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Abstract—Smart-home devices promise to make users’ lives
more convenient. However, at the same time, such devices increase
the possibility of breaching users’ privacy as they are tightly con-
nected to the users’ daily lives and activities. To address privacy
invasion through smart-home devices, we present ChatterHub.
This novel approach accurately identifies smart-home devices’ ac-
tivities with minimal monitoring of encrypted traffic in the home
network. ChatterHub targets devices that can only connect to the
Internet through a centralized smart-home hub (e.g., Samsung
SmartThings) using Zigbee or Z-wave. Specifically, ChatterHub
passively eavesdrops on encrypted network traffic from the hub
and leverages machine learning techniques to classify events and
states of smart-home devices. Using ChatterHub, an adversary
can identify smart-home devices’ specific activities without prior
knowledge of the target smart home (e.g., list of deployed devices,
types of communication protocols). We evaluated the accuracy
and efficiency of ChatterHub in three real-world smart-home
environments, and the evaluation results show that an attacker
can successfully disclose smart-home devices’ behaviors with
over 88% F1 score. We further demonstrate that ChatterHub
successfully recognizes privacy-sensitive activities, including open
and close of a smart door lock and turn on and off of smart LED.
Additionally, to mitigate the threats posed by ChatterHub, we
introduce two approaches, packet padding and random sequence
injection. These mitigation approaches can effectively prevent
threats from ChatterHub with only 9.2MB of additional network
traffic per day.

Index Terms—IoT Hub, Smart Home Privacy, Smart Home
Devices, Sniffing Encrypted Network

I. INTRODUCTION

The blooming of the Internet of Things (IoT) promotes
massive smart-home devices to become connected to the
Internet, with an estimate of 10 smart devices per home
on average in 2020 [1]. We expect the number of installed
smart-home devices to reach 75 billion by 2025. Smart-home
devices promise to make the user’s daily life more convenient.
According to a recent study [2], the main reason for smart
device purchase is convenience, as users can easily control
and monitor smart-home devices over the Internet. Most smart-
home devices can be accessed via smart apps on smartphones
or smart-home platforms. e.g., “Front door unlocked at 13:52
by code A”, “Motion detected in living room at 17:03 ”.

However, this convenience comes at a cost. For exam-
ple, an adversary with access to smart-home devices’ state
information (such as what is triggered or used and when),
could acquire sensitive information about the users and their
activities. These device states often contain the users’ activities
in their living space, and the adversary can exploit it to commit
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further offenses, such as burglary and aggravated robbery.
Indeed, cybercriminals are increasingly targeting smart-home
devices [3]. Recent studies [4], [5] demonstrated privacy in-
vasion problems present in smart-home devices. For example,
Peek-a-Boo [4] showed that attackers could identify smart-
home devices’ states and actions by passively listening to the
wireless around a smart-home. Apthorpe et al. [5] showed an
Internet Service Provider (ISP) could learn privacy-sensitive
information from smart-home devices by analyzing traffic.
This work presents a novel method to attack smart-homes,

called ChatterHub, enabling an adversary to infer smart home
events and user activities by sniffing encrypted network traffic
to/from a target home, even though devices are hidden behind a
smart-hub (e.g., Samsung SmartThings [6]) and do not directly
connect to the Internet. ChatterHub requires neither physical
proximity to the target home nor prior knowledge of its setup
(e.g., list or topology of smart-home devices), making attacks
on smart-homes more feasible.
The intuition behind designing ChatterHub is that users’

activity routine in a smart home can trigger smart devices,
manifesting as distinct patterns in the network traffic, albeit
encrypted, and hence the users’ activities and smart devices’
events are discoverable and learnable. To infer smart-home
devices’ events, ChatterHub employs a classification model
trained with traffic patterns of popular smart-home devices and
hubs. The adversary can further train ChatterHub with their
own devices by providing network packet traces and event logs
to the training platform. ChatterHub automatically partitions
the network trace with our novel segmentation algorithms and
feeds the segmented traces (with event labels parsed from the
event logs) into machine learning models to detect smart home
devices’ events. This way, the attacker can infer the occupancy
pattern of the home by analyzing the event timing and patterns.
We have evaluated the accuracy and effectiveness of Chat-

terHub on real-world testbed environments with Samsung
SmartThings hub and 14 smart-home devices. The results
show ChatterHub can successfully discover the capabilities
and events of the devices, e.g., lock, switch, or motion based
on their encrypted traffic, and reveal users’ daily routines by
tracking devices’ activity, including changes in lock’s state,
smart LED’s state (i.e., on→off, off→on), and multi-purpose
sensor’s states (i.e., detecting motion on doors or windows).
In summary, this paper makes the following contributions:

1) We explore a new adversarial approach against smart-
home devices hidden behind a smart-hub, which could leak
critical user’s privacy, including households’ daily routine.
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Fig. 1: A high level overview of ChatterHub

2) We design a classification model that can accurately iden-
tify the events and usage patterns of various smart-home
devices from encrypted network traffic.

3) We evaluate ChatterHub in three real smart-home environ-
ments. The evaluation results show that ChatterHub can
successfully recognize smart-home devices’ events with
88% F1 score on average.

4) We show that a combination of packet padding and random
sequence injection techniques can mitigate threats from
ChatterHub at an average cost of 9.2MB traffic per day.

5) All the data sets, source code, and classification models
used in this work are publicly available to the community1.

II. ADVERSARY MODEL, ASSUMPTION, AND GOAL

We assume that an attacker only passively sniffs encrypted
network packets from/to the target home. In this work, we
consider three potential points at which the attacker can
eavesdrop on network traffic. First, the attacker can gain access
to the traffic from a compromised router. Second, the attacker
can eavesdrop on network traffic from the home router’s uplink
traffic. Third, the attacker can be the one who can monitor the
network traffic of the target home, Considering these scenarios,
encryption remains the only form of protection for users’ data.
Nonetheless, our adversary model is a passive attacker who
collects encrypted network traffic (e.g., TLS/SSL). The at-
tacker can only observe the size of each incoming and outgoing
packet, the source and destination IPs, and timestamps. In
addition, the attacker does not rely on decoding or interpreting
the information inside traffic packets.

We also assume the attacker has access to a trained model
or can collect his data from a hub and desired devices to train a
model. However, the attacker does not require prior knowledge
of a targeted smart-home topology or devices deployed.
The Goal of the Adversary. Once the network packet traces
from the target home are obtained, the adversary proceeds to
leverage a classification model, provided by ChatterHub or
trained on the attacker’s own hub and devices. By doing so,
the adversary can understand the pattern of network traffic
generated by the smart-home devices of interest. We consider
that the attacker can achieve the following goals (but not
limited to):
∙ Scout Attack. The attacker targets a range of IP addresses
to find vulnerable home routers, similar to Mirai attack [7].
After gaining access to the routers, the attacker analyzes
traffic either in the routers or through a virtual redirection

1https://github.com/karthikaS03/ChatterHub

to a sniffer installed device. Understanding smart-home
devices’ behaviors will allow the attacker to find vulnerable
targets for a further offensive campaign, such as burglary.

∙ Targeted Attack. The attacker first gains access to network
sniffing tools [8] and sniffs the outgoing traffic. After enough
scouting, the attacker can understand the smart-home de-
vices’ behaviors, identify household activities patterns, and
use the patterns for physical assault.

∙ ISP-level Tracking. Internet providers such as ISPs and
VPNs who has complete access to users’ traffic can learn
the patterns of the households’ daily life. Such information
can be used for targeted advertising based on user behaviors
or other activities, potentially violating users’ privacy [9].

Target Devices. In general, two types of smart-home devices
are available on the market; 1) WiFi or Ethernet-enabled de-
vices and 2) devices equipped with home automation network
modules i.e., Zigbee, Z-wave, or Bluetooth Low Energy (BLE).
The first type of device can directly connect to the access
point. On the other hand, devices in the second category cannot
connect to the Internet directly, so they require a smart-home
hub to manage communications among devices. Additionally,
since the second type of devices is hidden behind the hub, they
are considered to be more secure against remote attackers [10].
A large body of work [5], [11]–[13] studied security and
privacy of the first type of devices, while the security of home
automation network devices (the second type of devices) has
gained little attention. This work focuses on the second type
for their high market share and diversity [14], [15].

III. SYSTEM DESIGN

Minimally intrusive monitoring is the most important goal
of ChatterHub as the adversary only requires access to the
network traffic from/to home. Obtaining access at this level
is ascertained to be relatively simpler compared to using
eavesdropping devices that have to be placed near the target
devices [5], [16], [17].
Fig. 1 illustrates an overview and the control flow of

ChatterHub. In ChatterHub’s training, all the communication
from the devices are transmitted through the hub. We collect
these communication packets through 1) accessing the cloud
backend logs and 2) monitoring the network traffic. Network
traffic will be passed to a segmentation module, which sepa-
rates network traces into sequences associated with events.

A. Training Data Collection
We first collect network packets to/from our smart-home

setup and smart-devices’ event logs, then label them for model



TABLE I: List of devices and capabilities. Communication
is shown by (n) for Zigbee and (N) for Z-Wave. Capability
references correspond to Table II

Type Device Device Name Cap.

Sens.

Multi
Sensors

Centralite Micro Door Sensor (n) 9, B, 6
Smartthings Multipurpose Sensor (n) B, A, 6
Samsung Multipurpose Sensor (n) B, A, 6

7
Sensors

Iris Smart 7 Sensor (n) C, 6, 7
Centralite 7 Sensor (n) C, 6, 7

3
Sensors

Centralite 3 Sensor (n) 3, 6, C
Samsung 3 Sensor (n) 3, 6, C

Act.

Smart
Lights

SYLVANIA Smart 10Y A19 TW (n) 4, 5, 8
SYLVANIA Smart + Adjust. (n) 4, 5, 8
Sengled Element Plus (n) 4, 5, 8

Smart
Plugs

Centralite Smart Outlet (n) 4
Sylvania SMART+ Smart Plug (n) 4

2s Kwikset 10-1 Deadbolt (N) 2, C
Switches OSRAM LIGHTIFY Dimming 4(n) 1

Hub Hub Samsung SmartThings Hub (n,N) ping

training. In this work, we used 15 different devices with 12
unique capabilities as described in Table I (list of devices),
and Table II (capabilities) shows events associated with each
capability. In our dataset, an event is represented as the
combination of a capability and its event (e.g., switch-on, lock-
unlocked). We used the following setups for model training.
1) Single device. We connect a single device to the hub and

observe the network traffic generated. This is to understand
the unique traffic patterns generated by each device.

2) Multiple devices. We connect multiple devices to the hub
and monitor traffic concurrently generated by all devices;
we use this data to train our model with a more realistic
setup. For example, we observed packets (generated by
multiple device events) often overlapped each other. We
connect not only smart-home devices to the hub, but also
other home appliances (e.g., computers, tablets, smart-
phones) to the router to create more realistic traffic.

3) Only the hub. We also observe the network traffic from an
isolated hub’s (with no other devices attached) operations
to understand the hub’s behaviors (e.g., firmware update).
We connect Wireshark installed on a laptop to Samsung

SmartThings hub through a bridged network to monitor the
network traffic. We obtain event labels from the logs delivered
through the hub. Samsung SmartThings hub stores event logs
(e.g., all events and commands sent to/by smart-home devices
along with timestamps). We collect the logs regularly by using
“Simple Event Logger” [18] provided by the manufacturer. We
have collected over 200,000 network packets from the smart-
hub with over 60,000 event logs and use them for training the
classification model in ChatterHub.

B. Trace Segmentation, Labeling, and Feature Extraction
We first design a method to filter out network packets that

are not related to the SmartThings hub (i.e., packets generated
by PCs or tablets), and then we perform packet segmentation.

TABLE II: Event types for Capabilities

Capabilities # Events Commands

button (1) 410 push, held
lock (2) 584 lock, unlock
motion (3) 406 inactive, active
switch (4) 1562 on, off
switchLevel (5) 3181 change

temperature (6) 790 change

water (7) 117 dry, wet
colorTemperature (8) 853 change

activity (9) 31 online, offline,
hub disconnection

status (A) 572 open, close
contact (B) 708 open, close
battery (C) 16 change

Packet Segmentation.When the hub is registering, it connects
to an authentication server (Auth-Server) in the cloud. The hub
exchanges authentication keys with Auth-Server, and receives
an IP address of a communication server (Comm-Server) in the
cloud. The hub is then connected to Comm-Server for further
communications and operations. This communication channel
between the hub and Comm-Server remains established, and
hub relays the information through this channel. Suppose the
devices communicate with Comm-Server directly via Wi-Fi.
In that case, traffic is segmented based on each session, and
each device’s traffic can be separated based on their unique
destination and source IP addresses. However, the challenge
we encounter is that all communications go through the hub,
and there is a lack of discerning parameters. Thus, it is
not possible to partition packets based on the network flow
information. Also, the communication interval in the sequence
of packets between two events is relatively large compared to
the interval between packets sent for a single event. Thus, we
apply a segmentation method to divide the network traces into
small bursts of packets. To segment the network flows into
separate bursts, we try to leverage approaches from previous
studies [16], [19] that use a fixed threshold of 4.5 seconds
to segment network packets into multiple bursts. Previous
works show that 4.5 seconds is enough for the communication
between a client and server to complete packets exchange.
However, we observed that the time gap between packet
exchange for a single event could last longer than 4.5 seconds.
Fig. 2 shows a case where a fixed-threshold approach fails
to separate the level change event from other events. Also,
events of the hub (e.g., ping, status) can occur along with other
device events within an interval of shorter than 4.5 seconds.
As such, the segmentation based on a fixed threshold often
fails to correctly segment the device events from other packets
(e.g., ping and status). Therefore, we develop a dynamic
segmentation technique using change point detection [20] to
segment these packets into bursts correctly.
Dynamic Change Point Detection (CPD). A change point is
a temporal point when the statistical properties of its previous
and subsequent time points are different. In our smart-home
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Fig. 2: Fixed Segmentation vs. Changepoint Segmentation

setup, the network packets for a single event are issued in
short intervals compared to the intervals between two distinct
events. Therefore, a change point will be when a sequence of
packets for a single event starts or ends. Since our logs are
collected over a long time, multiple change points need to be
identified to segment all events. CPD is an approach to find
abrupt changes in time-series [20]. CPD can also be used for
estimating the temporal point when the statistical properties of
a sequence change [21]. ChatterHub employs PELT (Pruned
Exact Linear Time ) [21] because it is computationally efficient
and outperforms other exact CPD search methods [22]. We
present detailed evaluation results of Dynamic CPD and fixed
threshold segmentation algorithms on our dataset in §IV-A.
Labeling. After we segment the packets from network traces
into different bursts, we obtain event labels from the hub’s
logs. We use timestamps to align the labels and the segmented
trace. However, we observe that slight time differences be-
tween generation of event log and packet capture can occur.
Hence, we allow for ±5-the second difference between the
two; then, we map the event to a specific burst of packets.
We also observe special cases where a single user activity
enables multiple events in a device. For example, a “switch
on” user event from the app triggers two events (switch-on
and level-change). Therefore, a single burst of packets could be
mapped to multiple events. We also observe that a number of
segments are not associated with any labels (i.e., no logs from
the hub and Comm-Server) so that we label them as unknown.
To characterize the unknown packets, we further analyzed the
source code of device handlers [23] and found that the handler
generates the event logs, and some of the handlers do not emit
any logs. We found that most of the missing events are less
important for the user (e.g., device refresh, device ping).
Feature Extraction. For feature extraction, we begin by
forming a signature via fetching the frame length of multiple
packets in each segment. We then use this signature as the
feature for our classifier.

These signatures show a significant amount of collision
across different classes. These collisions are the result of

events happening in small intervals or events that some happen
together, e.g., when a user opens a door, both contact-open and
status-open events occur concurrently.

C. Classification Models
We train classification models using extracted network fea-

tures to classify smart home network traffic into smart home
devices’ capabilities and events. Given the dynamic nature of
the data, we consider the following machine learning models:
1) Random Forest, 2) OneVsRest classifier, and 3) SEQ2SEQ.
Random Forest (RF) Model. RF constructs an ensemble of
decision trees by taking a random subset of the features to
decide a node split in building each tree. We only use RF
as a baseline to identify better algorithms because RF largely
depends on the training data’s completeness.
OneVsRest Classifier. A key characteristic of our data is that a
single traffic segment may contain the data related to multiple
capabilities that usually occur together or were subsequently
activated. Therefore, we need a multi-class classifier that can
identify all the classes in segmented traffic. As a result, we
follow the one-vs-rest strategy that uses a classifier for each
class fitted against all other classes. This method ensures that
each classifier is independently optimized to identify features
for the corresponding class. As this entails a large number
of classifiers, we use XGBoost (Extreme Gradient Boosting)
. XGBoost is an ensemble that applies Gradient boosting on
decision trees to boost the performance of the various models
[24]–[26]. In this project, we use the XGBClassifier of
XGBoost library [27] with its default parameters. We use
CountVectorizer as vectorizer, with ngram range from
1 to 4 so that the relationship between the packets in the
sequence is maintained. The output of the vectorizer is directly
fed into the XGBoost model.
SEQ2SEQ Model. Sequence-to-sequence (SEQ2SEQ) model
solves sequential problems. The input to SEQ2SEQ is a series of
data units, and the output is also a sequence of data units [28].
SEQ2SEQ model is applied to address various problems in
multiple disciplines. Specifically, SEQ2SEQ caught our atten-
tion because of its application in natural language translation,
for which the input is usually a sentence and the output is
a sentence in a different language. In our model, we have a
sequence of package lengths, and the output is a sequence of
events. We use sequences of capabilities and events as labels.
It is worth noting that SEQ2SEQ is a model to translate natural
languages, so the order of the sequence will affect the result.
We maintain the original order from ground truth, even if
one label appears multiple times. The SEQ2SEQ framework
contains two main components: an encoder and a decoder.
The encoder reads the input, and the decoder translates the
encoder’s output to a final sequence of outputs [28].

IV. EVALUATION RESULTS

We evaluate ChatterHub with real-world smart-home en-
vironments. In the smart-home setup, we deploy a set of
smart-home devices and other Internet-connected devices (e.g.,
laptops, smartphones), and then we connect them to the hub.



 0
 0.1
 0.2
 0.3
 0.4
 0.5

Recall Precision F1-Score

A
cc

ur
ac

y
FT-4.5

L2-5
L2-10

RBF-0.1
RBF-0.2

Fig. 3: Performance Evaluation of various Segmentation Meth-
ods. (FT-4.5: Fixed Threshold with 4.5 seconds, L2-5: L2 Cost
Penalty-5, L2-10: L2 Cost Penalty-10, RBF-0.1: RBF Cost
Penalty - 0.1, RBF-0.2: RBF Cost Penalty - 0.2)

A. Network Trace Segmentation
We perform trace segmentation on the captured traffic to

partition the overall traffic flow between the hub and cloud
servers (e.g., Comm-Server) into a set of small bursts, which
map to specific commands. Therefore, ChatterHub first needs
to identify the IP address of the target hub, and then it performs
network trace segmentation, which will generate a set of proper
packets related to a specific command/event from the devices
at a time. An accurate segmentation will ensure that each
packet burst contains a negligible amount of noise packets.
Note that noise or noisy packets indicate unknown packets or
packets for the hub’s status report. The hub randomly sends
these packets to the cloud servers.
Identifying the IP address of the Hub. We monitor all
network traffic from and to the target home router and identify
the hub’s IP using the pattern signature of “hub’s ping” events.
While the hub keeps changing the IP address of Comm-server
from time to time (usually over days), we can successfully
identify the IP address of Comm-Servers. Then, we can extract
necessary traffic between the hub and Comm-Server (excluding
the traffic from other devices in the home).
Network Trace Segmentation. As we discussed in §III-B,
we develop a PELT-based Dynamic Change Point Detection
(CPD) algorithm to segment the network traffic.

The PELT algorithm can be used with different cost func-
tions, and it takes the output of the cost function as a penalty
value, which affects the segmentation results. We compare
the two most dominant cost functions, least squared deviation
(L2) and kernalized mean change with radial basis function
(RBF) kernel by running their output through our baseline
model. Fig. 3 shows the results of classification for different
parameters. We use PELT (RBF cost function and penalty
value of 0.2), which achieved the best F1 and precision.

B. Evaluation in Smart-home Environments
To evaluate ChatterHub in the real world, we set up three

smart-home environments at three homes along with other
devices and record the network traffic from their home router
for a total of 10 days.

We train the classification models with data collected from
the lab setting (explained in §III-A) plus the data obtained
from one of three home configurations. We then test the model
on data from two remaining smart homes not used for training.

After the model training, we conduct two experiments; 1)
an attacker tries to infer the capabilities of devices, and 2) an

TABLE III: Classification results for capabilities and events

Capabilities Random Forest SEQ2SEQ XGBoost
R. F1 R. F1 R. F1

button-held 0.00 0.00 0.00 0.00 0.27 0.18
button-pushed 0.00 0.00 0.61 0.57 0.98 0.73

colorTemperature 0.23 0.37 0.17 0.27 1.00 0.96
contact-closed 0.25 0.32 0.29 0.30 0.40 0.44
contact-open 0.37 0.45 0.50 0.47 0.47 0.54
switchLevel 0.87 0.42 0.63 0.33 0.89 0.55
lock-locked 0.71 0.50 0.77 0.46 0.77 0.53
lock-unlocked 0.12 0.17 0.06 0.10 0.77 0.68
motion-active 0.08 0.12 0.10 0.13 0.48 0.17
motion-inactive 0.28 0.23 0.30 0.25 0.62 0.36

ping-ping 0.96 0.98 0.96 0.98 1.00 0.99
status-closed 0.49 0.57 0.50 0.52 0.69 0.80
status-open 0.60 0.63 0.80 0.66 0.77 0.74
switch-off 0.58 0.71 0.55 0.52 0.71 0.80
switch-on 0.13 0.17 0.29 0.18 0.32 0.38
temperature 0.63 0.25 0.07 0.10 0.77 0.37
unknown 0.59 0.73 0.94 0.92 0.95 0.90

F1 Known Average 0.83 0.72 0.78 0.81 0.92 0.76
F1 Average 0.69 0.73 0.88 0.88 0.93 0.82

attacker tries to detect specific events of those capabilities. For
example, the attacker will be made aware of “switch” being
present and used in the first experiment’s target home. The
attacker will then infer if a “switch on” or “switch off” has
happened in the second experiment.
It is worth noting that when we test the classification

models, we add more sensors and devices (e.g., water sensor),
which do not exist in the training dataset, to two test smart-
homes to test the scenario where the attacker does not have a
list of installed devices in the target home.
Classification Accuracy: We generate the ground truth for
two different sets of labels (capabilities and events) so that
we can train our classification models on both data sets to
classify capabilities and events separately. Table III reports the
classification accuracy (recall, and F1-score) of events from
each device, such as switch-on, switch-off, motion-active and
motion-inactive. If some devices in the target home have not
been used in the model training, ChatterHub categorizes the
events and capabilities belonging to this device as unknown.
This is also observed from our results in the case of water
capability, as shown in Table IV; where “0” for water sensor
activities means water sensor was not used while training.
Overall, our classifiers generate multi-label outputs, indicat-

ing that a single segment of traffic packets can be classified
into more than one class. Thus, our models identify multiple
activities happening concurrently without an explicit time gap
in the transmission of the network packets. The classification
results reported in Table III are the accuracy of each class.
To decide the models’ overall performance, we calculate the
micro average score for F1 and recall (�Avg) [29], which
takes into consideration the imbalanced class sizes. �Avg
calculates a F1-score across different classes by adding up their
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respective confusion quadrants. This shows how a multi-class
model considers the whole class list to reduce bias towards
their underlying class distribution. The average of F1-score is
calculated by 2×

∑

tpi
2×

∑

tpi+
∑

fpi+
∑

fni
, where tp, tn, fp, fn indicate

true positive, true negative, false positive, and false negative,
respectively. fpi denotes the number of false positives for the
itℎ class. We report this result as Average in Table III.
However, since the focus of our system is to detect known
device activities, we calculate the �Avg for only the known
classes and exclude unknown classes from the computation.
The average results are reported as known-average.

Among three classification models, RF (the baseline model)
shows the lowest recall, and precision III. Overall, SEQ2SEQ
gives us the highest F1-score (0.81) for known-average, com-
pared to the XGBoost model’s F1 result of 0.76. Although the
XGBoost model has a higher individual F1-score for some of
the capabilities and events, the average F1-score is lower be-
cause of higher false positive cases resulting in lower precision
score. On the other hand, SEQ2SEQ shows higher precision
results, indicating that SEQ2SEQ’s accurate performance for
identifying the events of devices. Based on this observation,
this limitation of SEQ2SEQ in identifying some activities is in
overlapped packet sequences. But XGBoost is more resilient
to such noise in the data [30]. Hence, it shows higher accuracy
in the presence of overlapped of packets. However, XGBoost’s
misclassification is a result of signature conflicts between
multiple activities from a same device.
Effect of Training Data Size. As this attack relies on the
model to accurately classify traffic, we further analyze the
impact of training data size on a fixed set of test data
classification accuracy. Fig. 4 shows how XGBoost F1-score
changes as the size of training data grows. The results show
the accuracy increases with the size of training data. And,
decent accuracy is possible with fewer training data.

C. In-Depth Analysis of Smart-Home Results
Our threat model is based on attackers’ capabilities to

monitor network traffic in a smart home to infer the smart
home devices’ activities and the user’s behavior. Therefore,
while our efforts are to create a model that works best in all
scenarios, we demonstrate our model is useful for attackers
to identify private information about the user and her home
correctly. In this section, we explain such cases in detail.
Target Classification Model for Specific Devices.We discuss
how an attacker can use a specific model to obtain more
accurate information on a targeted device from its capabilities.
In this case, we train our XGBoost model only to detect three

TABLE IV: Classification results w/ and w/o a specific (Lock)
device in different home setups. (R: Recall, P: Precision)

Case #1 : Home w/ Lock Case #2 : Home w/o Lock

Capability OneVsRest – XGBoost
R P F1 R P F1

Contact 0.88 0.35 0.50 0.78 0.45 0.57
Lock 0.94 1.00 0.97 - - -
Switch 0.76 0.94 0.84 0.61 0.85 0.71
Unknown 0.99 0.99 0.99 0.99 0.98 0.99
Average 0.90 0.82 0.83 0.80 0.76 0.75

capabilities (contact, lock, and switch). To this end, we use a
single trained XGBoost model and design two different evalu-
ation test sets with intentionally deploying different devices
(e.g., lock). In the first case setup (case #1), we create a
smart-home testbed with all devices, including lock and water.
In the second case (case #2), we create another smart-home
testbed with all devices, including water except the lock. As
shown in Table IV, in case #1, our model was able to detect
lock with a precision of “1.00” indicating the model has no
false-positives. Moreover, even if our model was trained on
signatures of lock, in case #2 (the testbed without lock device),
no lock capability was detected. Therefore, our model is highly
accurate in detecting the presence of the devices.
Identifying Recurring Patterns. Fig. 6 shows the activities
of a smart lock at various times of day. We measured the
device’s activities for 5 consecutive days. The results show
that at 11:00 and at 23:00, the lock had the events on multiple
days at the same time. Based on this observation, the attacker
can infer the homeowner’s daily schedule. Hence, with further
analysis of such patterns, the classification results could reveal
information on the smart-home devices and the users.
Another example is the switch-on/off events reported in Ta-

ble III. F1-scores of these events by XGBoost are 0.38 (switch
on) and 0.80 (switch-off). Although F1-scores are less than 0.8,
ChatterHub can still identify user actions with light switches
(e.g., user turning lights on/off). Fig. 5 shows ChatterHub
correctly identifies 20 out of 25 events. ChatterHub only has
three misclassifications (i.e., event on recognized as off, and
vice versa) and two false detections (i.e., non-switch events
recognized as switch events but part of the switch device
itself). Further, the patterns of on/off events provide more
confidence in the actual presence of a smart light in the home.
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Fig. 5: Switch events detected by ChatterHub.
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V. DISCUSSIONS

Mitigation Approach. ChatterHub identifies the events of
devices by monitoring encrypted packets, including the size
of each packet, the order of packets in a sequence, and the
timing of sequences. Packet padding [31] is an intuitive and
effective mitigation method against ChatterHub. It generates
packets with identical lengths by adding additional bytes at
each packet’s end, i.e., padding. Packet padding can effectively
hinder ChatterHub and other similar attack methods. We
implement packet padding in our testing router, and it pads
each packet in a sequence to 1KB. We evaluate packet (space)
overhead caused by the padding with three traces collected
from our testbed. The result shows that only a negligible
amount of traffic is generated by this method (on average,
9.2MB per day). Furthermore, we develop a random sequence
insertion method for diluting the effect of sequence timing
by irregularly generating 1Kb packets to the network. When
deploying both packet padding and random sequence insertion
methods, an additional 10MB of network traffic is additionally
generated per day, and more than 80% collision is observed in
the classification process; thus, the attacker will have a very
low chance of learning patterns from the network traffic.
Overlapped Packets. As we discussed in §III-A, the overlap-
ping of packet sequences is one of the major challenges to
accurate classification. Suppose the target home has a larger
number of smart-home devices than our experiment setup.
In that case, there will be more chances for overlapping of
packet sequences, implying that ChatterHub’s classification
results can be less accurate. However, our setup conservatively
constitutes realistic smart-home setups as we deploy many
devices (14+) that repeatedly generate network traffic, so we
believe there will be minimal impact on the classification
accuracy with more devices. Another potential limitation is
when the target home has multiple devices of the same type,
ChatterHub cannot tell which one contributes to the detected
capability. For example, if the target home has two identical
smart lock devices installed on two separate doors, the attacker
would be able to recognize all the lock activities but cannot
distinguish one lock from the other.

VI. RELATED WORK

Most of the research works that follow fingerprinting smart-
home devices from network traffic focus on independent
devices that directly connect to WiFi [32]–[37] unlike our
setup where devices are connected to a central device (hub).

These works also requires tapping to the local network for
information on individual devices [38], [39] unlike our threat
model where the network tapping can be acquired remotely.
Pingpong [40] proposes packet-level network traffic anal-

ysis to identify activities of smart-home devices. Similar to
ChatterHub, Pingpong analyzes packet-level traffic to create
unique signatures for smart home devices’ activities. However,
they only study WiFi-connected devices, but our focus is
smart-home devices hidden behind the hub, increasing the
complexity of network traffic. We observe that many security-
critical devices (e.g., smart lock, motion sensor, smart switch)
are hidden behind the hub to be more secure.
HoMonit [16] is a smart-home monitoring system that iden-

tifies misbehaving smart apps. They have analyzed encrypted
network traffic between the hub and smart-home devices to
fingerprint each device. However, it requires tapping into the
network between the hub and the devices. Similarly, Peek-
a-Boo [4] focuses on capturing the traffic between devices
and a hub. However, our work focuses on the communication
between a hub and the cloud servers (e.g., Auth-Server and
Comm-Server). Due to hub devices’ inter-operability, finger-
printing devices by analyzing the hub and server communi-
cations becomes complicated and difficult, compared to the
encrypted traffic analysis done on HoMonit. Also, Zhou et
al. [41] investigated potential security flaws in communications
between the smart-home devices and the cloud servers, but
this work does not focus on identifying smart-home devices’
activities inferred from encrypted traffic.
A number of works focus on the security analysis and im-

provement for smart-home applications [15], [42]–[47] where
they discovered security vulnerabilities, i.e., private data leak-
age, privilege abuse, and malicious activities. Other studies
focus on the analysis of information flow among smart apps,
cloud backend, and IoT devices to discover vulnerabilities in
the chain of information transfer [11], [48]–[50].
While existing solutions mainly focus on preventing the leak

of sensitive data from the context of smart apps, cloud back-
end, and/or the smart-home platform, this work demonstrates
that an adversary can still infer activities and states of smart-
home devices by eavesdropping on encrypted network traffic.
Apthorpe et al. [31] proposed an approach to mitigate

network sniffing attacks in a smart-home environment and
suggested routing the network traffic through VPNs and in-
jecting fake packets to confuse the attackers. Yoshigoe et
al. [51] proposed to generate synthetic packets that prevent
adversaries from fingerprinting smart-home devices. A more
sophisticated method using differential privacy and adversarial
machine learning has been suggested by [52]. There are
many studies to extract information from encrypted network
traffic, such as extracting video content [48], demographic
information [53], detecting packets generated from specific ap-
plication [54], measuring the quality of service [55], analyzing
smart-home tenant behavior [56], and extracting the location
information [57]. Also, there are approaches [58], [59] to build
multipurpose tools to facilitate analysis of encrypted network
traces. These works are orthogonal to ChatterHub.



VII. CONCLUSION

In this paper, we present ChatterHub, a novel attack method
that can correctly identify smart-home devices’ capabilities
with passive sniffing of encrypted home network traffic. With
ChatterHub, an attacker does not need any prior knowledge
of the target home. Our evaluation results from three re-
alistic smart-home environments show that the attacker can
successfully recognize smart-home devices’ capabilities from
the encrypted network traffic. This, in turn, leads the attacker
to discover device behaviors, such as door being locked or
motion in the room. Such information can be used to reveal a
household’s daily routine. We also demonstrate two mitigation
techniques – packet padding and random sequence injection –
that can effectively protect the smart-home from ChatterHub.
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