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Abstract— Conventional channel codes are designed to re-
cover channel errors by adding controlled redundancy to
transmit bits; however, the main underlying assumption is that
information bits are independent and identically distributed
(i.i.d.). Short term and linear temporal correlations are as-
sumed to be exploited by the preceding source encoders. This
assumption is flawed in some scenarios since many types of data
(e.g. audio samples, video frames, and sensor measurements)
exhibit long-term relations and intricate dependencies that are
not exploitable by conventional source encoders. Furthermore,
sending plain information is still commonplace in wireless
networks. Therefore, it is essential to design channel encoders
that accommodate these conditions. It is well-known that the
underlying hidden patterns can be captured by deep learning
methods. This important capability is not yet fully utilized in
channel encoder design.

This work is a primary step towards developing a predictive
channel decoder that learns the intricate dependencies within
and between data frames using an embedded learning module
at the receiver to enhance the bit decoding performance, espe-
cially in high-noise regimes. The learning module is integrated
with the belief propagation algorithm over bipartite graphs
appropriate for low-density parity-check (LDPC) codes. The
proposed method is universal since no specific correlation model
is adopted and the learning-based prediction is performed at the
bit level. The proposed method is fully implemented at the re-
ceiver side, making it compatible with generic LDPC encoders.
Our simulations demonstrate the superior performance of the
proposed method compared to standard LDPC decoders. For
instance, about 1.7 dB gain at the 10−4 BER level is achieved
when recovering noisy audio files 1.

I. INTRODUCTION

Wireless transmission is an integral part of many technolo-
gies including wireless systems, internet of things, ground
and aerial robotics, self-driving cars, and many more. In
a wireless system, data transmission is often disrupted by
undesired effects like channel noise, fading, interference, loss
of synchronization, etc. The basic idea of channel coding is
adding controlled redundancy to the transmit bits in order
to facilitate recovering transmission errors at the destination.
Generally, a commonly adopted assumption is that the input
bits are independent identically distributed (i.i.d). However,
this assumption is unrealistic in practice since data frames
(e.g. audio samples, video frames, sensor readings, text,
and etc.) can have long-term relations and intricate hidden
dependencies. Conventional source encoders that convert

1This material is based upon work supported by the National Science
Foundation under Grants No. 1755984 and 2008784

information blocks into binary bit-stream are typically de-
signed to capture temporal short-term correlations and fail
in recovering intricate dependencies [1], [2]. Furthermore,
source encoders are customized for specific data types with
prior known correlation models that restrict their use in
general cases. On the other hand, several algorithms are
developed by the machine learning (ML) community to
exploit intricate and hidden patterns among data samples
through data-driven learning methods. For instance, predict-
ing missing video frames based on preceding frames is still
a hot topic with continued progress in the ML research
community. A seminal work is [3], which proposed a convo-
lutional neural network (CNN) to generate video sequences
directly in the pixel domain with given information from
the start and end frames. Likewise, [4] intends to predict
future video frames based on the preceding frames using
a decompositional disentangled predictive auto-encoder with
the idea of representing video frames with lower-dimensional
latent variables. The power of ML algorithms, unfortunately,
is not yet fully utilized by the coding research community,
and commercial wireless systems still utilize conventional
channel encoders such as turbo and LDPC codes [5]. This
paper aims at taking initial steps towards filling this gap
between the communication and learning perspectives by
introducing the concept of learning-powered decoders.

The idea is that data bits can be viewed as the observations
of an underlying time-series process with long-term and
intricate dependencies. Therefore, the learnability of bits
from the history of observation is inherited from the temporal
correlation of time series as a universal concept regardless
of the information source type. In this work, we design
a learning-powered decoder which integrates a bit-level
prediction module with the sum-product algorithm (SPA),
a realization of belief propagation algorithm used to recover
bits encoded by the low-density parity-check codes (LDPC).
More specifically, we integrate the soft information obtained
by the SPA algorithm and the embedded predictor.

The proposed solution improves upon the performance of
conventional encoders and provides several key advantages
including (i) universal decoding and applicability to a wide
range of applications (audio, video, text, sensor readings,
etc.), since no prior assumptions are made on correlation
model, as opposed to the context-specific source encoders,
(ii) recovering long-term, non-linear, and intricate depen-
dencies between and within frame bits, and (iii) backward
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Fig. 1. The overall architecture of the proposed learning-powered decoder.
The predictor uses the previously decoded messages to predict the current
message at bit level. The information is mixed with the decoder soft outputs
to yield the final estimates of the information bits. The weight learner
module assigns proper mixing coefficients based on the fidelity of the
prediction module and the channel SNR.

compatibility as it requires no modifications to the encoder.
In this paper, a novel implementation of learning-based

decoding is proposed by incorporating the predicted in-
formation into the conventional LDPC decoding structure
with sum-product algorithm (SPA), as shown in Fig.1. The
LDPC codes along with turbo codes are among the most
commonly used channel coding algorithms that achieve near-
Shannon capacity performance with very low error floors.
This is why they remained as a top-choice in communi-
cation systems during the past several decades. However,
like other conventional decoders, its operation is based on
the i.i.d. assumption for the input bits and hence does not
perform well for recovering predictable information bits.
The proposed algorithm addresses this problem by imple-
menting an embedded learning module into the decoder.
This approach extends the utility of the LDPC decoder to
recovering predictable noisy information and outperforms
both the SPA-based channel decoder and the prediction
module. The soft information is represented in the Log-
likelihood Ratio (LLR) format, which substantially reduces
the computation complexity and facilitates building a more
interpretable mixed model. The superior performance of our
method is verified by experimental results. The proposed
mixed model obtains about 1.7 dB gain at the 10−4 BER
level with a well-designed predictor.
A. Sum-Product Algorithm (SPA)

Here, we review the basics of the SPA algorithm, a popular
implementation of the belief propagation algorithm, which
is the core part of our proposed decoder. This algorithm was
first proposed by Judea Pearl in 1982 [6], who formulated
it as an exact inference algorithm on trees, which was later
extended to polytrees [7]. Essentially, the algorithm is based
on Tanner graphs, also called bipartite graphs (shown in
Fig.2). Tanner graphs are used to describe a family of codes
like LDPC codes, where the variable nodes represent the
coded bits ,and check nodes represent the algebraic equations
implied by the encoder [8]. The sum-product algorithm is
the natural result of applying a message passing algorithm
over tanner graphs for the iterative update of soft information
associated with check nodes and variable nodes [9]. The idea
is updating each variable node based on the messages arrived
from the relevant check nodes and vice versa. A key property
is excluding the impact of the current node on updating itself,
and hence the algorithm performs better on short-cycle-free
graphs. A message from a check node to a variable node
is the product of the associated factors from other variable

nodes connected to the check node, marginalized over all
variable nodes except the current one, that naturally leads to
the sum-product operation.

This basic algorithm is further improved over time by
researchers. In [10], the authors proposed a SPA algorithm in
the Log-likelihood domain, which substantially reduced the
complexity of the algorithm. Some other works investigated
the conditions required for the convergence of SPA [11], [12].

Fig. 2. The illustration of the message passing algorithm over Tanner
graphs, where the check nodes zm represent the check equations determined
by the parity-check matrix, and variable nodes cn represent the coded bits.
Variable nodes are updated based on the messages received from the check
nodes, ηmn, and vice versa until the convergence conditions are met.

II. PROPOSED METHOD

A. Problem Formulation
Consider a point to point communication system. A Mes-

sage W within the index set {1, 2, ...,M} is encoded by
the transmitter to Xn (f : W 7→ Xn) and is sent to the
receiver. The receiver receives a noisy version of it Y n ∼
p(yn|xn) under a conditional probability p(y|x) determined
by the channel model, then estimates the message W by an
appropriate decoding rule Ŵ = g(Y n).

Let’s consider the general case of a discrete memoryless
channel (DMC) but with a relaxed i.i.d assumption on the
input messages W1,W2, . . . , which implies dependencies
on the resulting channel symbols X1, X2, . . . . First, we
define the channel configuration with a uniformly distributed
index W on the set W = {1, 2, ..., 2nR}. Thus, a Markov
chain is formed by W → Xn(W ) → Y n → Ŵ . The
transmission error can be described as P (n)

e = Pr(W 6= Ŵ ).
With the above assumptions, the data symbols with bit-
wise dependency are transmitted through the channel, which
means that the mutual information I(Xi;Xj) between the
transmitter and the receiver is non-negative when i, j ≤ n
for some n based on the application of interest.Therefore, if
the data with noise power N0/2 is transmitted, the optimal
coder design problem can be stated as:

minimize
f,g

P (n)
e

s.t.
1

n

n∑
i=1

x2i ≤ Eb

yi ∼ N (xi, N0/2)

I(Xi;Xj) > 0 for i, j ≤ n (1)

where f and g describe the encoder and decoder func-
tions, respectively, xi represents the ith transmitted symbol
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according to the utilized codebook, and yi represents the
received symbol, and Eb denotes the power constraint of the
transmitter. The constraint of the power is necessary, since
otherwise the error can be made arbitrarily small by choosing
an infinite subset of inputs far apart [13]. Our goal in this
paper is to reduce the error P (n)

e by offering a practical
decoding algorithm for LDPC encoders.

B. learning-powered decoder structure
Here, we propose a learning-powered decoding algorithm

for LDPC codes under AWGN channel that can capture the
embedded long-term correlations among information bits to
enhance the decoding performance. The prediction approach
is based on sequential learning, meaning that the prediction
model is refined and improved over time by receiving more
frames at the receiver. The L previously decoded messages
Xk−L+1, . . . , Xk−1 are reused in the predictor to predict the
next message X̃k. Then, the bits corresponding to the pre-
dicted message are used to initialize the SPA-based decoder
to help the decoder converge to a better local optima point.

Fig. 3. The predictor captures the long-term correlation using hidden
feature layers from previously decoded messages. The model is used to
predict the next message and use it to initialize the SPA decoder for
enhanced performance.

It is notable that incorporating predictive information
should be regulated properly. In general, when the channel
SNR is high, the resulting error rate approaches zero, hence
we should assign more weight to the decoder results when
mixing the information. Our approach is to estimate the
reliability of the SPA algorithm and use it to tune the mixing
weights by an empirically obtained formula to achieve the
highest performance. In this regard, we define

η1 = SNR,

η2 = var(|Ii,j |)

α =
η1
λη2

, λ > 0, (2)

where Ii,j is the jth bit channel output information for the
ith frames, N is the total number of frames in one segment,
and λ is an attenuation factor set in advance. The parameter
α ∈ [0, 1] is a decreasing function of the channel SNR and
used to suppress the weights of the decoder.

On the other hand, the predictor performance is somewhat
independent of the channel and reflects the predictability of
the information, and depends on different factors such as
modeling accuracy, bias to the training samples, intrinsic
unpredictability and natural randomness of the samples, and
the error in the estimation of preceding messages used to

predict the upcoming message. This parameter is between
5%-20% in our simulations.

Here, we define the parameter strength s(Fn) as the mean
of the absolute values of the predicted data bits in terms of
the LLRs of the n most recent frames, namely

s(Fn) =
1

n len(Fi)

n∑
i=1

len(Fi)∑
j=1

|LLR(po)
i,j |, (3)

where len(Fi) is the number of bits in frame Fi and
LLR

(po)
i,j = log

(
p(bi,j = 0)/p(bi,j = 1)

)
represent the LLR

of the jth output bit in frame Fi.
The larger values of s(Fn) mean higher confidence

about the prediction results. Therefore, the predictor’s output
should be properly scaled before mixing with the channel
outputs to initialize the SPA decoder.

It is observed that over-emphasizing the prediction results
by selecting large values of s(Fn) (i.e. s(Fn) ≥ 15) is not
desired, as it strongly biases the SPA decoder and prevents it
from converging to the global optima. The under-weighting
the prediction results (i.e. s(Fn) ≤ 3) is not suitable either
since it deteriorates the performance of the decoder. To
capture this effect into one parameter, we define an auxiliary
parameter β as

β =


0 if s(Fn) ≤ 3

4 if 3 ≤ s(Fn) ≤ 15

60/s(Fn) if s(Fn) ≥ 15

(4)

to properly weight the prediction information when mixing
according to Eq (7). As show in Fig. 2, our decoder operates
based on applying SPA [14] to the tanner graph. In our
notations, ηkmn denotes a message sent from the check node
zm to variable node cn in the kth iteration. Likewise, λknm
represent a message sent by variable node cn to check node
zm. If In is the channel output (in terms of LLR) for variable
node cn, then the belief propagation messages at the kth
iterations are defined as:

λknm = In +
∑

m′∈Mn,m

ηk−1m′n, (5)

ηkmn = 2tanh−1(
∏

n′∈Nm,n

tanh(
λkn′m

2
)) (6)

Here, Nm is the set of variable nodes that are connected to
check node zm (equivalently, if H is the parity check matrix,
it include the non-zero elements of the mth row of H , i.e.
Nm = {n : Hmn = 1}). Similarly, Mn is the set of check
nodes that are connected to variable node cn (the non-zero
elements of the nth column of H). Also, Nm \ n is Nm

excluding the variable node vn (Nm \ n = {n′ : Hmn′ =
1, n′ 6= n}), and Mn \m is Mn excluding the check node
zm (Mn \m = {m′ : Hmn′ = 1,m′ 6= m}).

The only exception for Eq (5) is the first iteration, where
we initialize the variable nodes with the channel output, i.e.
λnm = In. In the proposed method, we incorporate the
predictor results pn here using the following equation:

λ1nm = α(βPn) + In (7)
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instead of Eq (5), where In and Pn are the channel output
and the predictor output related to variable node cn, and α
and β are scaling parameters defined in Eq (2,4).

The SPA algorithm continues until the convergence condi-
tions are met or a predefined number of iterations is reached.
The convergence point is typically defined by obtaining a
fully consistent codeword c (c ∗ HT = 0), or when the
change in the belief of the variable nodes is negligible. At
this point, the final estimates of the bits are obtained by
hard-thresholding as

λknm = In +
∑

m∈Mn

ηkmn, cn =

{
1, λknm < 0

0, λknm > 0.
(8)

A summary of the proposed algorithm is shown below.

Algorithm 1: learning-powered Sum-Product Algo-
rithm (LP-SPA)

Require: The check matrix H; soft information from the
demodulator I; the maximum number of iterations
Itermax, tuning parameter λ, L previously recovered
frames (Fn−L+1, . . . , Fn−1).

Ensure: Decoded message cn = (cn1 , c
n
2 , . . . ).

1: Initialize mixing parameters α
2: Estimate the channel SNR
3: Update mixing coefficients η1, η2, α using (2)
4: Predict the current frame F̃n from previous frames

(Fn−L+1, . . . , Fn−1)
5: Estimate the strength of predictor (s(Fn)) using (3)
6: Estimate the mixing parameter β using (4)
7: Initialize the SPA decoder using (7)
8: Set iter=1
9: while k ≤ Itermax and cn ·HT 6= 0 do

10: Variable-node update at kth iteration:

λknm = In +
∑

m′∈Mn,m

ηk−1m′n

11: Check-node update at kth iteration:

ηkmn = 2tanh−1(
∏

n′∈Nm,n

tanh(
λkn′m

2
))

12: k++
13: end while
14: Hard decision:

λknm = In +
∑

m∈Mn

ηkmn, cn =

{
, 1, λknm < 0

0, λknm > 0

C. Deep Learning Model

As we discussed in Section II, CNN can perform well
in capturing hidden features. For instance, [15] used CNN
to predict Gray coded audio signal samples. Our strategy
in this work is using CNN in a novel way of predicting bit-
level information based on the history of the received frames,
which makes it applicable to a broad range of applications.

More specifically, we predict the value of each data-bit of
the current frame using the decoded version of the preceding
ten frames. We took necessary considerations so that the
predictor can deal with information bits and check bits
simultaneously. Additionally, since the prediction process is
performed segment by a segment, transfer learning is applied
in the modeling phase, meaning that the trainable parameters
from the previous segments can be used to initialize the
current network (as shown in Fig.4), which substantially
improves the training efficiency.

Fig. 4. The illustration of prediction and decoding phases within a segment.

Fig. 5. The utilized neural network architecture includes six stacked 1-
dimensional convolutional layers followed by two fully connected layers
and a softmax layer. We skip pooling layers due to the relatively small size
of the 1-dimensional network to avoid eliminating valuable information.

The deep neural network architecture adopted in this paper
is shown in Fig. 5. To promise a near real-time commu-
nication, a low-complexity network with a few trainable
parameters. The input is a R1×N1×N2×N3 tensor, in which
N1 is the length of a codeword, N2 is the number of
feature map channels, and N3 is the number of frames.
Batch-normalization is used for stable training with enhanced
performance. A dropout with a rate of 0.35 is deployed to
avoid over-fitting. Softmax activation is used on the output
layer to achieve a bit-wise classification. It is notable that
because of the predictor implemented in the receiver, noise
caused by the channel is unavoidable, hence the prediction
accuracy is typically below 90%.

III. EXPERIMENTS

A. Data preparation and experimentation setup
To perform our simulations, we choose segments of

two different sample audio files (Canon in C [16] and
A Comme Amour) [17] in our experiments to assess the
performance of the decoder for different scenarios. Our
strategy is to quantize the audio sample into 8 bits, then
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convert them to Gray code, which results in a lower sample
(in our case audio sample, or an image pixel) error rate
under a given bit error rate [15]. Finally, we encode the bit-
stream using an LDPC encoder with a coding rate 1/2. To
simplify the information fusion between the predictor and
the decoder, a systematic architecture is desirable, therefore
we manipulate the parity-check matrix to obtain a systematic
generator matrix. In the receiver, we split the received noisy
frames into segments, where each segment includes 20000
frames. For each segment, the first 75% of the frames are
used in the training phase (50% for training and 25% for
validation), and the remaining 25% to produce prediction
bits for the learning-powered decoder. We calculate the
prediction error using the original error-free data) and present
the prediction accuracy versus the channel SNR=Eb/N0.
Note that the training is performed on the noisy data and the
test is performed with respect to the noise-free data frames,
so the use of SNR is relevant. We investigate the convergence
of the mixing parameters α, β, s(Fn), as well as the average
performance gain of the proposed learning-powered decoder
under different values for the hyper-parameter λ.

B. Simulation Results
First, we demonstrate that the parameter η2 defined in Eq

(2) converges to its final value for a sufficiently large number
of the received frames. This is technically important since η2
is used to regulate the mixing coefficients. More specifically,
we send 16-bit frames with random bits and set different
levels of SNRs in the AWGN channel with BPSK modu-
lation, then investigate the value of η2 versus the number
of frames, as shown in Fig. 6. As expected, η2 converges
to a constant value after receiving enough number of frames
(about 1000 frames for audio files). This number is relatively
low in real-world applications, where extremely long files
can be exchanged (e.g., a video streaming scenario). After
this period, we achieve a higher gain for using learning-
enabled decoding. The parameter η2 converges to a larger
value for higher SNRs, which results in a smaller value for
α. This implies the suppression of the prediction results and
emphasizing the received bits, a reasonable choice for the
high-SNR regime.

Similarly, the behavior of α versus the channel SNR and λ
is presented in Fig. 7. Firstly, it is noticeable that α decreases
with the channel SNR as intentionally planned to suppress
the weight of the prediction results and put more emphasis on
the channel outputs when mixing the information to initialize
the SPA decoder. Also, this parameter decreases with the
tuning parameter λ, which should be tuned based on the
system characteristics. For instance, it is a known concept
that the performance of LDPC codes improves with the larger
block lengths. Therefore it is advantageous to assign higher
values for λ for longer blocks to obtain lower values of α in
order to put more emphasis on the channel decoder compared
to the prediction results.

Next, we analyze the performance of the two predictors.
Table I presents the results of the prediction module applied
to the two aforementioned test scenarios. The resulting BER

Fig. 6. The convergence of η2 after receiving frames, at different SNR
levels (-2dB, 0dB, 2dB, 4dB, and 6dB).

Fig. 7. The behavior of mixing weight α versus the channel SNR for
different values of λ (1, 3, and 5).

decreases with the channel SNR:Eb/N0, as expected. Also,
the strength of the prediction denoted by s(F ) increases
with the channel SNR but remains above 3 under the given
SNR range that confirms the advantage of incorporating the
predictor’s results into the channel decoder initialization to
boost the error recovery performance.

TABLE I
THE RELATIVE STRENGTH OF THE PREDICTORS s(F) AS WELL AS THE

PREDICTION BER (BIT ERROR RATE) FOR THE TWO TEST SCENARIOS.

TestEb/N0 0 dB 1 dB 2 dB 3 dB 4 dB
Test 1 s(F ) 4.9 5.6 6.5 7.2 7.9
Test 1 BER 0.087 0.076 0.068 0.065 0.062
Test 2 s(F ) 6.6 7.1 7.8 8.2 8.5
Test 2 BER 0.187 0.176 0.165 0.161 0.157

The simulation results for the two test scenarios are
presented in Fig. 8 and Fig. 9. In Test 1, the proposed method
with different λ values achieves a considerable improvement
for different channel SNR values, which quantifies the gain
achieved by using the prediction module. The highest perfor-
mance gain is achieved for λ = 1 in this test. Test 2 presents
a similar trend, but the achieved gain is slightly lower than
test 1. Also, this test is less sensitive to the value of λ.
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These results uncover many unknowns in designing learning-
powered decoders and optimal parameter tuning, which is
worthy of further investigations. The achieved gain in terms
of the power reduction for the two test scenarios is given
in Table II. We assess the models at 10−2, 10−3, and 10−4

BER levels. The power gain is the amount of the reduction
in the transmit power (in dB scale) by the proposed learning-
powered decoder to achieve the same BER performance of
the standard SDA decoder. The achieved performance is
considerable and varies between 0.5dB to 2dB. The achieved
gain depends on the design parameters like lambda and urges
for a more in-depth analysis.

Fig. 8. This is simulation results for Test 1. The maximum number of
iterations is set to 30 and λ to 1, 3, and 5.

Fig. 9. This is simulation results for Test 2. The maximum number of
iterations is set to 30 and λ to 1, 3, and 5..

TABLE II
THE ACHIEVED POWER REDUCTION GAIN BY THE PROPOSED DECODER

AT DIFFERENT BER LEVELS.

TestGainBER level 10−2 10−3 10−4

Test 1 λ = 1 1.9 1.5 1.7
Test 1 λ = 3 1.2 1.0 0.8
Test 1 λ = 5 0.8 0.7 0.7
Test 2 λ = 1 0.7 0.7 0.6
Test 2 λ = 3 1.0 0.7 0.6
Test 2 λ = 5 0.7 0.5 0.6

IV. CONCLUSION

In this work, we posed the idea of boosting the perfor-
mance of channel decoders by including embedded learning
modules. The idea is utilizing the learnability of data bits
to enhance the performance of bit recovery algorithms. It
does not replace the main task of a channel encoder, namely
recovering channel errors by exploiting the embedded coding
patterns, rather it complements the error recovery by exploit-
ing the power of learning algorithms to guess the values of
the lost and corrupted bits. As an exemplary implementation,
we designed a SPA algorithm that uses an embedded deep
learning module to decoded LDPC encoded data frames. The
key challenges are tuning learning parameters, translating
the learnability of the information bits into coded bits,
model sharing between multiple transmitter-receiver pairs,
and finding a universal way for tuning mixing coefficients.
To the best of our knowledge, this is the first work in this
area and yet we achieved a significant gain (0.5 to 2 dB
in transmit power reduction) with our implementation. The
gain is higher for noisier conditions, where the conventional
decoders fail in recovering the information bits.
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