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Abstract. Convolutional layers treat the Channel features equally with
no prioritization. When Convolutional Neural Networks (CNNs) are used
for image denoising in real-world applications with unknown noise distri-
butions, particularly structured noise with learnable patterns, modeling
informative features can substantially boost the denoising performance.
Channel attentions in real-world image denoising tasks exploit depen-
dencies between the feature channels; therefore, they can be viewed as a
frequency-domain filtering mechanism. Existing channel attention mod-
ules typically use global statics as descriptors to learn inter-channel corre-
lations. These methods deem inefficient in learning representative coeffi-
cients for re-scaling the channels at frequency level. This paper proposes
a novel Sub-band Pyramid Attention (SPA) model based on wavelet
transform to recalibrate the extracted features’ frequency components
in a more fine-grained fashion. Our method, in one sense, integrates
the conventional frequency-domain filtering methods with deep learn-
ing architectures to achieve higher performance records. Experimental
results show that ANNs equipped with the proposed attention mod-
ule substantially improves upon the benchmark naive channel attention
blocks. More specifically, we obtained a 3.97dB gain compared to the
best traditional algorithm, BM3D and a 1.87dB to 0.18dB gain over
the DL-based methods in terms of denoising performance. Furthermore,
our results show how the pyramid level affects the performance of the
SPA blocks and exhibits favorable generalization capability for the SPA
blocks.
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1 Introduction

Convolutional Neural Networks (CNN) have shown a remarkable performance in
image denoising tasks compared to conventional filtering methods [4,22,32,33].
Mathematically, image denoising methods intend to recover a clean and high-
quality target y from a corrupted low-quality observation x by eliminating noise,
imaging artifacts, distortions, etc. In general, the overall impact of these unde-
sired terms is modeled as a zero-mean Additive White Gaussian Noise (AWGN)
with an arbitrary variance. Using the Gaussian noise model provides compu-
tational convenience. This model is backed by the central limit theorem that
states that the normalized sum of independent and arbitrarily distributed ran-
dom terms approach a normal distribution. Although appropriate for general
and pure random noise modeling, the AWGN model is oversimplified for situa-
tions where the structured noise exhibits hidden patterns. For instance, image
distortions due to cameras’ loss of focus, lens scratch, dusty lens, camera shake,
low illumination, and raindrops exhibit learnable patterns substantially different
than a random noise [8].

Previous CNN-based methods [32-34] outperform the traditional meth-
ods [10,13] for image denoising due to the learning capacity of CNNs. However,
they are mainly designed to deal with synthetic noise instead of real-world noise
with more complicated and diverse compositions. Therefore, their performance
might be suboptimal in real-world denoising tasks. Recently, new noise mod-
els [4,7,31,36] and new benchmark denoising methods [1,26] are proposed to
tackle more realistic noise models. One popular way is using attention mecha-
nisms to manage and quantify the interdependence between the extract feature
maps. For instance, in RIDNet [4], a channel attention block [18] called feature
attention was used for feature selection, which allows the network to focus on
the feature channels of interest. Although feature attention methods obtain supe-
rior performance in real-world image denoising tasks, generating coarse feature
descriptors based on the global pooling of the entire feature map is not optimal.

From the traditional image processing perspective, a natural image is com-
posed of different frequency components, with high-frequency components rep-
resenting the fine details and low-frequency components representing the global
structure of the image; therefore, denoising is usually performed by smooth-
ing and low-pass filtering. We re-think the DL-based denoising paradigm by
leveraging traditional denoising concepts. Channel attention mechanisms can
be regarded as an adaptive filter that suppresses the abundant frequency fea-
ture channels [35]. In most channel attention models, the feature maps’ coarse
statistics are generated by Global Average Pooling (GAP). Second-order chan-
nel attention was proposed in [14] for enriching the representation ability of the
channel attention blocks. Nevertheless, these types of channel attention models
are not flexible enough to deal with various frequency levels. In [5], Laplacian
attention is proposed to integrate traditional methods and deep learning, adopt-
ing multiple convolutional layers with different receptive fields to model the
frequency components of the input features. Despite the improvements obtained
by this and similar methods, the following question remains open: Is there a
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better way of obtaining a representation for the frequency characteristics of the
input image?

In this paper, a CNN architecture with an efficient and plug-and-play Sub-
band Pyramid Attention (SPA) is proposed as an alternative approach for the
existing channel attention models (Fig. 1). Based on the wavelet decomposition,
the SPA module performs a more fine-grained frequency selection that weighs the
sub-bands at different levels. The SPA module exhibits a restoration performance
while preserving the detailed textures with a negligible increase in computational
complexity. Experimental results on real image denoising confirm the superiority
of the proposed method. We also review how the utilized pyramid level affects
the denoising performance and the generalization capability of the SPA blocks.
The proposed SPA method with a proven superior performance can replace the
existing attention mechanisms and is readily applicable to DL networks with
arbitrary structures. Our study reminds the fact that leveraging fundamental
knowledge in image processing can improve DL methods’ performance.

SPA Module! 4 :Lower Frequency Component

| - AW : Higher Frequency Component
' I - == : Channel attention

' = : Inverse Wavelet

Channel Attention
i - |w ool

Fig. 1. The sub-band pyramid attention for frequency components selection.

2 Camera Noise vs Additive White Gaussian Noise

Most image denoising methods, such as [22,32,33] were trained based on image
pairs {z;,y;}Y,, where z;s are clean images easily available in large quantities,
and y; = x; + n are the artificial corrupted images by adding AWGN noise n
with different standard deviations o. While training a specific model for a certain
noise level, the standard deviation o for generating training and testing data is
set to constant values e.g., 0 = 15,25,...,50. For blind denoising, the models
are trained under random noise levels and tested with unknown noise levels.
During camera imaging, a digital image goes through the sequential steps of
photon-voltage conversion, analog amplification, and analog-to-digital conver-
sion [19]. During these stages, multiple noise sources, including shot noise (pho-
ton noise, Gamma noise), read-out noise, and thermal noise, are involved [9].
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We can roughly define the real noise model as a Poisson-Gaussian noise mod-
els [15,19,21] as y = kP(§)+ N(0,0?), where = and y are clean and noisy image
pairs, k and o are factors related to camera settings, and P(-) and N (), respec-
tively, denote the Poisson and Gaussian distributions. Unlike AWGN, real noise
and image components are not independent that significantly limits the denois-
ing performance. In addition to these noise terms, several other factors such as
lens dirt and scratch, low light conditions, and natural air pollution can further
distort the image.

3 Method

3.1 Frequency Sub-band Pyramid

The 2-D Discrete Wavelet Transform (DWT) is a powerful tool for analyz-
ing image structures in spatial and frequency domains. At each layer, DWT
decomposes the image (or the approximate coefficients of the previous layer)
into four sub-bands using four orthogonal convolutional filters, including one
low pass filter fr;, and three high pass filters frgy, fgr, and fgy. Haar
wavelet, a popular mother wavelet which is also used in SPA, includes four
orthogonal filters defined as: frp = [T1 1], fomw = [T1 11, fur = [21 11 ],
and fgpg = [ﬂ _T_H Four sub-bands are generated by convolving the input
image x with these filters to obtain: xy;, = (frr ® @), zrg = (foy ® x),
zpr = (fur ® ), and xgy = (fuw ® x), where ® is the convolution oper-
ator. Moreover, the bi-orthogonal property of DWT enables an easy and lossless
reconstruction of the original image using the inverse transformation of Haar
wavelet IWT(JELL,xLH,Z‘HL,xHH).

In this work, we propose to build a Frequency Sub-band Pyramid using
wavelet decomposition. A Frequency Sub-band Pyramid consists of multi-level
frequency components of an image or its feature maps. Given an input xg, DWT
decomposes it into a set of detail coefficients X1p = [x1gm, T15L, Z12H] and
approximate coefficients x177. After further decomposition using multi-level
DWT for n iterations, one low frequency component x,; and n sets of high
frequency components X1y, ..., X, g are obtained. Stacking these components
from the first to the last level forms a sub-band pyramid that represents the
low-to-high frequency properties of the features to be modeled.

3.2 Sub-band Pyramid Attention

A channel attention [18] module is typically formulated as:

¢ =wxo(fo(ReLU(f1(Gr)))) (1)

for a 3D input x € C x H x W, and a global descriptor G, € C x 1 x 1, which
represents the statistics of each input map generated by the GAP. The functions
f1 and fs refer to two fully-connected layers activated by the Rectified Linear
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Units (ReLU) [24] and sigmoid function (o). The channel attention module cap-
tures the channel dependencies from the global descriptor of the entire input,
which is too coarse and may lead to information loss. The proposed SPA module
exploits a more fine-grained channel-wise correlation with a new strategy of selec-
tive amplification of different spectral layers. Overall, the decomposition results
[¥nL,xnH, ... ,xoH,21H] of an input x obtained by the Frequency Sub-band
Pyramid are re-calibrated by the channel attention from lower to higher fre-
quency levels as shown in Fig. 1. After being processed by the channel attention
module, each lower frequency component is concatenated with its corresponding
higher frequency component. The Inverse Wavelet Transform (IWT) is used to
build the lower-frequency components layer by layer, starting from the top layer
to the base layer until the entire feature map with the original size (i.e., the
size of the input image) is reconstructed. The SPA module performs a more pre-
cise frequency selection mechanism than the naive channel attention approach
by this operation. The SPA explicitly calibrates the dependencies between the

feature channels while selecting the desired frequency component inside each
feature map.

s . . . 3 —: Esti i
First-stage estimation Reconstruction : Net

Level3: —: SPABlock
—: Conv+ReLU

(hw,3) (w:64)  (h,w,64)  (h,w,3) (h,w,6)

i

Level 2} : Pyramid Decomposition
i -—--: EAM+

lLeve] 1 ‘: Lower Frequency component
: = “"GF ” Higher Frequency component

Level 0

e —P—

(h,w.3)

Estimation Net!

2, (h,w,M)
| & | B0

Fig. 2. The illustration of the entire network architecture: the network is divided into
noise estimation and reconstruction stages. The noise estimation model is built by a
plain CNN with SPA blocks. The reconstruction network is based on the sub-band
pyramid, using a modified version of EAM [4], where we replaced the naive channel
attention with SPA modules, and called it EAM+.
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3.3 Network Architecture Overview

The network used in this work comprises two stages where the first stage per-
forms the noise estimation, and the second stage performs the reconstruction,
as shown in Fig.2. For a noisy input z € C, H,W, the first-stage F. can be
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regarded as a pixel-wise noise level estimation r =F, (x), where z € C,H W
is the estimation of the noisy map of the input channels. The first-stage estima-
tion includes four 64-channel convolutional layers followed by a ReLLU activation,
a SPA block, and a 3-channel convolutional layer. The filter size is 3 x 3 for each
convolutional layer in the first-stage estimation. The SPA block is considered a
frequency estimator to selectively suppress the redundant information from the
extracted features. The estimation results are stacked with the input along the
channels as [z, 2] and are fed to the second stage.

Similar to the SPA block, the reconstruction stage is also designed based on
the wavelet pyramid. This network consists of two convolutional layers (the first
and last layers) and four sub-networks. The first convolutional layer extracts
shallow features from the input image and the estimated noisy map. A 3-levels
wavelet pyramid of the feature is constructed. The level-3 to level-1 sub-networks
process the low-pass sub-bands x3rr,Zorr, 211, and the level-0 sub-networks
processes the basis features xgr;. The sub-networks are built based on the
Enhancement Attention Modules (EAM) proposed in RIDNet [4]. We replace
the channel attention blocks in EAM with the proposed SPA blocks and name
the modules EAM+. Each of the level-3 and level-2 sub-networks consists of
two EAM+, and each of the level-1 and level-0 sub-networks consists of four
EAM+. The sub-networks operate in a top-down manner, where each sub-
network receives the lower-frequency map x;r 1, of the wavelet’s current layer as
its input and extends it to the entire map of this current layer, which is equiva-
lent to the low-frequency map of the wavelet’s previous layer. This information
is passed to the next subnetwork until the full-size map is recovered.

rF

mssng cLAss:c]TcLAsswj cuxssu' CLASSlC 'CLASSIC]|

Noisy RIDNet Ours

.

CLASSIC

Fig. 3. A challenging example from SIDD dataset [1]. Our model exhibits a better
color and edge preservation property.

4 Experiments

4.1 Experimental Setup

We use the Smartphone Image Denoising Dataset (SIDD) [1] and Darmstadt
Noise Dataset (DnD) [26] for image denoising. The SIDD dataset provides 320
clean and noisy image pairs for training along with 1280 image pairs for valida-
tion. DnD dataset contains 50 pairs of real-world noisy and noise-free scenes. It
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provides bounding boxes of size 512 x 512 of 1000 Regions of Interests (ROIs)
for 50 scenes for generating testing data. Our model was implemented by the
Pytorch Framework [25] and trained with a Tesla P40 GPU. We equipped the
network with level-3 SPA blocks. The hyper-parameters of the network are
defined in Fig. 2. We used 512 x 512 patches cropped from the SIDD [1] train-
ing set to train our model and used the DnD [26] and validation set of the
SIDD dataset to evaluate the reconstruction performance. Data augmentation
by applying random rotations at 90, 180, and 270° and horizontal flipping was
used in the training phase. Peak Signal-to-Noise Ratio (PSNR) is used as the
evaluation metric, while Mean Absolute Error (MAE) is used as the loss func-
tion. The model is trained by the Adam optimizer [20] with an initial learning
rate of 1le—4. We trained the model at 2.5e5 iterations and halved the learning
rate for each of the 1eb iterations.

FFDNet ] ‘ CBDNet RIDNet ] IERD Ours
32.14dB 31.40dB 34.30dB 33.79dB 34.37dB

Noisy

Fig. 4. Comparison of our method against some popular image denoising methods on
DnD dataset.

4.2 Real Image Denoising

Table 2 represents the performances of the proposed method in terms of image
denoising and reconstruction in comparison with several benchmark methods
applied to the SIDD validation set. It can be seen that our method obtains
remarkable results and outperforms the most commonly used DL-based denois-
ing algorithms. Figure 3 presents an illustrative example, which shows that our
method holds a competitive color and edge preservation property. Also, the
results for the DnD dataset are summarized in Table 1. We compare the PSNR
and SSIM [28] through the online evaluation system provided by the DnD [26]
official website. The results show that the proposed method achieves a 3.97dB
gain compared to the best traditional algorithm, BM3D [13], while realizing a
1.87 to 0.18 dB gain over the DL-based methods [4,6,17,34]. Figure 4 shows the
proposed method in restoring a noise-free image without over smoothing the
details.
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Table 1. PSNR and SSIM of the denoising methods evaluated on DnD [26] dataset.

Method Blind/non-blind  PSNR | SSIM

CDnCNN-B [32] | Blind 32.43 |0.7900
TNRD [12] Non-blind 33.65 |0.8306
LP [11] Non-blind 34.23 0.8331
FFDNet [34] | Non-blind 34.40 |0.8474
BM3D [13] Non-blind 34.51 |0.8507
WNNM ([16] Non-blind 34.67 |0.8646
KSVD [3] Non-blind 36.49 |0.8978
MCWNNM [30] |Non-blind 37.38 0.9294
FFDNet+ [34] | Non-blind 37.61 0.9415
TWSC [29] Non-blind 37.96 |0.9416
CBDNet [17] | Blind 38.06 |0.9421
RIDNet [4] Blind 39.25 |0.9528
IERD [6] Blind 39.30 |0.9531
Ours Blind 39.48 | 0.9580

Table 2. The quantitative results (PSNR) for the SIDD dataset [1].

Method
BM3D | FFDNet | CBDNet | RIDNet | IERD | Ours
30.88 129.20 30.78 38.71 38.82 | 39.55

4.3 Ablation Study

The major contribution of this work is proposing a novel implementation of the
SPA attention module based on weighting wavelet layers. Although previous
SPA-based attention mechanisms have already experienced remarkable perfor-
mance, our approach offers a new perspective to this problem and answers new
questions of “how does the pyramid level influence the denoising performance
of the SPA blocks” and “if the SPA blocks can boost the performance of other
networks with arbitrary architectures”. Our results prove the superiority of the
proposed SPA block compared to the naive channel attention block. At the same
time, it also justifies the effect of different levels of SPA blocks. We also con-
ducted an ablation study on the proposed network architecture. We test PSNR
on the SIDD validation set for levels-0 to level-4. Notably, we define the naive
channel attention as a level-0 pyramid (which means no pyramid). The second
row of Table 3 shows that the higher pyramid level of the SPA blocks leads to a
high PSNR and a better denoising performance. For evaluating the generaliza-
tion of the SPA blocks, we conducted another ablation study by deploying SPA
blocks at different levels in the RIDNet network as an alternative for its channel
attention blocks. The third row of Table3 shows the results of RIDNet when
equipped with SPA blocks of different pyramid levels. The results show that the
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SPA blocks generalize well in RIDNet while expecting to confirm that pyramids
with more layers lead to better results.

Table 3. Investigation of effects of the pyramid level of SPA block and generalization
on RIDNet.

Networks | Level |0 1 2 3 4
Ours PSNR | 39.24 | 39.33 | 39.47 | 39.55 | 39.57
RIDNet |PSNR |38.71|38.87|38.9939.04 | 39.05

The proposed SPA attention is also generalized on the most commonly used
AWGN model instead of only specific for real-world noise models. To investi-
gate the AWGN noise, we use images with synthetic noise. We trained the blind
denoising RIDNet and our network equipped with levels-0 to level-4 SPA atten-
tion on BSD500 [23] dataset with random AWGN (where the deviation o varies
between 5 to 55). The trained models were evaluated on BSD68 [27] dataset with
noise level 15, 25, and 50. Table4 compared the performance of each model. It
consistently proves the generalizability.

Table 4. Comparisons on AWGN image denoising.

Noise levels | Method (RIDNet/Ours)

Level 1 Level 2 Level 3 Level 4
15 34.01/34.12 | 34.11/34.25 | 34.22/34.37 | 34.22/34.38
25 31.37/31.44 | 31.49/31.55 | 31.55/31.65 | 31.56/31.66
50 28.14/28.23 | 28.22/28.30 | 28.31/28.42 | 28.32/28.42

To further evaluate the performance of the proposed method, denoising is
performed for Poisson-Gaussian noise model, which is defined as y = P(z) +
N(0,02). This model includes Poisson-distribution P(z) related to the clean
image x, and followed by a Gaussian-distribution N(0,0?). Here, we set the
standard deviation o to 15. We trained our network equipped with levels-0 to
level-4 SPA attention on DIV2K [2] training set, and test them on DIV2K val-
idation set. Table5 presents the results of each level. The results show that
the proposed SPA works better than naive channel attention (Level 0), and the
performance gain still followed the obey the rules we observed in the previous
experiments, that higher level pyramid brings more improvement.
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Table 5. Comparisons on Poisson-Gaussian noise denoising.

Pyramid level | w/o CA |0 1 2 3 4
PSNR 31.11 31.52132.21 | 32.57|33.04 | 33.06

Table 6. Comparisons on GPU runtime (seconds) and Model size (MB).

Level w/o CA 0 1 2 3 4
Model size/GPU runtime | RIDNet | 5.71/0.16 |5.72/0.19 |5.73/0.22 |5.74/0.23 |5.74/0.25 |5.75/0.27
Ours 17.11/0.22|17.13/0.24|17.16/0.29|17.18/0.32|17.21/0.35 | 17.23/0.41

4.4 Computational Overhead

As mentioned before, the SPA blocks improves the denoising performance while
not adding considerable computational overhead. In this section, we compared
the model sizes' when deployed different-level SPA blocks on both RIDNet and
our network. It can be seen in Table 6 that the SPA blocks would not significantly
increase the model size. Moreover, comparisons on average GPU runtime were
conducted to show the proposed SPA module achieve a good trade-off between
the calculation and performance. We fed images with a size of 512 x 512 for
runtime evaluation. We tested each model 100 times and calculated the average
runtime.

5 Conclusion

A novel channel attention module called Sub-band Pyramid Attention (SPA)
is proposed in this work. The SPA blocks are built upon wavelet decomposi-
tion to realize a joint sub-band channel attention. The SPA is implemented as a
plug-and-play module, hence can replace the naive channel attention in arbitrary
deep learning networks. The proposed SPA block performs a more precise fea-
ture re-calibration that re-scales both the feature channels and the multi-level
frequency components. The achieved gain for the proposed method over the
conventional filtering methods and DL methods is considerable, ranging from
0.18dB to 3.97dB on the benchmark dataset of DnD. The generalization of the
SPA blocks is verified by the ablation study, which suggests that the SPA module
is compatible with other network architectures and can be widely used in other
networks to boost image restoration performance.
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