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Abstract

Video analytics pipelines incorporate on-premise edge servers
to lower analysis latency, ensure privacy, and reduce band-
width requirements. However, compared to the cloud, edge
servers typically have lower processing power and GPU
memory, limiting the number of video streams that they can
manage and analyze. Existing solutions for memory manage-
ment, such as swapping models in and out of GPU, having a
common model stem, or compression and quantization to re-
duce the model size incur high overheads and often provide
limited benefits. In this paper, we propose model merging
as an approach towards memory management at the edge.
This proposal is based on our observation that models at
the edge share common layers, and that merging these com-
mon layers across models can result in significant memory
savings. Our preliminary evaluation indicates that such an
approach could result in up to 75% savings in the memory
requirements. We conclude by discussing several challenges
involved with realizing the model merging vision.
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1 Introduction

Typical tasks in live video analytics such as object counting,
license plate recognition, and surveillance involve perpet-
ual (i.e., long-running), real-time monitoring of live video
streams from hundreds of cameras deployed in a geographic
location [10, 20]. In order to practically deliver both fast
and accurate responses using the latest deep learning mod-
els [12, 16, 26, 28], video analytics deployments are gener-
ally designed as cloud-edge systems, where on-premise edge
servers complement more powerful servers in the cloud [33].
The edge servers maximally execute model inferences on
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the live video streams, saving the large bandwidth (and as-
sociated transfer delays) necessary to upload them to the
cloud, and enabling compliance with privacy and data place-
ment restrictions. Hence, edge servers play a crucial (and
increasing) role in live video analytics [13, 15, 19, 27, 38].

Despite their benefits, edge servers must carefully balance
functionality and cost in order to support the aforementioned
use cases at scale. More specifically, to remain cost-efficient,
edge servers typically possess weaker GPUs [3, 4] than their
cloud counterparts. However, traffic monitoring for a even
small city can involve analyzing hundreds of live streams in
parallel [1], translating to the need to run inferences of many
models concurrently, and over long time periods. Worse,
vision processing models consume increasing amounts of
memory resources [2, 22, 23, 34]; note that running a model
involves loading its parameters into GPU memory, and re-
serving enough space for all intermediate data that it gen-
erates during inference. The result is that video analytics
deployments at the edge are already bottlenecked by GPU
memory[29], and the situation is only expected to worsen as
deployments and model complexity grow.

A natural solution to edge GPU memory management
when all of the models do not fit together in memory is
to time-slice the inference execution [35]. In this approach,
models are swapped in and out of GPU memory according
to a given scheduling policy. The evicted models are stashed
in CPU memory and the transfer is done through a PCle
interface. Unfortunately, the overheads of such swapping
are prohibitive for practical video analytics scenarios, often
exceeding the execution time of the inference itself, leading
to unacceptable accuracy or latency degradations (§2.1).

We propose model merging as a technique to improve the
efficiency of video analytics workloads that exceed the avail-
able GPU memory at an edge server. By merging multiple
models (or components of them), the overall memory re-
quirement can be drastically reduced compared to running
them independently. This, in turn, can substantially reduce
(or even avoid) the amount of swapping required, thereby
increasing the number of models that can be supported while
adhering to a given accuracy or latency constraint.

Our proposal is motivated by the observation that vision
processing models that are deployed at the edge routinely
contain layers that are common, even across model fam-
ilies. For example, Faster RCNN (an object detector) and
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Model Load (GB) Run (GB)
BS=1 BS=2 BS=4
YOLOvV3 0.242 0.518 0.728 1.22
Faster RCNN 0.656 2.55 4.70 8.32
ResNet152 0.244 0.648 0978 1.71
ResNet50 0.118 0.346 0.498 0.838
VGG16 0.536 0.738 0.890 1.18

Table 1. Memory requirements (in GB) for loading and run-
ning inference for various models for three different batch
sizes (1, 2 and 4). Even simple models incur large memory
footprints for inference. Frameworks add their own over-
head, for instance PyTorch reserves 0.8GB for book-keeping.
The run values include the load values.

Resnet50 (a classifier) have 50 layers in common. This is be-
cause both tasks start by extracting features using the same
layer structure. Hence, sharing these common layers and
their associated weights across models can reduce memory
consumption. Further, as the number of layers that can be
shared across models and the number of models that need
to be supported at the edge increase, the opportunities for
memory savings also increase.

Enabling efficient model merging requires solving several
challenges. As an example, each model in a workload may
possess many layers that can be shared with other models,
leading to a combinatorial search space of sharing configura-
tions. This is further exacerbated by the fact that shareable
layers may come with different weights, and identifying a
singular set of weights that preserves accuracy for all of
the considered models, if any such weights exist, requires
training the merged model. Such training can be costly and
quickly discount the benefits of merging.

In the rest of this paper, we discuss the shortcomings of
existing memory management techniques (§2), assess the
potential of model merging (§3), and discuss many such chal-
lenges that stand in the way of efficient model merging (§4).
We conclude with potential directions that we are exploring
towards a solution (§5).

2 Motivation

While edge servers provide a number of advantages, such
as bandwidth reduction, privacy compliance, and resilience
to disconnection, they are inferior to the cloud in terms of
compute and memory for cost- and power-efficiency reasons.
For example, edge boxes are commonly equipped with GPUs
that have only 2-16 GB of memory and operate at lower clock
speeds [7]. To run inference, the model layers and parameters
need to be loaded to the GPU memory with enough room for
intermediate data (e.g., activations). The memory used by a
model depends on the model architecture and the batch size;
a higher batch size requires more memory in general. Real
time video analytics tasks tend to use smaller batch sizes due
to their stringent latency requirements [6, 36].

Model Load (ms) Run (ms)
BS=1 BS=2 BS=4
YOLOvV3 49.5 17.0 17.8 18.1
Faster RCNN 95.5 82.3 84.1 85.2
ResNet152 73.25 24.81 26.27 26.70
ResNet50 27.1 8.41 8.50 8.52
VGG16 72.2 2.10 2.23 2.40

Table 2. Load/run time for various models for three different
batch sizes. Loading results in significant overheads.

Existing vision models deployed at the edge vary widely
in terms of their compute and memory requirements. Table 1
lists the memory required to load and run inference on sev-
eral popular video analysis models using different batch sizes.
As shown, even the lightest model imposes a non-negligible
memory footprint (i.e., ResNet50 requires 0.12 GB), and other
models such as VGG16 and Faster RCNN quickly push the
boundaries of what existing edge servers can support. For
instance, after accounting for the fixed memory that machine
learning frameworks like PyTorch [9] reserve for use (i.e., 0.8
GB), an edge server with 2 GB of memory would be unable
to house more than two Faster RCNN or VGG16 models -
a drastic drop from the hundreds of feeds and models that
typical deployments warrant today.

2.1 Existing GPU Memory Management Techniques

The common approach to running inference on multiple
models is to share the available GPUs, either in space or in
time. We describe these approaches in turn.

Existing deep learning frameworks recommend allocation
at the granularity of an entire GPU—for example, PyTorch
uses a worker-per-model architecture and advocates allo-
cating a GPU per worker [22]. Space-sharing techniques,
such as NVIDIA’s Multi-Process Service (MPS) [5], TensorRT
inference server [8] and SwapAdvisor [18] eschew this exclu-
sivity and partition the GPU memory per model. Although
space-sharing approaches are effective when the set of mod-
els in a workload can fit together in GPU memory, they are
insufficient when that property does not hold.

In the time-sharing category, techniques focus on slicing
the time each model executes in the GPU by swapping them
in and out of the GPU memory [18], and is more directly
applicable to edge settings where the workloads exceed avail-
able GPU memory. The models are stashed in CPU before
they are loaded into the GPU memory through a PCle inter-
face, which provides bandwidths of up to 64 GB/s. However,
the swapping process can introduce prohibitive overheads.
In table 2, we show the loading time and inference time for
several models that are commonly used for video analysis.
As we can see, the loading time can be large and often greater
than the inference time. The loading time being larger than
the inference time is particularly a problem with the smaller
batch sizes that are common in live video analytics [36].
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Figure 1. Six VGG16 models do not fit in memory at once and

are swapped in and out of the GPU, accumulating significant

lag between eviction and reloading.

Due to the prohibitive loading time, it is desirable to have
models present in the GPU memory rather than loading them
on-demand. Since the memory consumption of a model is
higher during execution (i.e., due to the intermediates), a bet-
ter (hybrid) approach is to pack models in the GPU memory
and only execute as many as possible while ensuring that the
loading costs for the next model is hidden (i.e., pipelining).
For example, it is possible to load three YOLOvV3 models in a
GPU with 2GB memory and execute them one at a time.

While this hybrid approach avoids the cost of swapping
for the models that are loaded on the GPU, it still suffers from
many shortcomings. First, the number of models that can be
packed in the GPU is dependent on the left over memory and
the memory usage characteristics of the model. In GPUs with
limited memory, the number of models that can be packed
may not be enough to meet the latency requirements at the
edge. Figure 1 shows a workload consisting of six VGG16
models that do not fit in the GPU memory all at a time. An
optimal solution is to load three models at a time and execute
one so that the GPU memory is fully utilized. As we notice,
the time between when a model is evicted and when it is
loaded again makes it such that each model is out of the GPU
for longer than it is in. Second, while on one hand packing
reduces swapping overhead, it also limits the number of mod-
els that can be executed in parallel. Finally, it may be possible
to selectively pre-load models based on predictability of the
considered workload (e.g., eschewing inference on certain
video streams at night due to lack of activity). However, in
video analytics at the edge, spatial correlation of streams
results in model demands being correlated [21], e.g., during
rush hour and at midnight, video streams of roads in city
will exhibit similar processing demands.

Compression and quantization are alternative techniques
that are commonly used to reduce memory requirements
and speed up execution time. However, they have their own
challenges. While some standard models have off-the-shelf
compressed models available (e.g., TinyYOLO), they often
trade off accuracy for reducing the memory footprint [11].
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Designing an optimal compression scheme for a given work-
load requires expert knowledge and is time intensive and
thus cannot be carried out in an online fashion. Further, in a
workload with a mix of models, which is the common case
in edge servers, it may not be possible to compress all the
models. Even a handful of non-compressed models could
result in the workload exhausting the GPU memory.

3 Our Proposal: Model Merging

To overcome the limitations of existing memory manage-
ment strategies in the increasingly prevalent scenario in
which a workload’s models cannot fit together in a GPU’s
memory, we propose model merging. Our proposal is based
on the observation that models deployed at the edge contain
layers that are common. Thus, sharing these layers (weights)
can reduce memory consumption, and improve the efficacy
of existing time- and space-sharing approaches.

We note that, though they are similar in spirit, our pro-
posal differs from stem-sharing strategies [24] that reduce
computation by sharing the common stem located at the be-
ginning of specialized models. In contrast, we seek to flexibly
and maximally share layers across the entire model architec-
ture to directly address memory (not compute) bottlenecks.
In addition, our vision of model merging is complementary
to existing systems that directly optimize the computation
(not memory) required in video analytics pipelines through
improved job scheduling strategies, approximation tolerance,
and tuning pipeline configurations [17, 25, 37].

3.1 Commonality of Layers

All of the models running on the edge servers in our target
video analytics deployments are vision processing models.
We leverage the fact that vision processing models have
common functionality, and thus importantly, common layers.
Each layer in a model governs what to do with an input
video frame. For example, a convolutional layer will apply
some (learned) filter to the image and send the result to the
next layer. The properties of each layer, such as input size,
output size, kernel size, and stride determine how the layer
looks through the pixels of an image. We therefore consider
two layers a match when all of these properties are identical.
Within a model, layers are typically grouped by functionality,
for example extracting features or finding boxes that contain
objects. As a result, we often find not just individual layers
in common between models, but groups of layers.

Figure 2 shows the percentage of layers that are common
and the potential memory savings by sharing the common
layers across pairs of models. These model pairs fall into one
of three categories: (1) instances of the same model (e.g., for
different detection tasks or training datasets), (2) different
models in the same model family (e.g., multiple ResNet mod-
els), and (3) different models in different families. Multiple
instances of the same model clearly match on every layer;
this favorable scenario is not uncommon in video analytics
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Figure 2. Percentage of layers that are common among pairs
of models, along with the potential memory savings by shar-
ing the common layers in parentheses, e.g., two YOLOv3
models (first row, first column) have all layers in common
(hence 100%), and can save 50% memory by merging com-
pared to running individually.

deployments, as several models tend to dominate the land-
scape [1] and a given model may be employed for the same
task on different video feeds. However, even across mod-
els in different families that are designed for different tasks,
such as the Faster RCNN object detector and the Resnet50
classifier, we (perhaps surprisingly) find commonalities. This
is because both tasks start by extracting features using the
same layer structure, so they share the first 50 layers. Simi-
larly, Resnet50 and Resnet152 have different architectures
but they share 50 common layers as well.

3.2 Potential Memory Savings with Merging

Figure 2 also depicts the memory shared across only sin-
gle pairs of different models, i.e., translating layer sharing
into memory savings. As expected, these pair-wise merging
benefits can result in substantial memory savings in real-
world workloads. The amount of memory saved depends
on the number of models considered for merging and the
number of layers that can be shared, and increases with they
increase. To understand the potential savings that can be
achieved using a merging approach, we study four typical
edge workloads, analyzing video feeds from traffic cameras.
In each workload, the edge server runs a mixture of the
models shown in tables 1 and 2. The number of models in
a workload range from 4 to 8. Table 3 shows the potential
savings that can be obtained in these workloads: up to 74%
savings if we were able to merge all common layers across
all of the models in the workloads. Note that, beyond the
alleviation of memory pressure on edge GPUs, merging ben-
efits also reduce the costs associated with swapping by (1)
enabling more models to be run without swapping, and (2)
reducing the amount that must be loaded into memory when
transitioning to another model that was merged with a pre-
viously loaded one.

Workload No sharing Max sharing Savings
(GB) (GB) (%)
1 2.02 0.656 67.5
2 0.93 0.244 73.8
3 1.212 0.896 26.1
4 0.13 0.090 30.76

Table 3. Potential of merging in four sample workloads.
4 Challenges in Model Merging

While seemingly simple, model merging poses a set of chal-
lenges that stand in the way of practically realizing the afore-
mentioned benefits.

Challenge #1: Combinatorial search space

Models typically have many layers - e.g., YOLOv3 and Resnet152

have 106 and 152 layers, respectively — and determining the
appropriate combination of layers to share in a way that
maximizes memory savings while adhering to accuracy con-
straints is difficult for several reasons. First, there exists a
combinatorial search space of potential layer sharing combi-
nations for a given set of models. More formally, for a set of
m models each with n layers, the number of possible layer
combinations is ("Cy)™ + ("Co)™ + ...+ ("C,)™.

Second, even for different instances of the same model,
the weights for shared layers are usually different, as models
are usually specialized to a specific task (e.g., detect cars at
4th & Main). Keeping one copy of a layer means finding a
set of weights for that layer that allows all models sharing it
to maintain accuracy above a certain target. Unfortunately,
as a result, the straightforward approach of simply sharing
all possible layers and training them together results in un-
acceptable accuracy drops. For example, we jointly trained
two Faster RCNN models that detected cars and people at
two nearby intersections in the same city. When sharing
all layers, neither model was able to reach even 75% of its
pre-sharing accuracy.

We then randomly selected combinations of layers to
share to see if there was potential for saving memory while
meeting accuracy. Figure 4 shows the combinations and the
amount of memory saved for each along with whether the
models were able to reach 95% accuracy. The successes to-
wards the right show that there is clearly potential for saving
memory while meeting a realistic accuracy target. However,
the scatter of successes and failures also shows that it is not
trivial to find combinations of layers that train successfully.
Exhaustively searching through all of the possible combina-
tions in the combinatorial space to find the best combination
that meets the accuracy would be computationally infeasible,
especially as the number of layers in each model and the
number of models that are merged increase.

Challenge #2: Retraining cost

For any given combination of layers to share, conclusively
determining (1) whether it can meet an accuracy target, and



® Success
v Failure

[ X J ooVvYy VyVveeuwe v g

0 100 200 300 400 500 600
Figure 3. Memory savings and success in meeting 95% accu-
racy for random combinations of layers sampled from all
shareable layers. There is potential to meet accuracy targets
while saving memory, but many combinations fail.

if so, (2) the corresponding weights to use, requires retrain-
ing the merged models. The amount of training necessary
depends on the number of layers being shared, and models
merged. Such retraining costs can be prohibitive and dis-
count the benefits of merging. For instance, in our earlier
joint training example, each retraining epoch with Faster
RCNN consumed =35 minutes, and different combinations
of layer sharing required between 1-10 epochs to converge.

In video analytics deployments, it is typical for users to
introduce and retire models periodically. Such scenarios also
require retraining (e.g., when a new model is introduced).
Hence, it is essential for the retraining process to be efficient.

We also note the difference in our task from multi-task
learning, which enables the learning of multiple related tasks
simultaneously [14], potentially with layer sharing [30, 32].
Multi-task learning is usually studied in the context of trans-
fer learning, where one model does not have enough data
to train on and trains together with another model, rather
than two sets of pretrained weights that must be shared.
Additionally, the related tasks are usually variations of the
same model (e.g., spam classification) and thus the data for
each task can be pooled together. In contrast, objectives vary
widely among video analytics workloads at the edge, which
consist of several tasks (e.g. object detection, classification),
models (e.g. Resnet50, YOLOv3) and video streams.

Challenge #3: Incremental merging

These retraining delays are magnified by the fact that merged
models may need to be retrained periodically to account for
data drift [11, 27]. Data drift is common in real-time video
analytic pipelines, where over time the live video data differs
from the training data thereby degrading the performance
of the models. The general approach to handling data drift
is continuous learning, where the models are periodically
retrained on new data.

In the case of model merging, handling data drift requires
a different approach—it is not enough to just retrain the
merged model on new data, but it is also necessary to as-
sess the efficacy of the original merging decisions as the
data changes. Thus, it is necessary for an efficient model
merging solution to be incremental in nature, since naive ap-
proaches such as restarting the merging from scratch could
be prohibitive.
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Challenge #4: Merged model memory management

While a merged model can help reduce the memory require-
ments significantly, an efficient model merging scheme must
be aware of the memory requirements of the merged models
and account for scenarios where (1) the merged model may
not fit in the memory of a given edge GPU, and (2) one or
more of the models that are to be merged are large enough
to not fit in the GPU by themselves.

We plan to investigate a number of ways to address them.
The first case is more common, where a potential solution
is to introduce a constraint in the merging process to ac-
count for the memory of the GPU where the merged model
is to be deployed. As a result, the merging process could pro-
duce multiple (smaller) merged models which can then be
swapped in and out using existing time-sharing techniques.
The second case is more difficult to address. A possible ap-
proach here is to consider leveraging techniques that are
able to load a model layer-by-layer, there by avoiding the
need to load the model in its entirety.

Challenge #5: Joint optimization across cloud & edge

Finally, an efficient model merging solution must also con-
sider jointly optimizing the model merging process with its
deployment. Since the merging process is computationally
heavy and time-consuming, it is natural to do it at the cloud,
where the resources are plentiful. However, this means that
the deployment of the merged model and the retraining and
incremental merging process needs participation from the
edge. One possible direction is to have a feedback channel
between the cloud and the edge where the edge updates
the merging engine of the need to retrain, and then design
an intelligent scheduler which can incrementally load/swap
the merged models based on the memory availability and
real-time query requirements.

5 Final Thoughts & Future Directions

The significant memory saving potential of model merging
makes it a compelling direction towards memory manage-
ment at the edge. Here, we outline our vision towards a
solution. We envision the solution to span the edge and
the cloud, with the merging happening at the cloud using
hints from the edge. To tackle the challenge of search space
explosion, we plan on taking a greedy approach to decid-
ing which layers to share. While sub-optimal, we believe it
can still provide substantial savings. Retraining costs can
potentially be reduced using variations of early-exit tech-
niques [31] and/or sampling the data. We plan on employing
light-weight checkpointing mechanism in the merging pro-
cess to enable incremental merging. Finally, the edge can
incorporate an intelligent scheduler that loads the merged
models at a layer granularity, thus respecting the memory
constraints in real-time. We are actively pursing all of these
directions.
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