen-
tary Material for the details.

5. Conclusion

In this paper, we develop a provably efficient fictitious play
algorithm for stationary mean-field games. In comparison to
the existing work that requires solving an MDP induced by a
mean-field state within each iteration, our algorithm updates
both the policy and the mean-field state simultaneously in
each iteration. We prove that the policy and mean-field state
sequence under the proposed algorithm converges to the
Nash equilibrium of the MFG at an explicit rate.

A number of directions are of interest for future research.
An immediate step is to investigate whether the conver-
gence rate can be improved. The O(T~'/%) convergence
rate we obtain here relies on constant step-sizes. It would
be interesting to see if using time-varying step-sizes can
attain a faster convergence rate. Another research direction
worth pursuing is generalizing our approach for developing
decentralized/distributed learning schemes.
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