
ar
X

iv
:2

00
6.

07
00

2v
5 

 [c
s.L

G
]  

15
 Ju

n 
20

21

Double Double Descent: On Generalization Errors in

Transfer Learning between Linear Regression Tasks

Yehuda Dar YDAR@RICE.EDU

Richard G. Baraniuk RICHB@RICE.EDU

Electrical and Computer Engineering Department, Rice University

Abstract

We study the transfer learning process between two linear regression problems. An important and

timely special case is when the regressors are overparameterized and perfectly interpolate their

training data. We examine a parameter transfer mechanism whereby a subset of the parameters of

the target task solution are constrained to the values learned for a related source task. We analyt-

ically characterize the generalization error of the target task in terms of the salient factors in the

transfer learning architecture, i.e., the number of examples available, the number of (free) param-

eters in each of the tasks, the number of parameters transferred from the source to target task, and

the correlation between the two tasks. Our non-asymptotic analysis shows that the generalization

error of the target task follows a two-dimensional double descent trend (with respect to the num-

ber of free parameters in each of the tasks) that is controlled by the transfer learning factors. Our

analysis points to specific cases where the transfer of parameters is beneficial. Specifically, we

show that transferring a specific set of parameters that generalizes well on the respective part of

the source task can soften the demand on the task correlation level that is required for successful

transfer learning. Moreover, we show that the usefulness of a transfer learning setting is fragile and

depends on a delicate interplay among the set of transferred parameters, the relation between the

tasks, and the true solution.

Keywords: Overparameterized learning, linear regression, transfer learning, double descent.

1. Introduction

Transfer learning (Pan and Yang, 2009) is a prominent strategy to address a machine learning task

of interest using information and parameters already learned and/or available for a related task.

Such designs significantly aid training of overparameterized models like deep neural networks (e.g.,

Bengio, 2012; Shin et al., 2016; Long et al., 2017), which are inherently challenging due to the vast

number of parameters compared to the number of training data examples. There are various ways

to integrate the previously-learned information from the source task in the learning process of the

target task; often this is done by taking subsets of parameters (e.g., layers in neural networks) learned

for the source task and plugging them in the target task model as parameter subsets that can be set

fixed, finely tuned, or serve as non-random initialization for a thorough learning process. Obviously,

transfer learning is useful only if the source and target tasks are sufficiently related with respect to

the transfer mechanism utilized (e.g., Rosenstein et al., 2005; Zamir et al., 2018; Kornblith et al.,

2019). Moreover, finding a successful transfer learning setting for deep neural networks was shown

by Raghu et al. (2019) to be a delicate engineering task. The importance of transfer learning in

contemporary practice should motivate fundamental understanding of its main aspects via analytical

frameworks that may consider linear structures (e.g., Lampinen and Ganguli, 2019).

http://arxiv.org/abs/2006.07002v5
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In general, the impressive success of overparameterized architectures for supervised learning

have raised fundamental questions on the classical role of the bias-variance tradeoff that guided the

traditional designs towards seemingly-optimal underparameterized models (Breiman and Freedman,

1983). Recent empirical studies (Spigler et al., 2018; Geiger et al., 2019; Belkin et al., 2019a) have

demonstrated the phenomenon that overparameterized supervised learning corresponds to a gen-

eralization error curve with a double descent trend (with respect to the number of parameters in

the learned model). This double descent shape means that the generalization error peaks when

the learned model starts to interpolate the training data (i.e., to achieve zero training error), but

then the error continuously decreases as the overparmeterization increases, often arriving to a

global minimum that outperforms the best underparameterized solution. This phenomenon has

been studied theoretically from the linear regression perspective in an extensive series of papers,

e.g., by Belkin et al. (2019b); Hastie et al. (2019); Xu and Hsu (2019); Mei and Montanari (2019);

Bartlett et al. (2020); Muthukumar et al. (2020). The next stage is to provide corresponding fun-

damental understanding to learning problems beyond a single fully-supervised regression problem

(see, e.g., the study by Dar et al. (2020) on overparameterized linear subspace fitting in unsupervised

and semi-supervised settings).

In this paper we study the fundamentals of the natural meeting point between overparameterized

models and the transfer learning concept. Our analytical framework is based on the least squares

solutions to two related linear regression problems: the first is a source task whose solution has

been found independently, and the second is a target task that is addressed using the solution already

available for the source task. Specifically, the target task is carried out while keeping a subset of

its parameters fixed to values transferred from the source task solution. Accordingly, the target

task includes three types of parameters: free to-be-optimized parameters, transferred parameters set

fixed to values from the source task, and parameters fixed to zeros (which in our case correspond to

the elimination of input features). The mixture of the parameter types defines the parameterization

level (i.e., the relation between the number of free parameters and the number of examples given)

and the transfer-learning level (i.e., the portion of transferred parameters among the solution layout).

We conduct a non-asymptotic statistical analysis of the generalization errors in this transfer

learning structure. Clearly, since the source task is solved independently, its generalization error

follows a regular (one-dimensional) double descent shape with respect to the number of examples

and free parameters available in the source task. Hence, our main contribution and interest are in

the characterization of the generalization error of the target task that is carried out using the transfer

learning approach described above. We show that the generalization error of the target task follows a

double descent trend that depends on the double descent shape of the source task and on the transfer

learning factors such as the number of parameters transferred and the correlation between the source

and target tasks. We also examine the generalization error of the target task as a function of two

quantities: the number of free parameters in the source task and the number of free parameters in the

target task. This interpretation presents the generalization error of the target task as having a two-

dimensional double descent trend that clarifies the fundamental factors affecting the performance of

the overall transfer learning approach. We also show how the generalization error of the target task

is affected by the specific set of transferred parameters and its delicate interplay with the forms of

the true solution and the source-target task relation. By that, we provide an analytical theory to the

fragile nature of successful transfer learning designs.

This paper is organized as follows. In Section 2 we define the transfer learning architecture

examined in this paper. In Sections 3-4 we present the analytical and empirical results that charac-
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terize the generalization errors of the target task, and outline the cases where transfer of parameters

is beneficial. Note that Section 3 studies the on-average generalization error in a simplified set-

ting where transferred parameters are chosen uniformly at random, whereas Section 4 examines the

generalization error induced by transfer of a single, specific set of parameters. Section 5 concludes

the paper. The Appendices include all of the proofs and mathematical developments as well as

additional details and results for the empirical part of the paper.

2. Transfer Learning between Linear Regression Tasks: Problem Definition

2.1. Source Task: Data Model and Solution Form

We start with the source data model, where a d-dimensional Gaussian input vector z ∼ N (0, Id) is

connected to a response value v ∈ R via the noisy linear model

v = zTθ + ξ, (1)

where ξ ∼ N
(
0, σ2

ξ

)
is a Gaussian noise component independent of z, σξ > 0, and θ ∈ R

d

is an unknown vector. The data user is unfamiliar with the distribution of (z, v), however gets

a dataset of ñ independent and identically distributed (i.i.d.) draws of (z, v) pairs denoted as

D̃ ,

{(
z(i), v(i)

)}ñ

i=1
. The ñ data samples can be rearranged as Z , [z(1), . . . , z(ñ)]T and v ,

[v(1), . . . , v(ñ)]T that satisfy the relation v = Zθ + ξ where ξ , [ξ(1), . . . , ξ(ñ)]T is an unknown

noise vector that its ith component ξ(i) participates in the relation v(i) = z(i),Tθ + ξ(i) underlying

the ith data sample.

The source task is defined for a new (out of sample) data pair
(
z(test), v(test)

)
drawn from the

distribution induced by (1) independently of the ñ examples in D̃. For a given z(test), the source

task is to estimate the response value v(test) by the value v̂ that minimizes the corresponding out-

of-sample squared error (i.e., the generalization error of the source task)

Ẽout , E

{(
v̂ − v(test)

)2}
= σ2

ξ + E

{∥∥∥θ̂ − θ

∥∥∥
2

2

}
(2)

where the second equality stems from the data model in (1) and the corresponding linear form of

v̂ = z(test),T θ̂ where θ̂ estimates θ based on D̃.

To address the source task based on the ñ examples, one should choose the number of free

parameters in the estimate θ̂ ∈ R
d. Consider a predetermined layout where p̃ out of the d compo-

nents of θ̂ are free to be optimized, whereas the remaining d − p̃ components are constrained to

zero values. The coordinates of the free parameters are specified in the set S , {s1, . . . , sp̃} where

1 ≤ s1 < · · · < sp̃ ≤ d and the complementary set Sc , {1, . . . , d} \ S contains the coordinates

constrained to be zero valued. We define the |S|×d matrix QS as the linear operator that extracts

from a d-dimensional vector its |S|-dimensional subvector of components residing at the coordi-

nates specified in S . Specifically, the values of the (k, sk) components (k = 1, . . . , |S|) of QS are

ones and the other components of QS are zeros. The definition given here for QS can be adapted

also to other sets of coordinates (e.g., QSc for Sc) as denoted by the subscript of Q. We now turn

to formulate the source task using the linear regression form of

θ̂ = argmin
r∈Rd

‖v − Zr‖22 subject to QScr = 0 (3)

3
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that its min-norm solution (see details in Appendix A.1) is

θ̂ = QT
SZ

+
Sv (4)

where Z+
S is the pseudoinverse of ZS , ZQT

S . Note that ZS is a ñ × p̃ matrix that its ith row is

formed by the p̃ components of z(i) specified by the coordinates in S , namely, only p̃ out of the

d features of the input data vectors are utilized. Moreover, θ̂ is a d-dimensional vector that may

have nonzero values only in the p̃ coordinates specified in S (this can be easily observed by noting

that for an arbitrary w ∈ R
|S|, the vector u = QT

Sw is a d-dimensional vector that its components

satisfy usk = wk for k = 1, ..., |S| and uj = 0 for j /∈ S). While the specific optimization form

in (3) was not explicit in previous studies of non-asymptotic settings (e.g., Breiman and Freedman,

1983; Belkin et al., 2019b), the solution in (4) coincides with theirs and, thus, the formulation of

the generalization error of our source task (which is a linear regression problem that, by itself, does

not have any transfer learning aspect) is available from Breiman and Freedman (1983); Belkin et al.

(2019b) and provided in Appendix A.2 in our notations for completeness of presentation.

2.2. Target Task: Data Model and Solution using Transfer Learning

A second data class, which is our main interest, is modeled by (x, y) ∈ R
d × R that satisfy

y = xTβ + ǫ (5)

where x ∼ N (0, Id) is a Gaussian input vector including d features, ǫ ∼ N
(
0, σ2

ǫ

)
is a Gaussian

noise component independent of x, σǫ > 0, and β ∈ R
d is an unknown vector related to the θ from

(1) via

θ = Hβ + η (6)

where H ∈ R
d×d is a deterministic matrix and η ∼ N

(
0, σ2

ηId
)

is a Gaussian noise vector with

ση ≥ 0. Here η, x, ǫ, z and ξ are independent. The data user does not know the distribution of

(x, y) but receives a small dataset of n i.i.d. draws of (x, y) pairs denoted as D ,

{(
x(i), y(i)

)}n

i=1
.

The n data samples can be organized in a n×d matrix of input variables X , [x(1), . . . ,x(n)]T and

a n × 1 vector of responses y , [y(1), . . . , y(n)]T that together satisfy the relation y = Xβ + ǫ

where ǫ , [ǫ(1), . . . , ǫ(n)]T is an unknown noise vector that its ith component ǫ(i) is involved in the

connection y(i) = x(i),Tβ + ǫ(i) underlying the ith example pair.

The target task considers a new (out of sample) data pair
(
x(test), y(test)

)
drawn from the model

in (5) independently of the training examples in D. Given x(test), the goal is to establish an estimate

ŷ of the response value y(test) such that the out-of-sample squared error, i.e., the generalization error

of the target task,

Eout , E

{(
ŷ − y(test)

)2}
= σ2

ǫ + E

{∥∥∥β̂ − β

∥∥∥
2

2

}
(7)

is minimized, where ŷ = x(test),T β̂, and the second equality stems from the data model in (5).

The target task is addressed via linear regression that seeks for an estimate β̂ ∈ R
d with a

layout including three disjoint sets of coordinates F ,T ,Z that satisfy F ∪ T ∪ Z = {1, . . . , d}
and correspond to three types of parameters:

• p parameters are free to be optimized and their coordinates are specified in F .
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• t parameters are transferred from the co-located coordinates of the estimate θ̂ already formed

for the source task. Only the free parameters of the source task are relevant to be transferred

to the target task and, therefore, T ⊂ S and t ∈ {0, . . . , p̃}. The transferred parameters

are taken as is from θ̂ and set fixed in the corresponding coordinates of β̂, i.e., for k ∈ T ,

β̂k = θ̂k where β̂k and θ̂k are the kth components of β̂ and θ̂, respectively.

• ℓ parameters are set to zeros. Their coordinates are included in Z and effectively correspond

to ignoring features in the same coordinates of the input vectors.

Clearly, the layout should satisfy p+ t+ ℓ = d. Then, the constrained linear regression problem for

the target task is formulated as

β̂ = argmin
b∈Rd

‖y−Xb‖22 (8)

subject to QT b = QT θ̂

QZb = 0

where QT and QZ are the linear operators extracting the subvectors corresponding to the coor-

dinates in T and Z , respectively, from d-dimensional vectors. Here θ̂ ∈ R
d is the precomputed

estimate for the source task and considered a constant vector for the purpose of the target task. The

examined transfer learning structure includes a single computation of the source task (3), followed

by a single computation of the target task (8) that produces the eventual estimate of interest β̂ using

the given θ̂. The min-norm solution of the target task in (8) is (see details in Appendix A.3)

β̂ = QT
FX

+
F

(
y −XT θ̂T

)
+QT

T θ̂T (9)

where θ̂T , QT θ̂, XT , XQT
T , and X+

F is the pseudoinverse of XF , XQT
F . Note that the

desired layout is indeed implemented by the β̂ form in (9): the components corresponding to Z
are zeros, the components corresponding to T are taken as is from θ̂, and only the p coordinates

specified in F are adjusted for the purpose of minimizing the in-sample error in the optimization

cost of (8) while considering the transferred parameters. In this paper we study the generalization

ability of overparameterized solutions (i.e., when p > n) to the target task formulated in (8)–(9).

3. Transfer of Random Sets of Parameters

To analytically study the generalization error of the target task we consider, in this section, the over-

all layout of coordinate subsets L , {S,F ,T ,Z} as a random structure that lets us to formulate the

expected value (with respect to L) of the generalization error of interest. The simplified settings of

this section provide useful insights towards Section 4 where we analyze transfer of a specific set of

parameters and formulate the generalization error for a specific layout L (i.e., there is no expectation

over L in the formulations in Section 4).

Definition 1 A coordinate subset layout L = {S,F ,T ,Z} that is {p̃, p, t}-uniformly distributed,

for p̃ ∈ {1, . . . , d} and (p, t) ∈ {0, . . . , d} × {0, . . . , p̃} such that p+ t ≤ d, satisfies: S is uni-

formly chosen at random from all the subsets of p̃ unique coordinates of {1, . . . , d}. Given S , the

target-task coordinate layout {F ,T ,Z} is uniformly chosen at random from all the layouts where

F , T , and Z are three disjoint sets of coordinates that satisfy F ∪ T ∪ Z = {1, . . . , d} such that

|F|= p, |T |= t and T ⊂ S , and |Z|= d− p− t.

5
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Recall the relation between the two tasks as provided in (6) and let us denote β(H) , Hβ.

Assume that β 6= 0. The following definitions emphasize crucial aspects in the examined transfer

learning framework. The source task energy is κ , Eη

{
‖θ‖22

}
=

∥∥∥β(H)
∥∥∥
2

2
+ dσ2

η . Assume that θ

is not deterministically degenerated into a zero vector, hence, κ 6= 0. The normalized task correla-

tion between the two tasks is ρ ,
〈β(H),β〉

κ
. Let us characterize the expected out-of-sample error of

the target task with respect to transfer of uniformly-distributed sets of parameters.

Theorem 2 Let L = {S,F ,T ,Z} be a coordinate subset layout that is {p̃, p, t}-uniformly dis-

tributed. Then, the expected out-of-sample error of the target task has the form of

EL

{
Eout

}
=





n−1
n−p−1

(
(1− p

d
) ‖β‖22 + σ2

ǫ + t ·∆Etransfer
)

for p ≤ n− 2,

∞ for n− 1 ≤ p ≤ n+ 1,
p−1

p−n−1

(
(1− p

d
) ‖β‖22 + σ2

ǫ + t ·∆Etransfer
)
+ p−n

d
‖β‖22 for p ≥ n+ 2,

(10)

where

∆Etransfer =
1

p̃
·
(
ES,η

{
Ẽout

}
− σ2

ξ − κ
)
− 2

κ

d
(ρ− 1)×

{
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ
(11)

is the expected error difference introduced by each constrained parameter that is transferred from

the source task instead of being set to zero. Recall that Ẽout and Eout are the out-of-sample errors

of the source and target tasks, respectively.

The last theorem is proved using non-asymptotic properties of Wishart matrices (see Appendix B).

Negative values of ∆Etransfer imply beneficial transfer learning and this occurs, for example, when

the task correlation ρ is positive and sufficiently large with respect to the generalization error level

in the source task ES,η

{
Ẽout

}
that should be sufficiently low (see Corollary 4 below). Note that

the out-of-sample error formulation in (10) depends on the parameterization level of the target task

(i.e., the p, n pair), whereas (11) shows that the error difference ∆Etransfer depends on the expected

generalization error of the source task ES,η

{
Ẽout

}
. Using the explicit expression (see details in

Appendix A.2)

ES,η

{
Ẽout

}
=





ñ−1
ñ−p̃−1

((
1− p̃

d̃

)
κ+ σ2

ξ

)
for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,
p̃−1

p̃−ñ−1

((
1− p̃

d̃

)
κ+ σ2

ξ

)
+ p̃−ñ

d
κ for p̃ ≥ ñ+ 2.

(12)

we provide the next formula for ∆Etransfer that depicts the detailed dependency on the parameteri-

zation level of the source task (i.e., the p̃, ñ pair). See proof in Appendix B.4.

Corollary 3 The expected error difference term ∆Etransfer from (11) can be explicitly written as

∆Etransfer =
κ

d
×





1− 2ρ+
d−p̃+d·κ−1·σ2

ξ

ñ−p̃−1 for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,

ñ
p̃

(
1− 2ρ+

d−p̃+d·κ−1·σ2
ξ

p̃−ñ−1

)
for p̃ ≥ ñ+ 2.

(13)
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Figure 1 presents the curves of EL

{
Eout

}
with respect to the number of free parameters p in

the target task, whereas the source task has p̃ = d free parameters. In Fig. 1, the solid-line curves

correspond to analytical values induced by Theorem 2 and Corollary 3 and the respective empirically

computed values are denoted by circles (all the presented results are for d = 80, n = 20, ñ = 50,

‖β‖22 = d, σ2
ǫ = 0.05 · d, σ2

ξ = 0.025 · d. See additional details in Appendix D). The number of

free parameters p is upper bounded by d − t that gets smaller for a larger number of transferred

parameters t (see, in Fig. 1, the earlier stopping of the curves when t is larger). Observe that

the generalization error peaks at p = n and, then, decreases as p grows in the overparameterized

range of p > n+1. We identify this behavior as a double descent phenomenon, but without the first

descent in the underparameterized range (this was also the case in settings examined by Belkin et al.

(2019b); Dar et al. (2020)).

We can interpret the results in Figure 1 as examples for important cases of transfer learning set-

tings, where each subfigure considers a different task relation with a different pair of noise level σ2
η

and operator H. Fig. 1(a) corresponds to transfer learning between two identical tasks, therefore,

transfer learning is beneficial in the sense that for a given p /∈ {n−1, n, n+1} the error decreases as t
increases (i.e., as more parameters are transferred instead of being omitted). Figs. 1(b),1(e),1(f),1(g)

correspond to transfer learning between two related tasks (although not identical), hence, transfer

learning is still beneficial, but less than in the former case of identical tasks. Figs. 1(c),1(h) corre-

spond to transfer learning between two unrelated tasks (although not extremely far), hence, transfer

learning is useless, but not harmful (i.e., for a given p, the number of transferred parameters t does

not affect the out-of-sample error). Fig. 1(d) corresponds to transfer learning between two very

different tasks and, accordingly, transfer learning degrades the generalization performance (namely,

for a given p, transferring more parameters increases the out-of-sample error).

The examined transfer learning approach is simple, which is useful for the purpose of analytical

study. Therefore, it is important to compare the examined method with a trivial solution such as the

null estimate, i.e., the estimate β̂ is all zeros. Note that the out-of-sample error of the null estimate

equals to ‖β‖22 + σ2
ǫ , which equals d+ σ2

ǫ = 84 in all the experiments in this paper (this is due to

having d = 80, ‖β‖22 = d, σ2
ǫ = 0.05 · d). Hence, in various settings where the source and target

tasks are sufficiently related and the number of parameters is sufficiently far from the peak of the

double descent error curve, the examined transfer learning method (with t > 0) outperforms the

null estimate.

By considering the generalization error formula from Theorem 2 as a function of p̃ and p (i.e., the

number of free parameters in the source and target tasks, respectively) we receive a two-dimensional

double descent behavior as presented in Fig. 2 and its extended version Fig. 5 where each subfigure

is for a different pair of t and σ2
η . The results show a double descent trend along the p axis (with

a peak at p = n) and also, when parameter transfer is applied (i.e., t > 0), a double descent

trend along the p̃ axis (with a peak at p̃ = ñ). Our solution structure implies that p̃ ∈ {t, . . . , d}
and p ∈ {0, . . . , d − t}, hence, a larger number of transferred parameters t eliminates a larger

portion of the underparameterized range of the source task and also eliminates a larger portion of

the overparameterized range of the target task (see in Fig. 5 the white eliminated regions that grow

with t). When t is high, the wide elimination of portions from the (p̃, p)-plane hinders the complete

form of the two-dimensional double descent phenomenon (see, e.g., Fig. 2(d)).

Conceptually, we can observe a tradeoff between transfer learning and overparamterized learn-

ing: an increased transfer of parameters limits the level of overparameterization applicable in the

target task and, in turn, this limits the overall potential gains from the transfer learning. Yet, when

7
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Figure 1: The expected generalization error of the target task, EL

{
Eout

}
, with respect to the num-

ber of free parameters (in the target task). The analytical values, induced from Theorem 2,

are presented using solid-line curves, and the respective empirical results obtained from

averaging over 250 experiments are denoted by circle markers. Each subfigure considers

a different case of the source-target task relation (6) with a different pair of σ2
η and H. The

second row of subfigures correspond to H operators that perform local averaging, each

subfigure (e)-(h) is w.r.t. a different size of local averaging neighborhood. Each curve

color refers to a different number of transferred parameters.

the source task is sufficiently related to the target task (see, e.g., Figs. 1(a), 1(b)), the parameter

transfer compensates, at least partially, for an insufficient number of free parameters (in the target

task). The last claim is evident in Figures 1(a), 1(b) where, for p > n + 1, there is a range of

generalization error values that is achievable by several settings of (p, t) pairs (i.e., specific error

levels can be attained by curves of different colors in the same subfigure). E.g., in Fig. 1(b) the

error achieved by p = 60 free parameters and no parameter transfer can be also achieved using

p = 48 free parameters and t = 32 parameters transferred from the source task. In Appendix C we

elaborate on two special cases that are induced by setting t = 0 or p = 0 in the result of Theorem 2.

Let us return to the general case of Theorem 2 and examine the expected generalization error for

a given number of free parameters p in the target task. We now formulate an analytical condition

on the correlation ρ between the two tasks which is required for having a useful parameter transfer.

Corollary 4 The term ∆Etransfer, which quantifies the expected error difference due to each pa-

rameter being transferred instead of set to zero, satisfies ∆Etransfer < 0 (i.e., parameter transfer

is beneficial for p /∈ {n − 1, n, n + 1}) if the correlation between the two tasks is sufficiently high

8
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Figure 2: Analytical evaluation of the expected generalization error of the target task, EL

{
Eout

}
,

with respect to the number of free parameters p̃ and p (in the source and target tasks,

respectively). Each subfigure considers a different number of transferred parameters t.
The white regions correspond to (p̃, p) settings eliminated by the value of t in the specific

subfigure. The yellow-colored areas correspond to values greater or equal to 800. All

subfigures are for σ2
η = 0.5 and H = Id. See Fig. 5 for settings with different values of

σ2
η . See Fig. 6 for the corresponding empirical evaluation.

such that

ρ > 1 +
d

2p̃



ES,η

{
Ẽout

}
− σ2

ξ

κ
− 1


×

({
1 for p̃ ≤ ñ,
p̃
ñ

for p̃ > ñ.

)
(14)

Otherwise, ∆Etransfer ≥ 0 (i.e., parameter transfer is not beneficial).

The last corollary is simply proved by using the formula for ∆Etransfer from (11) and reorganizing

the respective inequality ∆Etransfer < 0. The last result also emphasizes that the transfer learning

performance depends on the interplay between the quality of the solution of the source task (re-

flected by ES,η

{
Ẽout

}
) and the correlation between the two tasks. A source task that generalizes

well is important to good transfer learning performance that induces good generalization at the

target task.

The number of free parameters p̃ is a prominent factor that determines the source task gener-

alization ability. Accordingly, in Appendix E.1 we use the detailed formulation of ES,η

{
Ẽout

}
to

translate the condition (14) to explicitly reflect the interplay between p̃ and ρ. The detailed formu-

lation is provided in Corollary 10 in Appendix E.1) and its main lesson is that parameter transfer

is beneficial for p /∈ {n − 1, n, n + 1} if the source task is sufficiently overparameterized or suffi-

ciently underparameterized with respect to the correlation between the tasks. This result is in accor-

dance with the shapes of the generalization error curves in our settings that indeed have improved

generalization performance at the two extreme cases of under and over parameterization. The re-

sults in Fig. 3 show that there are less settings of beneficial transfer learning as the source and target

tasks are less related, which is demonstrated in Fig. 3 by higher noise levels σ2
η and/or when H is an

averaging operator over a larger neighborhood (e.g., Fig. 3(c)), or in the case where H is a discrete

derivative operator (Fig. 3(d)). The analytical thresholds for useful transfer learning (Corollaries

4,10) are demonstrated by the black lines in Fig. 3. Our analytical thresholds excellently match the

regions where the empirical settings yield useful parameter transfer (i.e., where ∆Etransfer < 0 is

9
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(a) H: local averaging

neighborhood size 3

(b) H: local averaging

neighborhood size 15

(c) H: local averaging

neighborhood size 59

(d) H: discrete derivative

Figure 3: The analytical values of ∆Etransfer defined in Theorem 2 (namely, the expected error

difference due to transfer of a parameter from the source to target task) as a function

of p̃ and σ2
η. The positive and negative values of ∆Etransfer appear in color scales of

red and blue, respectively. The regions of negative values (appear in shades of blue)

correspond to beneficial transfer of parameters. The positive values were truncated in

the value of 2 for the clarity of visualization. The solid black lines (in all subfigures)

denote the analytical thresholds for useful transfer learning as implied by Corollary 10.

Each subfigure corresponds to a different task relation model induced by the definitions

of H as: (a)-(c) local averaging operators with different neighborhood sizes, (d) discrete

derivative. For all the subfigures, d = 80, ñ = 50, σ2
ξ = 0.025 · d, ‖β‖22 = d where

β components have a piecewise-constant form (see Fig. 7). See corresponding empirical

results in Fig. 8.

empirically satisfied). Additional analytical and empirical results, as well as details on the empirical

computation of ∆Etransfer are available in Appendix E.2.

4. Transfer of a Specific Set of Parameters

Equipped with the fundamental analytical understanding of the key principles formulated in the for-

mer section for the case of uniformly-distributed coordinate layout, we now proceed to the analysis

of settings that consider a specific non-random layout of coordinates L = {S,F ,T ,Z}. First, we

define the next quantities with respect to the specific coordinate layout used: The energy of the

transferred parameters is κT ,

∥∥∥β(H)
T

∥∥∥
2

2
+ tσ2

η . The normalized task correlation in T between the

two tasks is defined as ρT ,
〈β

(H)
T

,βT 〉
κT

for t > 0. The following theorem formulates the general-

ization error of the target task that is solved using a specific set of transferred parameters indicated

by the coordinates in T . See proof in Appendix F.

Theorem 5 Let L = {S,F ,T ,Z} be a specific, non-random coordinate subset layout. Then, the

out-of-sample error of the target task has the form of

E
(L)
out =





n−1
n−p−1

(
‖βFc‖22 + σ2

ǫ +∆E
(T ,S)
transfer

)
for p ≤ n− 2,

∞ for n− 1 ≤ p ≤ n+ 1,
p−1

p−n−1

(
‖βFc‖22 + σ2

ǫ +∆E
(T ,S)
transfer

)
+
(
1− n

p

)
‖βF‖

2
2 for p ≥ n+ 2,

10
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where

∆E
(T ,S)
transfer = E

{∥∥∥θ̂T − θT

∥∥∥
2

2

}
− κT ×

(
1 + 2 (ρT − 1)×

({
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ

))
(15)

for t > 0, and ∆E
(T ,S)
transfer = 0 for t = 0. Here ∆E

(T ,S)
transfer is the error difference introduced by

transferring from the source task the parameters specified in T instead of setting them to zero.

The formulation of the error difference term in (15) demonstrates the interplay between the general-

ization performance in the source task (reflected by E

{∥∥∥θ̂T − θT

∥∥∥
2

2

}
), and the correlation between

the source and target tasks (reflected by ρT ) — however, unlike Theorem 2, the current case is af-

fected by source generalization ability and task relation only in the subset of transferred parameters

T . The following corollary explicitly formulates the error difference term due to transfer learning

(see proof in Appendix F.3).

Corollary 6 The error difference term ∆E
(T ,S)
transfer from (15) can be written as

∆E
(T ,S)
transfer = κT ×





1− 2ρT + t
ζSc+σ2

ξ

(ñ−p̃−1)κT
for 1 ≤ p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,

ñ
p̃

(
(p̃2−ñp̃)ψT +ñp̃−1

p̃2−1 − 2ρT + t
ζSc+σ2

ξ

(p̃−ñ−1)κT

)
for p̃ ≥ ñ+ 2.

Here we used the following definitions. The energy of the zeroed parameters in the source task is

ζSc ,

∥∥∥β(H)
Sc

∥∥∥
2

2
+ (d− p̃)σ2

η . The possibly-transferred to actually-transferred energy ratio of the

source task is defined as ψT , t
p̃
·

∥∥∥β(H)
S

∥∥∥
2

2
+p̃σ2

η

κT
for t > 0 and p̃ > 0. We can also interpret ψ−1

T as

the utilization of the transfer of t out of the p̃ parameters of the source task.

The formulation of error difference due to transfer learning in Corollary 6 shows that the benefits

from transfer learning increase for greater positive value of task correlation in the transferred coor-

dinates ρT . Moreover, higher utilization ψ−1
T promotes benefits from the transfer learning process.

Figures 4,11,12 show the curves of E
(L)
out , for specific coordinate layouts L that evolve with

respect to the number of free parameters p in the target task. The excellent fit of the analytical results

to the empirical values is evident. The effect of the specific coordinate layout utilized is clearly

visible by the less-smooth curves (compared to the on-average results for random coordinate layouts

in Fig. 1). We examine two different cases for the true β (a linearly-increasing (Fig. 4(a)) and a

sparse (Fig. 4(e)) layout of values, with the same norm) and the resulting error curves significantly

differ despite the use of the same sequential construction of the coordinate layouts with respect

to p (e.g., compare Figs. 4(f) and 4(b)). The linear operator H in the task relation model greatly

affects the generalization error curves as evident from comparing our results for different types of

H: an identity, local averaging (with neighborhood size 11), and discrete derivative operators (e.g.,

compare subfigures within the first row of Fig. 4, also see the complete set of results in Figs. 11-12

in Appendix G). The results clearly show that the interplay among the structures of H, β, and the

coordinate layout significantly affects the generalization performance. Theorem 5 yields the next

corollary, which is a direct consequence of (15).

11
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Figure 4: Analytical (solid lines) and empirical (circle markers) values of E
(L)
out for specific, non-

random coordinate layouts. All subfigures use the same sequential evolution of L with p.

Here σ2
η = 0.5. See Figures 11-12 for the complete set of results.

Corollary 7 Let S be given. Then, the parameter transfer induced by a specific T ⊂ S is beneficial

for p /∈ {n− 1, n, n+ 1} if ∆E
(T ,S)
transfer < 0, which implies that the correlation in the subset T

between the two tasks should be sufficiently high such that

ρT > 1 +
1

2

(
1

κT
E

{∥∥∥θ̂T − θT

∥∥∥
2

2

}
− 1

)
×

({
1 for p̃ ≤ ñ,
p̃
ñ

for p̃ > ñ.

)
(16)

Otherwise, this specific parameter transfer is not beneficial over zeroing the parameters (i.e., omit-

ting the input features) corresponding to T .

The last corollary extends Corollary 4 by emphasizing that transferring a specific set of parameters

that generalizes well on the respective part of the source task can soften the demand on the task

correlation level that is required for successful transfer learning.

Our results also exhibit that a specific set T of t transferred parameters can be the best setting

for a given set F of p free parameters but not necessarily for an extended set F ′ ⊃ F of p′ > p free

parameters (e.g., Fig. 4(g) where the orange and red colored curves do not consistently maintain

their relative vertical order at the overparameterized range of solutions). Our results exemplify that

transfer learning settings are fragile and that finding a successful setting is a delicate engineering

task. Hence, our theory qualitatively explains similar practical behavior in deep neural networks

(Raghu et al., 2019).

5. Conclusions

In this work we have established an analytical framework for the fundamental study of transfer

learning in conjunction with overparameterized models. We used least squares solutions to linear

regression problems for shedding clarifying light on the generalization performance induced for

12
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a target task addressed using parameters transferred from an already completed source task. We

formulated the generalization error of the target task and presented its two-dimensional double

descent shape as a function of the number of free parameters individually available in the source

and target tasks. Our results demonstrate an inherent tradeoff between overparameterized learning

and transfer learning, namely, a more extensive transfer of parameters limits the maximal degree of

overparameterization in the target task and its potential benefits — nevertheless, in proper settings

(e.g., when the source and target tasks are sufficiently related) transfer learning can be a substitute

for an increased overparameterization. We characterized the conditions for a beneficial transfer of

parameters and demonstrated its high sensitivity to the delicate interaction among crucial aspects

such as the source-target task relation, the specific choice of transferred parameters, and the form

of the true solution. We believe that our work opens a new research direction for the fundamental

understanding of the generalization ability of transfer learning designs. Future work may study the

theory and practice of additional transfer learning layouts such as: fine tuning of the transferred

parameters, inclusion of explicit regularization together with transfer learning, and well-specified

settings where the task relation model is known and utilized in the actual learning process.
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Appendices

The following appendices support the main paper as follows. Appendix A provides additional de-

tails on the mathematical developments leading to the results in Section 2 of the main paper. In

Appendix B we present the proofs of Theorem 2 and Corollary 3 that formulate the expected gener-

alization error of the target task in the setting of uniformly-distributed coordinate layouts. Appendix

C includes the explicit formulations of two special cases of Theorem 2 that were mentioned in Sec-

tion 3 of the main paper. Appendix D provides additional empirical results and details for Section

3 of the main paper. In Appendix E we present and prove Corollary 10 as well as related analytical

and empirical evaluations and details. In Appendices F-G we refer to the setting from Section 4 of

the main text, where a specific set of parameters is transferred. Specifically, in Appendix F we prove

Theorem 5 and its Corollary 6, and in Appendix G we provide additional analytical and empirical

evaluations.

Note that the indexing of equations and figures in these Appendices continues the corresponding

numbering from the main paper.

Appendix A. Mathematical Developments for Section 2

A.1. The Estimate θ̂ in Eq. (4)

Let us solve the optimization problem provided in (3). Using the relation QT
SQS +QT

ScQSc = Id
we can rewrite (3) as

θ̂ = argmin
r∈Rd

‖v − ZSQSr− ZScQScr‖22 (17)

subject to QScr = 0

where ZS , ZQT
S and ZSc , ZQT

Sc. By setting the equality constraint in the optimization cost,

the problem in (17) becomes

θ̂ = argmin
r∈Rd

‖v − ZSQSr‖
2
2 (18)

subject to QScr = 0.

Without the equality constraint, (18) is just an unconstrained least squares problem that its solution

is

θ̂ = QT
SZ

+
Sv (19)

where Z+
S is the Moore-Penrose pseudoinverse of ZS . Note that θ̂ in (19) satisfies the equality

constraint in (17) and, therefore, (19) is also the solution for the constrained optimization problems

in (17), (18), and (3).

A.2. The Double Descent Formulation for the Generalization Error of the Source Task

The generalization error of a single linear regression problem (that includes noise) in non-asymptotic

settings is provided by Belkin et al. (2019b) for a given coordinate subset (i.e., deterministic S in
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our terms). The result of Belkin et al. (2019b) can be written in our notations as

Ẽout =





ñ−1
ñ−p̃−1

(
‖θSc‖22 + σ2

ξ

)
for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,
p̃−1

p̃−ñ−1

(
‖θSc‖22 + σ2

ξ

)
+ p̃−ñ

p̃
‖θS‖

2
2 for p̃ ≥ ñ+ 2.

(20)

The analysis in our work considers the coordinate subset S to be uniformly chosen at ran-

dom from all the subsets of p̃ ∈ {1, . . . , d} unique coordinates of {1, . . . , d}. Then, we get that

ES

{
‖θS‖

2
2

}
= p̃

d
‖θ‖22 and ES

{
‖θSc‖22

}
= d−p̃

d
‖θ‖22. Accordingly, the expectation over S of the

generalization error of the source task leads to the following result

ES

{
Ẽout

}
=





ñ−1
ñ−p̃−1

((
1− p̃

d̃

)
‖θ‖22 + σ2

ξ

)
for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,
p̃−1

p̃−ñ−1

((
1− p̃

d̃

)
‖θ‖22 + σ2

ξ

)
+ p̃−ñ

d
‖θ‖22 for p̃ ≥ ñ+ 2.

(21)

The formulation in (21) considers θ as a deterministic vector. For the analysis of the target task,

where the task relation model (6) is assumed to hold, it is also useful to formulate the expectation

of the out-of-sample error of the source task with respect to both S and the noise vector η from the

task relation model. This leads us to to consider θ as a random vector and to formulate the following

expectation.

ES,η

{
Ẽout

}
=





ñ−1
ñ−p̃−1

((
1− p̃

d̃

)
κ+ σ2

ξ

)
for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,
p̃−1

p̃−ñ−1

((
1− p̃

d̃

)
κ+ σ2

ξ

)
+ p̃−ñ

d
κ for p̃ ≥ ñ+ 2.

(22)

where κ , Eη

{
‖θ‖22

}
=

∥∥∥β(H)
∥∥∥
2

2
+ dσ2

η was defined before Theorem 2 in the main text.

A.3. The Estimate β̂ in Eq. (9)

The optimization problem in (8), given for the target task, can be addressed using the relation

QT
FQF +QT

T QT +QT
ZQZ = Id and rewritten as

β̂ = argmin
b∈Rd

‖y −XFQFb−XT QT b−XZQZb‖
2
2

subject to QT b = QT θ̂

QZb = 0 (23)

where XF , XQT
F , XT , XQT

T , and XZ , XQT
Z . By setting the equality constraints of (23) in

its optimization cost, the problem (23) can be translated into the form of

β̂ = argmin
b∈Rd

∥∥∥y −XT QT θ̂ −XFQFb

∥∥∥
2

2

subject to QT b = QT θ̂

QZb = 0. (24)
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The last optimization is a restricted least squares problem that can be solved using the method of

Lagrange multipliers to show that

β̂ = QT
FX

+
F

(
y −XT θ̂T

)
+QT

T θ̂T (25)

where θ̂T , QT θ̂ and X+
F is the Moore-Penrose pseudoinverse of XF .

Appendix B. Proof of Theorem 2 and Corollary 3

This section is organized as follows. Section B.1 presents auxiliary results on uniformly-distributed

coordinate subsets. Section B.2 provides results on non-asymptotic properties of Gaussian and

Wishart matrices. The auxiliary results are utilized in Section B.3 to prove the formulations given

in Theorem 2 for the generalization error of the target task in the setting of uniformly-distributed

coordinate subset layout.

B.1. Auxiliary Results on the Uniformly-Distributed Coordinate Subset Layout

Recall Definition 1 in the main text that characterizes a coordinate subset layout L = {S,F ,T ,Z}
that is {p̃, p, t}-uniformly distributed, for p̃ ∈ {1, . . . , d} and (p, t) ∈ {0, . . . , d} × {0, . . . , p̃} such

that p+ t ≤ d. Here we provide several auxiliary results that are induced by this random structure

and utilized in the proof of Theorem 2.

For S that is uniformly chosen at random from all the subsets of p̃ unique coordinates of

{1, . . . , d}, we get that the mean of the projection operator QT
SQS is

EL

{
QT

SQS

}
= ES

{
QT

SQS

}
=

(
d−1
p̃−1

)
(
d
p̃

) Id =
p̃

d
Id (26)

where we used the structure of QT
SQS that is a d×d diagonal matrix with its jth diagonal component

equals 1 if j ∈ S and 0 otherwise.

Definition 1 also specifies that, given S , the target-task coordinate layout {F ,T ,Z} is uni-

formly chosen at random from all the layouts where F , T , and Z are three disjoint sets of coordi-

nates that satisfy F ∪ T ∪ Z = {1, . . . , d} such that |F|= p, |T |= t and T ⊂ S , and |Z|= d−p−t.
Accordingly,

EL

{
QT

T QT

}
= ES

{
EL|S

{
QT

T QT

}}

=

(
p̃−1
t−1

)
(
p̃
t

) ES

{
QT

SQS

}

=
t

p̃
ES

{
QT

SQS

}

=
t

d
Id, (27)

and similarly

EL

{
QT

FQF

}
=

p

d
Id, (28)

EL

{
QT

ZQZ

}
=

d− p− t

d
Id. (29)
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Another useful auxiliary result, based on the relation QSQ
T
S = Ip̃ (carefully note the transpose

appearance), is provided by

EL

{
QSQ

T
T QT Q

T
S

}
= ES

{
QSEL|S

{
QT

T QT

}
QT

S

}

=
t

p̃
ES

{
QSQ

T
SQSQ

T
S

}

=
t

p̃
Ip̃. (30)

The results in (27)–(29) imply that

EL

{
‖βT ‖

2
2

}
= βT

EL

{
QT

T QT

}
β =

t

d
‖β‖22 , (31)

EL

{
‖βF‖

2
2

}
= βT

EL

{
QT

FQF

}
β =

p

d
‖β‖22 , (32)

EL

{
‖βZ‖

2
2

}
= βT

EL

{
QT

ZQZ

}
β =

d− p− t

d
‖β‖22 , (33)

where βT , QT β, βF , QFβ, and βZ , QZβ. Note that the expressions in (31)-(33) hold also

for d-dimensional deterministic vectors other than β, e.g., (31)-(33) hold for β(H) , Hβ.

B.2. Auxiliary Results using Non-Asymptotic Properties of Gaussian and Wishart Matrices

The random matrix XF , XQT
F is of size n× p and all its components are i.i.d. standard Gaussian

variables. Then, almost surely,

E

{
X+

FXF

}
= Ip ×

{
1 for p ≤ n,
n
p

for p > n,
(34)

where X+
FXF is the p × p projection operator onto the range of XF . Accordingly, let a ∈ R

p be a

random vector independent of the matrix XF and, then,

E

{∥∥X+
FXFa

∥∥2
2

}
= E

{
‖a‖22

}
×

{
1 for p ≤ n,
n
p

for p > n.
(35)

Since the components of XF are i.i.d. standard Gaussian variables then XT
FXF ∼ Wp (Ip, n)

is a p× p Wishart matrix with n degrees of freedom, and XFX
T
F ∼ Wn (In, p) is a n× n Wishart

matrix with p degrees of freedom. The pseudoinverse of the n × n Wishart matrix (almost surely)

satisfies

E

{(
XFX

T
F

)+}
= E

{
X

+,T
F X+

F

}
= In ×





1
n−p−1 ·

p
n

for p ≤ n− 2,

∞ for n− 1 ≤ p ≤ n+ 1,
1

p−n−1 for p ≥ n+ 2,

(36)

where the result for p ≥ n+ 2 corresponds to the common case of inverse Wishart matrix with

more degrees of freedom than its dimension, and the result for p ≤ n− 2 is based on constructions

provided in the proof of Theorem 1.3 of Breiman and Freedman (1983).
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Following (36), let u ∈ R
n be a random vector independent of XF . Then,

E

{∥∥X+
Fu

∥∥2
2

}
=

1

n
E

{
‖u‖22

}
×





p
n−p−1 for p ≤ n− 2,

∞ for n− 1 ≤ p ≤ n+ 1,
n

p−n−1 for p ≥ n+ 2,

(37)

that specifically for u = XFcβFc becomes

E

{∥∥X+
FXFcβFc

∥∥2
2

}
= E

{
‖βFc‖22

}
×





p
n−p−1 for p ≤ n− 2,

∞ for n− 1 ≤ p ≤ n+ 1,
n

p−n−1 for p ≥ n+ 2.

(38)

The results in (34)-(38) are presented using notions of the target task, specifically, using the data

matrix X and the coordinate subset T . One can obtain the corresponding results for the source task

by updating (34)-(38) by replacing X, T , n and p with Z, S , ñ and p̃, respectively. For example,

the result corresponding to (34) is

E

{
Z+
SZS

}
= Ip̃ ×

{
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ,
(39)

where Z+
SZS is the p̃× p̃ projection operator onto the range of ZS .

B.3. Proof Outline of Theorem 2

The generalization error Eout of the target task was formulated in Eq. (7) for a specific coordinate

subset layout L = {S,F ,T ,Z}. Here we prove the formulation given in Theorem 2 for the expeca-

tion of Eout with respect to a {p̃, p, t}-uniformly distributed layout L (see Definition 1). While in

the main text the expectation with respect to L is explicitly denoted as EL{·}, in the developments

below we use the notation of E{·} to refer to the expectation with respect to all the random elements

(that may also include L) of the expression it is applied on. The developments start with

EL

{
Eout

}
=σ2

ǫ + E

{∥∥∥β̂ − β

∥∥∥
2

2

}

=σ2
ǫ + E

{
‖βZ‖

2
2

}
+ E

{∥∥∥X+
F

(
y −XT θ̂T

)
− βF

∥∥∥
2

2

}
+ E

{∥∥∥θ̂T − βT

∥∥∥
2

2

}
, (40)

where the last decomposition shows the expected squared error EL

{
Eout

}
as the sum of the irre-

ducible error σ2
ǫ and the expected errors corresponding to each of the three subvectors induced by

the coordinate subsets Z , F , T .

Using the expression for the estimate θ̂ given in (4) and the relation y = Xβ + ǫ, the expected

error in the subvector induced by F , i.e., the third term in (40), can be developed into

E

{∥∥∥X+
F

(
y−XT θ̂T

)
− βF

∥∥∥
2

2

}
= E

{∥∥∥X+
F

(
Xβ + ǫ−XT θ̂T

)
− βF

∥∥∥
2

2

}

= E

{∥∥X+
F (XFcβFc + ǫ)

∥∥2
2

}
+ E

{∥∥∥X+
FXT θ̂T

∥∥∥
2

2

}

+ E

{∥∥(Ip −X+
FXF

)
βF

∥∥2
2

}
− 2E

{
βT
T

(
X+

FXT

)T
X+

FXT θ̂T

}
. (41)
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The four terms in the decomposition in (41) are further developed as follows. The first term in (41)

can be computed using the results in (32), (37) and (38) to receive the form of

E

{∥∥X+
F (XFcβFc + ǫ)

∥∥2
2

}
=

(
d− p

d
‖β‖22 + σ2

ǫ

)
×





p
n−p−1 for p ≤ n− 2,

∞ for n− 1 ≤ p ≤ n+ 1,
n

p−n−1 for p ≥ n+ 2.

(42)

The second term in (41) is developed next using (30), (37), and that XT
T XT ∼ Wt (It, n) is a

Wishart matrix with mean E

{
XT

T XT

}
= nIt. Then,

E

{∥∥∥X+
FXT θ̂T

∥∥∥
2

2

}

= E

{∥∥∥X+
FXT QT Q

T
S θ̂S

∥∥∥
2

2

}

=
1

n
E

{∥∥∥XT QT Q
T
S θ̂S

∥∥∥
2

2

}
×





p
n−p−1 for p ≤ n− 2,

∞ for n− 1 ≤ p ≤ n+ 1,
n

p−n−1 for p ≥ n+ 2,

=
t

p̃
E

{∥∥∥θ̂S

∥∥∥
2

2

}
×





p
n−p−1 for p ≤ n− 2,

∞ for n− 1 ≤ p ≤ n+ 1,
n

p−n−1 for p ≥ n+ 2.

(43)

Note that

E

{∥∥∥θ̂S

∥∥∥
2

2

}

= E

{∥∥∥θ̂S − θS

∥∥∥
2

2

}
+ E

{
‖θS‖

2
2

}
+ 2E

{(
θ̂S − θS

)T

θS

}

= ES,η

{
Ẽout

}
− E

{
‖θSc‖22

}
− σ2

ξ + E

{
‖θS‖

2
2

}
+ 2E

{(
θ̂S − θS

)T

θS

}

= ES,η

{
Ẽout

}
− E

{
‖θ‖22

}
− σ2

ξ + 2E
{
θ̂SθS

}

= ES,η

{
Ẽout

}
− E

{
‖θ‖22

}
− σ2

ξ + 2E
{
‖θS‖

2
2

}
×

{
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ,

= ES,η

{
Ẽout

}
− κ− σ2

ξ + 2
p̃

d
κ×

{
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ.
(44)

Then, one can combine the formulations in (43) and (44) to receive a formula for the second term

in (41).

Next, the third term of (41) can be developed using (32) and (35) into

E

{∥∥(Ip −X+
FXF

)
βF

∥∥2
2

}
= E

{
‖βF‖

2
2

}
×

{
0 for p ≤ n,

1− n
p

for p > n,

=
1

d
‖β‖22 ×

{
0 for p ≤ n,

p− n for p > n.
(45)
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The fourth term of (41) is developed next using the relation v = ZHβ + Zη + ξ and the inde-

pendence of η and ξ with the other random variables. Using (36) and (39) one can get

E

{
βT
T

(
X+

FXT

)T
X+

FXT θ̂T

}

= E

{
βT
T

(
X+

FXT

)T
X+

FXT QT Q
T
SZ

+
Sv

}

= E

{
βT
T X

T
T X

+,T
F X+

FXT QT Q
T
SZ

+
SZSβ

(H)
S

}

=
t

d
〈β(H),β〉 ×





p
n−p−1 for p ≤ n− 2 and p̃ ≤ ñ− 2,

p
n−p−1 ·

ñ
p̃

for p ≤ n− 2 and p̃ ≥ ñ+ 2,
n

p−n−1 for p ≥ n+ 2 and p̃ ≤ ñ− 2,
n

p−n−1 ·
ñ
p̃

for p ≥ n+ 2 and p̃ ≥ ñ+ 2,

∞ for n− 1 ≤ p ≤ n+ 1 or ñ− 1 ≤ p̃ ≤ ñ+ 1.

(46)

where the last expression can be rewritten using the relation 〈β(H),β〉 = κ · ρ that stems from the

definitions provided before Theorem 2 in the main text for the normalized task correlation and

the task energy ratio. At this intermediate stage, one can use the results provided in (41)-(46) to

formulate the expected error in the subvector induced by F , i.e., the third term in (40).

We now turn to develop an explicit formula for the expected error in the subvector induced by

T , i.e., the fourth term in (40)

E

{∥∥∥θ̂T − βT

∥∥∥
2

2

}

= E

{∥∥∥θ̂T

∥∥∥
2

2

}
+ E

{
‖βT ‖

2
2

}
− 2E

{
βT
T θ̂T

}

= E

{∥∥∥QT Q
T
S θ̂S

∥∥∥
2

2

}
+ E

{
‖βT ‖

2
2

}
− 2E

{
βT
T QT Q

T
SZ

+
SZHβ

}
(47)

Due to the random coordinate layout, the first term in (47) equals to t
p̃
E

{∥∥∥θ̂S

∥∥∥
2

2

}
and then one can

use the expression in (44). The second term in (47) is given in (31) as

E

{
‖βT ‖

2
2

}
=

t

d
‖β‖22 . (48)

The third term in (47) can be developed using (39) to obtain the expression

E

{
βT
T QT Q

T
SZ

+
SZHβ

}
= E

{
βT
T QT Q

T
SZ

+
SZSβ

(H)
S

}

=
t

d
〈β(H),β〉 ×

{
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ.
(49)

where the last expression can be also written differently using the relation 〈β(H),β〉 = κ · ρ.
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Setting the results from (33) and (41)-(49) into (40) leads to the formula given in Theorem 2,

namely,

EL

{
Eout

}
=





n−1
n−p−1

(
(1− p

d
) ‖β‖22 + σ2

ǫ + t ·∆Etransfer
)

for p ≤ n− 2,

∞ for n− 1 ≤ p ≤ n+ 1,
p−1

p−n−1

(
(1− p

d
) ‖β‖22 + σ2

ǫ + t ·∆Etransfer
)
+ p−n

d
‖β‖22 for p ≥ n+ 2,

(50)

where

∆Etransfer =
1

p̃
·
(
ES,η

{
Ẽout

}
− σ2

ξ − κ
)
− 2

κ

d
(ρ− 1)×

{
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ.
(51)

B.4. Proof of Corollary 3

One can prove Corollary 3 simply by setting the explicit expression for ES,η

{
Ẽout

}
from (22) in the

formula for ∆Etransfer from (51) and reorganize the expression to the form presented in Corollary

3.

Let us also outline an alternative proof that does not rely on the formula of ES,η

{
Ẽout

}
from

(22). The main aspect in this proof of Corollary 3 is to obtain an explicit formula for E
{∥∥∥θ̂S

∥∥∥
2

2

}
as
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follows.

E

{∥∥∥θ̂S

∥∥∥
2

2

}
=

= E

{∥∥Z+
S (ZHβ + Zη + ξ)

∥∥2
2

}
=

= E

{∥∥∥Z+
SZS

(
β
(H)
S + ηS

)∥∥∥
2

2

}
+ E

{∥∥∥Z+
S

(
ZScβ

(H)
Sc + ZScηSc + ξ

)∥∥∥
2

2

}

= E

{∥∥∥β(H)
S + ηS

∥∥∥
2

2

}
×

({
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ,

)

+
1

ñ
E

{∥∥∥ZScβ
(H)
Sc + ZScηSc + ξ

∥∥∥
2

2

}
×








p̃
ñ−p̃−1 for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,
ñ

p̃−ñ−1 for p̃ ≥ ñ+ 2,




=
p̃

d
·

(∥∥∥β(H)
∥∥∥
2

2
+ dσ2

η

)
×

({
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ,

)

+

(
d− p̃

d
·

(∥∥∥β(H)
∥∥∥
2

2
+ dσ2

η

)
+ σ2

ξ

)
×








p̃
ñ−p̃−1 for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,
ñ

p̃−ñ−1 for p̃ ≥ ñ+ 2,




=
κ

d
×



({

p̃ for p̃ ≤ ñ,

ñ for p̃ > ñ,

)
+

(
d− p̃+ d · κ−1 · σ2

ξ

)
×








p̃
ñ−p̃−1 for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,
ñ

p̃−ñ−1 for p̃ ≥ ñ+ 2,







=
κ

d
×





p̃

(
1 +

d−p̃+d·κ−1·σ2
ξ

ñ−p̃−1

)
for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,

ñ

(
1 +

d−p̃+d·κ−1·σ2
ξ

p̃−ñ−1

)
for p̃ ≥ ñ+ 2.

(52)

Note that we also assumed that

∥∥∥β(H)
∥∥∥
2

2
+ dσ2

η 6= 0, i.e., that κ 6= 0.

We can use the explicit expression for E
{∥∥∥θ̂S

∥∥∥
2

2

}
from (52) together with the result from (44)

that connects E
{∥∥∥θ̂S

∥∥∥
2

2

}
to ES,η

{
Ẽout

}
, and this lets us to develop the formula for ∆Etransfer from

Theorem 2 (and also (51)) into

∆Etransfer =
κ

d
×





1− 2ρ+
d−p̃+d·κ−1·σ2

ξ

ñ−p̃−1 for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,

ñ
p̃

(
1− 2ρ+

d−p̃+d·κ−1·σ2
ξ

p̃−ñ−1

)
for p̃ ≥ ñ+ 2

(53)

that appears in Corollary 3.
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Appendix C. Special Cases of Theorem 2

Let us emphasize two special cases of the general result in Theorem 2. The first case considers the

solution of the target task without transfer learning, i.e., t = 0. The corresponding generalization

error is formulated in the following corollary that shows that our general formula from Theorem

2 reduces for t = 0 into the expectation (over L) of the standard double descent formula (in non-

asymptotic settings such as by Belkin et al. (2019b)). The red-colored curves in the subfigures of

Fig. 1 are identical and correspond to the formula of this case.

Corollary 8 (No transfer learning) For t = 0, i.e., no parameters are transferred from the source

task to the target task. Then, for p ∈ {0, . . . , d},

EL

{
E
(t=0)
out

}
=





(
1 + p

n−p−1

)((
1− p

d

)
‖β‖22 + σ2

ǫ

)
for p ≤ n− 2,

∞ for n− 1 ≤ p ≤ n+ 1,(
1 + n

p−n−1

)((
1− p

d

)
‖β‖22 + σ2

ǫ

)
+ p−n

d
‖β‖22 for p ≥ n+ 2.

(54)

The second special case corresponds to transferring parameters from the source task to the target

task without applying any additional learning. This case is induced by setting p = 0 in the formula

of Theorem 2 (also using Corollary 3), as explicitly formulated in the following corollary. The

corresponding generalization errors are demonstrated in the left-most vertical slices of each of the

subfigures in Fig. 5 that are clearly affected by the relation between the source and target tasks and

the number of transferred parameters.

Corollary 9 (Parameter transfer without additional learning in target problem) For p = 0,

i.e., no parameters are learned in the target problem using D. The target estimate β̂ includes

only t ∈ {0, . . . , p̃} parameters transferred from the source task, and the remaining components are

set to zeros.

EL

{
E
(p=0)
out

}
= ‖β‖22 + σ2

ǫ + t
κ

d
×





1− 2ρ+
d−p̃+d·κ−1·σ2

ξ

ñ−p̃−1 for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,

ñ
p̃

(
1− 2ρ+

d−p̃+d·κ−1·σ2
ξ

p̃−ñ−1

)
for p̃ ≥ ñ+ 2.

(55)

Appendix D. Empirical Results for Section 3: Additional Details and

Demonstrations

In Fig. 6 we present the empirically computed values of the out-of-sample squared error of the

target task, EL

{
Eout

}
, with respect to the number of free parameters p̃ and p (in the source and

target tasks, respectively). The empirical values in Fig. 6 (and also the values denoted by circle

markers in Fig. 1) were obtained by averaging over 250 experiments where each experiment was

carried out based on new realizations of the data matrices, noise components, and the sequential

order of adding coordinates to subsets (such as S) for the gradual increase of p̃ and p within each

experiment. Each single evaluation of the expectation of the squared error for an out-of-sample
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data pair
(
x(test), y(test)

)
was empirically carried out by averaging over a set of 1000 out-of-sample

realizations of data pairs. Here d = 80, ñ = 50, n = 20, ‖β‖22 = d, σ2
ǫ = 0.05 · d, σ2

ξ = 0.025 · d.

The deterministic β ∈ R
d used in the experiments has an increasing linear form (see Fig. 4(a))

that starts at zero and satisfies ‖β‖22 = d. Since we consider averaging over uniformly distributed

layout of coordinate subsets, the results depend only on ‖β‖22 and not on the shape of the sequence

of values in β.

One can observe the excellent match between the empirical results in Fig. 6 and the analyti-

cal results provided in Fig. 5. This establishes further the formulations given in Theorem 2 and

Corollary 3.

Appendix E. Additional Details on Parameter Transfer Usefulness in the Setting of

Uniformly-Distributed Coordinate Layouts

Here we form analytical conditions on the required number of free parameters p̃ in the source task

to get a useful parameter transfer.

In this section we define the signal-to-noise ratio of the source task as Γsrc ,
κ
σ2
ξ

.

Corollary 10 Consider p̃ ∈ {1, . . . , d}. Then, the term ∆Etransfer, which quantifies the ex-

pected error difference due to each parameter being transferred instead of set to zero, satisfies

∆Etransfer < 0 (i.e., parameter transfer is beneficial for p /∈ {n − 1, n, n + 1}) if the source task is

sufficiently overparameterized such that

p̃ > ñ+ 1 +
(
d− ñ+ d · Γ−1

src − 1
)
/2ρ for ρ > 0, ñ < d− 1, (56)

or sufficiently underparameterized such that

p̃ < ñ− 1−
d− ñ+ d · Γ−1

src + 1

2 (ρ− 1)
for ρ > 1, ñ ≤ d

(
1 + Γ−1

src

)
+ 1, (57)

or ñ− 1−
d− ñ+ d · Γ−1

src + 1

2 (ρ− 1)
< p̃ ≤ d for 0 ≤ ρ < 1, ñ > d

(
1 + Γ−1

src

)
+ 1, (58)

or 1 ≤ p̃ ≤ d for ρ ≥ 1, ñ > d
(
1 + Γ−1

src

)
+ 1. (59)

Otherwise, ∆Etransfer ≥ 0 (i.e., parameter transfer is not beneficial).

The proof of the last corollary is provided next.

E.1. Proof of Corollary 10

Recall that Eq. (13) in Theorem 2 formulates ∆Etransfer and defines it as the expected error dif-

ference introduced by each constrained parameter that is transferred from the source task instead

of being set to zero. Accordingly, Corollary 10 presents the conditions on the number of free pa-

rameters p̃ in the source task, such that the parameter transfer is useful, namely, ∆Etransfer < 0
that is relevant when p /∈ {n − 1, n, n + 1} (recall that for p ∈ {n − 1, n, n + 1} the target task

generalization error becomes infinite). The conditions provided in Corollary 10 separately refer to

the case where the source task is overparameterized (i.e., p̃ > ñ) and the case where the source task

is underparameterized (i.e., p̃ < ñ).

Recall that in this section we define the signal-to-noise ratio of the source task as Γsrc ,
κ
σ2
ξ

.
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Figure 5: Analytical evaluation of the expected out-of-sample squared error of the target task,

EL

{
Eout

}
, with respect to the number of free parameters p̃ and p (in the source and

target tasks, respectively). Each row of subfigures considers a different case of the re-

lation (6) between the source and target tasks in the form of a different noise variance

σ2
η whereas H = Id for all. Each column of subfigures considers a different number of

transferred parameters t. Here d = 80, ñ = 50, n = 20, ‖β‖22 = d, σ2
ǫ = 0.05 · d,

σ2
ξ = 0.025 · d. The white regions correspond to (p̃, p) settings eliminated by the value

of t in the specific subfigure. The yellow-colored areas correspond to values greater or

equal to 800. See Fig. 6 for the corresponding empirical evaluation.

26



ON GENERALIZATION ERRORS IN TRANSFER LEARNING BETWEEN LINEAR REGRESSION TASKS

20 40 60 80

20

40

60

80

0

200

400

600

800

(a)

20 40 60 80

20

40

60

80

0

200

400

600

800

(b)

20 40 60 80

20

40

60

80

0

200

400

600

800

(c)

20 40 60 80

20

40

60

80

0

200

400

600

800

(d)

20 40 60 80

20

40

60

80

0

200

400

600

800

(e)

20 40 60 80

20

40

60

80

0

200

400

600

800

(f)

20 40 60 80

20

40

60

80

0

200

400

600

800

(g)

20 40 60 80

20

40

60

80

0

200

400

600

800

(h)

20 40 60 80

20

40

60

80

0

200

400

600

800

(i)

20 40 60 80

20

40

60

80

0

200

400

600

800

(j)

20 40 60 80

20

40

60

80

0

200

400

600

800

(k)

20 40 60 80

20

40

60

80

0

200

400

600

800

(l)

20 40 60 80

20

40

60

80

0

200

400

600

800

(m)

20 40 60 80

20

40

60

80

0

200

400

600

800

(n)

20 40 60 80

20

40

60

80

0

200

400

600

800

(o)

20 40 60 80

20

40

60

80

0

200

400

600

800

(p)

Figure 6: Empirical evaluation of the expected out-of-sample squared error of the target task,

EL

{
Eout

}
, with respect to the number of free parameters p̃ and p (in the source and

target tasks, respectively). The presented values obtained by averaging over 250 experi-

ments. Each row of subfigures considers a different case of the relation (6) between the

source and target tasks in the form of a different noise variance σ2
η whereas H = Id for

all. Each column of subfigures considers a different number of transferred parameters t.
Here d = 80, ñ = 50, n = 20, ‖β‖22 = d, σ2

ǫ = 0.05 · d, σ2
ξ = 0.025 · d. The white

regions correspond to (p̃, p) settings eliminated by the value of t in the specific subfigure.

The yellow-colored areas correspond to values greater or equal to 800.

E.1.1. PROOF FOR THE OVERPARAMETERIZED CASE

Let us start by proving the condition in Eq. (56) that refers to an overparameterized source task, i.e.,

p̃ > ñ. Then, according to (13), ∆Etransfer < 0 is possible only when p̃ ≥ ñ+ 2 and

1− 2ρ+
d− p̃+ d · Γ−1

src

p̃− ñ− 1
< 0. (60)

27



ON GENERALIZATION ERRORS IN TRANSFER LEARNING BETWEEN LINEAR REGRESSION TASKS

For ρ > 0, the last inequality can be rewritten as

p̃ > ñ+ 1 +
d− ñ+ d · Γ−1

src − 1

2ρ
. (61)

The overparameterization condition of p̃ ≥ ñ + 2 implies d ≥ p̃ ≥ ñ + 2 and, thus, d − ñ − 1 ≥
1. Then, together with ρ > 0 (and because Γ−1

src is always non-negative) we get that the term
d−ñ+d·Γ−1

src−1
2ρ in (61) is positive valued and, hence, the lower bound of p̃ in (61) is at least n+1 and

when the SNR of the source task or the task correlation are lower then a greater overparameterization

is required in the source task (i.e., larger p̃) for having a useful transfer of parameters. At this

intermediate stage we finished to prove the condition given in Eq. (56) of Corollary 10 and now we

turn to prove that this is the only overparameterized case that enables ∆Etransfer < 0.

For ρ = 0, the condition in (60) induces the requirement of ñ > d + d · Γ−1
src − 1 and, because

Γ−1
src is non-negative by its definition, this requirement also implies that ñ > d − 1 that contradicts

the basic overparameterization relations of d ≥ p̃ ≥ ñ+2. Hence, one cannot obtain ∆Etransfer < 0
when p̃ > ñ and ρ = 0.

For ρ < 0, the condition in (60) means that

p̃ < ñ+ 1 +
d− ñ+ d · Γ−1

src − 1

2ρ
(62)

where d − ñ + d · Γ−1
src − 1 > 0 again due to p̃ ≥ ñ + 2. However, here ρ < 0 makes (62)

to imply that p̃ < ñ + 1 that clearly contradicts the overparameterized case of p̃ ≥ ñ + 2. Ac-

cordingly, ∆Etransfer < 0 is impossible when p̃ > ñ and ρ < 0. This completes the proof for the

overparameterized part of Corollary 10.

E.1.2. PROOF FOR THE UNDERPARAMETERIZED CASE

We now turn to prove the conditions in Eq. (57)-(59) that refer to underparameterized settings of

the source task, i.e., p̃ < ñ. Then, by (13), ∆Etransfer < 0 is possible only when p̃ ≤ ñ− 2 and

1− 2ρ+
d− p̃+ d · Γ−1

src

ñ− p̃− 1
< 0. (63)

For ρ > 1, the last inequality can be also formulated as

p̃ < ñ− 1−
d− ñ+ d · Γ−1

src + 1

2 (ρ− 1)
(64)

which, due to the required intersection with p̃ ≤ ñ − 2, remains in its form of (64) only for

ñ ≤ d+ d · Γ−1
src + 1. For ñ > d+ d · Γ−1

src + 1, the condition in (64) becomes p̃ ≤ d (because

then the right hand side of (64) is at least ñ− 1 whereas p̃ ≤ d < ñ− 1).

For ρ = 1, the condition in (63) can be developed into ñ > d+ d · Γ−1
src + 1 that naturally

conforms with the underparameterization condition p̃ ≤ ñ − 2 (this is because always p̃ ≤ d and

Γ−1
src ≥ 0 by their definitions). Then, for ρ = 1 and ñ > d+ d · Γ−1

src + 1 we get 1 ≤ p̃ ≤ d.

For 0 ≤ ρ < 1, the condition in (63) can be rewritten as

p̃ > ñ− 1−
d− ñ+ d · Γ−1

src + 1

2 (ρ− 1)
. (65)
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If ñ ≤ d+ d · Γ−1
src + 1 then (65) implies p̃ > ñ− 1, which contradicts the underparameterized case

of p̃ ≤ ñ− 2. Hence, for 0 ≤ ρ < 1 and ñ ≤ d+ d · Γ−1
src + 1 it is impossible to get ∆Etransfer < 0.

If ñ > d+ d · Γ−1
src + 1 then the right hand side of (65) is lower than ñ− 1 and, thus, the condition

ñ− 1−
d− ñ+ d · Γ−1

src + 1

2 (ρ− 1)
< p̃ ≤ d (66)

can be feasible (for ñ > d+ d · Γ−1
src + 1) in underparameterized settings.

For ρ < 0, the condition in (63) is equivalent to

1 +
d− p̃+ d · Γ−1

src

ñ− p̃− 1
< 0 (67)

which implies

p̃ >
1

2

(
ñ+ d+ d · Γ−1

src − 1
)
. (68)

Then, for ñ > d+ d · Γ−1
src + 1, the inequality in (68) leads to

p̃ > d+ d · Γ−1
src > d (69)

that clearly contradicts the basic demand p̃ ≤ d in our general settings. If ñ ≤ d+ d · Γ−1
src + 1

then the form of (65) is also relevant for ρ < 0 and yields that p̃ > ñ − 1, which contradicts the

underparameterized case of p̃ ≤ ñ− 2. Hence, we showed that for ρ < 0 and any ñ it is impossible

to get ∆Etransfer < 0. This completes the proof of all the conditions in Corollary 10.

E.2. Details on the Empirical Evaluation of ∆Etransfer

The analytical formula for ∆Etransfer, given in Theorem 2, measures the expected difference in the

generalization error (of the target task) due to each parameter that is transferred instead of being set

to zero. Accordingly, the empirical evaluation of ∆Etransfer for a given p̃ can be computed by

∆̂Etransfer =
1

d− 3

∑

p=1,...,n−2,n+2,...,d

ÊL

{
E
(p̃,p,t=m)
out

}
− ÊL

{
E
(p̃,p,t=0)
out

}

m · α(p)
(70)

where

α(p) ,
1

d
‖β‖22 ×

{
1 + p

n−p−1 for p ≤ n− 2,

1 + n
p−n−1 for p ≥ n+ 2

(71)

is a normalization factor required for the accurate correspondence to the analytical definition of

∆Etransfer provided in Theorem 2 in a form independent of p. Here ÊL

{
E
(p̃,p,t=m)
out

}
is the out-

of-sample error of the target task that is empirically computed for m transferred parameters, p
free parameters in the target task, and p̃ free parameters in the source task. Correspondingly,

ÊL

{
E
(p̃,p,t=0)
out

}
is the empirically computed error induced by avoiding parameter transfer. There-

fore, the formula in (70) empirically measures the average error difference for a single transferred

parameter by averaging over the various settings induced by different values of p while p̃ is kept

fixed. To obtain a good numerical accuracy with averaging over a moderate number of experiments

we use the value m = 5.
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Figure 7: The piecewise-constant structure of β that was used in part of the experiments.

Each empirical evaluation of ÊL

{
E
(p̃,p,t)
out

}
, for a specific set of values p̃, p, t corresponds to av-

eraging over 500 experiments where each experiment was conducted for new realizations of the data

matrices, noise components, and the sequential order of adding coordinates to subsets. Each single

evaluation of the expectation of the squared error for an out-of-sample data pair
(
x(test), y(test)

)

was empirically computed by averaging over 1000 out-of-sample realizations of data pairs.

E.3. Empirical Results for Parameter Transfer Usefulness in the Setting of

Uniformly-Distributed Coordinate Layouts

E.3.1. SETTINGS WHERE ñ < d

In Figures 8-9 we present analytical and empirical values of ∆Etransfer induced by settings where

ñ < d (specifically, ñ = 50 and d = 80), which naturally enable the corresponding overparam-

eterized (i.e., ñ < p̃ < d) and underparameterized (i.e., p̃ < ñ < d) settings of the source task.

In Fig. 8 we provide the analytical and empirical results for cases where H is local averaging and

discrete derivative operators. In the main text only the analytical results were provided and here we

show them again near their empirical counterparts that excellently match them (up to the resolution

of the empirical settings).

In Figure 9 we provide additional results for cases where the operator H is a scaled identity

matrix.

E.3.2. SETTINGS WHERE ñ > d

Here we provide in Fig. 10 the analytical and empirical evaluations of ∆Etransfer that correspond to

settings where ñ > d, we specifically consider ñ = 150 and d = 80. Note that ñ > d implies that,

by the definition of p̃, the corresponding settings (of the source task) are underparameterized with

p̃ ≤ d < ñ. Like in Fig. 9, the results in Fig. 10 show the excellent match between the analytical

and empirical results and, specifically, the accuracy of the analytical thresholds (from Corollary 10)

in determining the empirical settings where parameter transfer is beneficial.

Appendix F. Transfer of Specific Sets of Parameters: Proof of Theorem 5 and

Corollary 6

In this section we outline the proof of Theorem 5 for the generalization error of the target task in

the setting where a specific coordinate subset layout L determines the transferred set of parameters.

The proof of Theorem 5 resembles the one of Theorem 2 given in Appendix B with the important

difference that now we cannot use the simplified constructions that were provided in Section B.1

for uniformlly-distributed coordinate subsets. Hence, we start in Section F.1 by providing auxiliary
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(a) H: local averaging

neighborhood size 3

(b) H: local averaging

neighborhood size 15

(c) H: local averaging
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(d) H: discrete derivative
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(h) H: discrete derivative

Figure 8: The analytical and empirical values of ∆Etransfer defined in Theorem 2 (namely, the ex-

pected error difference due to transfer of a parameter from the source to target task) as

a function of p̃ and σ2
η . The positive and negative values of ∆Etransfer appear in color

scales of red and blue, respectively. The regions of negative values (appear in shades of

blue) correspond to beneficial transfer of parameters. The positive values were truncated

in the value of 2 for the clarity of visualization. The solid black lines (in all subfigures)

denote the analytical thresholds for useful transfer learning as implied by Corollary 10.

Each subfigure corresponds to a different task relation model induced by the definitions of

H as: (a)-(c),(e)-(g) local averaging operators with different neighborhood sizes, (d),(h)

discrete derivative. For all the subfigures, d = 80, ñ = 50, ‖β‖22 = d, σ2
ξ = 0.025 · d.

results that use non-asymptotic properties of random orthonormal matrices (that in our case originate

in decompositions of the random matrices Z and X that have i.i.d. Gaussian components) in order

to formulate important quantities for the setting of specific coordinate subset layouts. We also use

our results that were provided in Section B.2 based on non-asymptotic properties of Gaussian and

Wishart matrices and without any necessary aspect of random coordinate subset layouts. Then, in

Section F.2 we prove Theorem 5 and in Section F.3 we prove Corollary 6. This proof has a similar

general structure as the proof given for 2, but with several important modifications. Therefore, it is

recommended to read first the proof of Theorem 2 in Appendix B before getting into the details of

the following proof for the case of a specific coordinate layout.

F.1. Auxiliary Results for the Specific Coordinate Subset Layout Setting

Here the coordinate subset layout L = {S,F ,T ,Z} is specific, i.e., non random, and therefore the

induced operators such as QS , QF , QT , QZ are also fixed and do not have any random aspect.

Recall that QT
SQS is a d × d diagonal matrix with its jth diagonal component equals 1 if j ∈ S

and 0 otherwise. Similarly holds for the other coordinate subsets. Accordingly, here the norms of
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Figure 9: The analytical and empirical values of ∆Etransfer defined in Theorem 2 (namely, the ex-

pected error difference due to transfer of a parameter from the source to target task) as a

function of p̃ and σ2
η. The positive and negative values of ∆Etransfer appear in color scales

of red and blue, respectively. The regions of negative values (appear in shades of blue)

correspond to beneficial transfer of parameters. The positive values were truncated in the

value of 2 for the clarity of visualization. The solid black lines (in all subfigures) denote

the analytical thresholds for useful transfer learning as implied by Corollary 10. Each

subfigure corresponds to a different task relation model induced by the definitions of H

as H = 1
2Id, H = Id, and H = 3

2Id. For all the subfigures, d = 80, ñ = 50, ‖β‖22 = d,

σ2
ξ = 0.025 · d.

vector forms such as βT , QT β, βF , QFβ, and βZ , QZβ, are directly referred to as ‖βT ‖
2
2,

‖βF‖
2
2, ‖βZ‖

2
2, respectively.

Recall that T ⊂ S . Then, for a deterministic vector w ∈ R
d,

E

{∥∥QT Q
T
SZ

+
SZSQSw

∥∥2
2

}
=

{
‖wT ‖

2
2 for p̃ ≤ ñ,

ñ
p̃(p̃+1)

((
ñ+ ñ−1

p̃−1

)
‖wT ‖

2
2 +

(
1− ñ−1

p̃−1

)
t‖wS‖

2
2

)
for p̃ > ñ.

(72)

E

{∥∥QT Q
T
SZ

+
SZScQScw

∥∥2
2

}
=

t

p̃
‖wSc‖22 ×





p̃
ñ−p̃−1 for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,
ñ

p̃−ñ−1 for p̃ ≥ ñ+ 2.

(73)

For two deterministic vectors w,a ∈ R
d,

E

{〈
QT a,QT Q

T
SZ

+
SZSQSw

〉}
= 〈aT ,wT 〉 ×

{
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ.
(74)
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Figure 10: The analytical (top row of subfigures) and empirical (bottom row of subfigures) values

of ∆Etransfer defined in Theorem 2 (namely, the expected error difference due to transfer

of a parameter from the source to target task) as a function of p̃ and σ2
η . The positive and

negative values of ∆Etransfer appear in color scales of red and blue, respectively. The

regions of negative values (appear in shades of blue) correspond to beneficial transfer

of parameters. The positive values were truncated in the value of 2 for the clarity of

visualization. The solid black lines (in all subfigures) denote the analytical thresholds

for useful transfer learning as implied by Corollary 10. Each column of subfigures

correspond to a different task relation model induced by the definitions of H as H =
1
2Id, H = Id, and H = 3

2Id. For all the subfigures, d = 80, ñ = 150, ‖β‖22 = d,

σ2
ξ = 0.025 · d. Note that the results in this figure are for ñ > d.

For a deterministic vector r ∈ R
ñ,

E

{∥∥QT Q
T
SZ

+
S r

∥∥2
2

}
=

t

ñp̃
‖r‖22 ×





p̃
ñ−p̃−1 for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,
ñ

p̃−ñ−1 for p̃ ≥ ñ+ 2.

(75)

In our case we have the ñ × p̃ matrix ZS that its components are i.i.d. standard Gaussian vari-

ables, thus, ZS can be decomposed into a form that involves an independent Haar-distributed matrix,

i.e., a random orthonormal matrix that is uniformly distributed over the set of orthonormal matri-

ces of the relevant size. This lets us to prove the results in (72)-(75) using some algebra and the

non-asymptotic properties of random Haar-distributed matrices, see examples for such properties in

Lemma 2.5 by Tulino and Verdú (2004) and also in Proposition 1.2 by Hiai and Petz (2000).
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F.2. Proof Outline of Theorem 5 and Corollary 6

The generalization error Eout of the target task was expressed in its basic form in Eq. (7) for a specific

coordinate subset layout L = {S,F ,T ,Z}. Please note that, unlike in the proof of Theorem 2 in

Section B, the expectations below do not include the expectation with respect to L, which is non-

random here.

We start with the relevant decomposition of the error expression, namely,

Eout = σ2
ǫ + E

{∥∥∥β̂ − β

∥∥∥
2

2

}

= σ2
ǫ + ‖βZ‖

2
2 + E

{∥∥∥X+
F

(
y −XT θ̂T

)
− βF

∥∥∥
2

2

}
+ E

{∥∥∥θ̂T − βT

∥∥∥
2

2

}
. (76)

Then, we use the expression for the estimate θ̂ given in (4) and the relation y = Xβ + ǫ, to decom-

pose the third term in (76) as follows

E

{∥∥∥X+
F

(
y −XT θ̂T

)
− βF

∥∥∥
2

2

}

= E

{∥∥∥X+
F

(
Xβ + ǫ−XT θ̂T

)
− βF

∥∥∥
2

2

}

= E

{∥∥X+
F (XFcβFc + ǫ)

∥∥2
2

}
+ E

{∥∥∥X+
FXT θ̂T

∥∥∥
2

2

}

+ E

{∥∥(Ip −X+
FXF

)
βF

∥∥2
2

}
− 2E

{
βT
T

(
X+

FXT

)T
X+

FXT θ̂T

}
. (77)

The four terms in (77) are further developed as follows. The first term in (77) can be computed

using the results in (37) and (38) to receive the form of

E

{∥∥X+
F (XFcβFc + ǫ)

∥∥2
2

}
=

(
‖βFc‖22 + σ2

ǫ

)
×





p
n−p−1 for p ≤ n− 2,

∞ for n− 1 ≤ p ≤ n+ 1,
n

p−n−1 for p ≥ n+ 2.

(78)

The second term in (77) is developed next using the result in (37) and that XT
T XT ∼ Wt (It, n)

is a Wishart matrix with mean E

{
XT

T XT

}
= nIt. Then,

E

{∥∥∥X+
FXT θ̂T

∥∥∥
2

2

}
= E

{∥∥∥θ̂T

∥∥∥
2

2

}
×





p
n−p−1 for p ≤ n− 2,

∞ for n− 1 ≤ p ≤ n+ 1,
n

p−n−1 for p ≥ n+ 2.

(79)
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Then, using (74) and the definition of κT ,

E

{∥∥∥θ̂T

∥∥∥
2

2

}

= E

{∥∥∥θ̂T − θT

∥∥∥
2

2

}
+ E

{
‖θT ‖

2
2

}
+ 2E

{(
θ̂T − θT

)T

θT

}

= E

{∥∥∥θ̂T − θT

∥∥∥
2

2

}
− E

{
‖θT ‖

2
2

}
+ 2E

{
θ̂
T

T θT

}

= E

{∥∥∥θ̂T − θT

∥∥∥
2

2

}
− E

{
‖θT ‖

2
2

}
+ 2E

{
‖θT ‖

2
2

}
×

{
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ,

= E

{∥∥∥θ̂T − θT

∥∥∥
2

2

}
− κT

(
1− 2×

{
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ.

)
(80)

One can join the formulations in (79) and (80) to obtain an expression for the second term in (77).

Now, the third term of (77) can be developed using (35) into

E

{∥∥(Ip −X+
FXF

)
βF

∥∥2
2

}
= ‖βF‖

2
2 ×

{
0 for p ≤ n,

1− n
p

for p > n,
(81)

The fourth term of (77) is developed next using the relation v = ZHβ + Zη + ξ and the inde-

pendence of η and ξ with the other random variables. Using (36) and (74) we get

E

{
βT
T

(
X+

FXT

)T
X+

FXT θ̂T

}

= E

{
βT
T

(
X+

FXT

)T
X+

FXT QT Q
T
SZ

+
Sv

}

= E

{
βT
T X

T
T X

+,T
F X+

FXT QT Q
T
SZ

+
SZSβ

(H)
S

}

= 〈β
(H)
T ,βT 〉 ×





∞ for n− 1 ≤ p ≤ n+ 1

or ñ− 1 ≤ p̃ ≤ ñ+ 1,
p

n−p−1 for p ≤ n− 2 and p̃ ≤ ñ− 2,
p

n−p−1 ·
ñ
p̃

for p ≤ n− 2 and p̃ ≥ ñ+ 2,
n

p−n−1 for p ≥ n+ 2 and p̃ ≤ ñ− 2,
n

p−n−1 ·
ñ
p̃

for p ≥ n+ 2 and p̃ ≥ ñ+ 2.

(82)

At this intermediate stage, one can use the results provided in (77)-(82) to formulate the error in the

subvector induced by the specific F of interest, namely, this part of the error is represented by the

third term in (76).

We proceed to the formulation of the error in the subvector induced by the specific T of interest,

i.e., the fourth error term in (76)

E

{∥∥∥θ̂T − βT

∥∥∥
2

2

}
= E

{∥∥∥θ̂T

∥∥∥
2

2

}
+ ‖βT ‖

2
2 − 2E

{
βT
T θ̂T

}
(83)

Note that the first term in (83) was already developed in (80) into a more explicit form. The second

term in (83) remains as it is because T is fixed in the current setting. The third term in (83) can be
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developed using (74) into

E

{
βT
T θ̂T

}
= E

{
βT
T QT Q

T
SZ

+
SZHβ

}
= E

{
βT
T QT Q

T
SZ

+
SZSβ

(H)
S

}

= 〈β
(H)
T ,βT 〉 ×

{
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ.
(84)

Also recall the definition of the normalized task correlation in T between the two tasks that was de-

fined in the main text before Theorem 5 as ρT ,
〈β

(H)
T

,βT 〉
κT

for t > 0 and that κT =
∥∥∥β(H)

T

∥∥∥
2

2
+ tσ2

η.

Setting the results from (77)-(84) into (76) provides the formulations in Theorem 5, namely,

E
(L)
out =





n−1
n−p−1

(
‖βFc‖22 + σ2

ǫ +∆E
(T ,S)
transfer

)
for p ≤ n− 2,

∞ for n− 1 ≤ p ≤ n+ 1,
p−1

p−n−1

(
‖βFc‖22 + σ2

ǫ +∆E
(T ,S)
transfer

)
+

(
1− n

p

)
‖βF‖

2
2 for p ≥ n+ 2,

where

∆E
(T ,S)
transfer = E

{∥∥∥θ̂T − θT

∥∥∥
2

2

}
− κT ×

(
1 + 2 (ρT − 1)×

({
1 for p̃ ≤ ñ,
ñ
p̃

for p̃ > ñ

))
(85)

for t > 0, and ∆E
(T ,S)
transfer = 0 for t = 0.

F.3. Proof of Corollary 6

The main part in the proof of Corollary 6 is to develop a more explicit form for E
{∥∥∥θ̂T

∥∥∥
2

2

}
, as

presented next.

E

{∥∥∥θ̂T

∥∥∥
2

2

}
= E

{∥∥QT Q
T
SZ

+
S (ZHβ + Zη + ξ)

∥∥2
2

}
(86)

= E

{∥∥∥QT Q
T
SZ

+
SZS

(
β
(H)
S + ηS

)∥∥∥
2

2

}

+ E

{∥∥∥QT Q
T
SZ

+
SZSc

(
β
(H)
Sc + ηSc

)∥∥∥
2

2

}
+ E

{∥∥QT Q
T
SZ

+
S ξ

∥∥2
2

}
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that using (72)-(73), (75) leads to

E

{∥∥QT Q
T
SZ

+
S (ZHβ + Zη + ξ)

∥∥2
2

}
= (87)

=








∥∥∥β(H)
T

∥∥∥
2

2
+ tσ2

η for p̃ ≤ ñ,

ñ
p̃(p̃+1)

((
ñ+ ñ−1

p̃−1

)(∥∥∥β(H)
T

∥∥∥
2

2
+ tσ2

η

)
+

(
1− ñ−1

p̃−1

)
t

(∥∥∥β(H)
S

∥∥∥
2

2
+ p̃σ2

η

))
for p̃ > ñ,




+
t

p̃

(∥∥∥β(H)
Sc

∥∥∥
2

2
+ (d− p̃)σ2

η + σ2
ξ

)
×








p̃
ñ−p̃−1 for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,
ñ

p̃−ñ−1 for p̃ ≥ ñ+ 2,




=

(∥∥∥β(H)
T

∥∥∥
2

2
+ tσ2

η

)
×





1 + t ·

∥∥∥β(H)
Sc

∥∥∥
2

2
+(d−p̃)σ2

η+σ2
ξ

(ñ−p̃−1)

(∥∥∥β(H)
T

∥∥∥
2

2
+tσ2

η

) for p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,

ñ
p̃


(p̃2−ñp̃)ψT +ñp̃−1

p̃2−1 + t ·

∥∥∥β(H)
Sc

∥∥∥
2

2
+(d−p̃)σ2

η+σ2
ξ

(p̃−ñ−1)

(∥∥∥β(H)
T

∥∥∥
2

2
+tσ2

η

)


 for p̃ ≥ ñ+ 2.

(88)

where ψT , t
p̃

∥∥∥β(H)
S

∥∥∥
2

2
+p̃σ2

η
∥∥∥β(H)

T

∥∥∥
2

2
+tσ2

η

was defined for t > 0 and p̃ > 0 before Theorem 5 in the main text.

Then, we use the last result together with the relation between E

{∥∥∥θ̂T

∥∥∥
2

2

}
and E

{∥∥∥θ̂T − θT

∥∥∥
2

2

}

from (80) and the formulation of ∆E
(T ,S)
transfer from (85) to get that

∆E
(T ,S)
transfer = κT ×





1− 2ρT + t
ζSc+σ2

ξ

(ñ−p̃−1)κT
for 1 ≤ p̃ ≤ ñ− 2,

∞ for ñ− 1 ≤ p̃ ≤ ñ+ 1,

ñ
p̃

(
(p̃2−ñp̃)ψT +ñp̃−1

p̃2−1 − 2ρT + t
ζSc+σ2

ξ

(p̃−ñ−1)κT

)
for p̃ ≥ ñ+ 2

for t > 0, and ∆E
(T ,S)
transfer = 0 for t = 0. The last expression utilizes the definitions provided in the

main text before Theorem 5.

Appendix G. Transfer of Specific Sets of Parameters: Additional Analytical and

Empirical Evaluations of Generalization Error Curves

The following results are for two different forms of the true solution β: the first is a form with

linearly increasing values (Fig. 4(a)), the second is a form with sparse values where only 25% of

coordinates have non-zero value (Fig. 4(e)). Note that both forms satisfy ‖β‖22 = d.

The three types of linear operator H in the evaluations of Section 4 are as follows. First, H = Id
that is the identity operator. Second, is the circulant matrix H that corresponds to a shift-invariant

local averaging operator that uniformly considers 11-coordinates neighborhood around the com-

puted coordinate (note that in other parts of this paper we consider also averaging operators with
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neighborhood sizes other than 11). Third, is the circulant matrix H that corresponds to discrete

derivative operator based on the convolution kernel [−05, 05].
Figures 11-12 present the analytical and empirical values of the generalization error of the target

task with respect to specific coordinate layouts L that evolve with respect to the value of p (this

evolution of L is the same in each of the subfigures and it is not particularly designed to any of the

combinations of the true β, H, and σ2
η). It is clear from Figures 11-12 that the increase in σ2

η , which

by its definition corresponds to less related source and target tasks, reduces the benefits or even

increases the harm due to transfer of parameters (one can observe that in Figs. 11-12 by comparing

the error curves among subfigures in the same row).

The effect of H with respect to the true β is also evident. First, the identity operator H = Id
does not reduce the relation between the source and target tasks and therefore does not degrade

the parameter transfer performance by itself (i.e., for H = Id, only the additive noise level σ2
η

can reduce the relation between the tasks). Second, when H is a local averaging operator it does

not reduce the benefits from transfer learning (e.g., compare second to first row of subfigures in

Figs. 11-12) in the case of linearly-increasing β shape (because local averaging does not affect a

linear function, except to the few first and last coordinates where the periodic averaging is applied),

in contrast, the local averaging operator significantly degrades the parameter transfer performance

in the case of the sparse β form. Lastly, when H is a discrete derivative operator it renders trans-

fer learning harmful in the case of linearly-increasing β shape (e.g., compare third to first row of

subfigures in Fig. 11). In the case of the sparse β form the discrete derivative reduces the potential

benefits of the parameter transfer but does not eliminate them completely in the case these benefits

exist for H = Id (e.g., compare third to first row of subfigures in Fig. 12).
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Figure 11: Analytical (solid lines) and empirical (circle markers) values of E
(L)
out for specific, non-

random coordinate layouts. The true solution β has linearly-increasing values. All

subfigures use the same sequential evolution of L with p. Each subfigure considers

a different case of the relation (6) between the source and target tasks: each column of

subfigures has a different σ2
η value, and each row of subfigures corresponds to a different

linear operator H. The analytical values, induced from Theorem 5, are presented using

solid-line curves, and the respective empirical results obtained from averaging over 750

experiments are denoted by circle markers. Each curve color refers to a different number

of transferred parameters.
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Figure 12: Analytical (solid lines) and empirical (circle markers) values of E
(L)
out for specific, non-

random coordinate layouts. The true solution β has a sparse form of values. All

subfigures use the same sequential evolution of L with p. Each subfigure considers

a different case of the relation (6) between the source and target tasks: each column of

subfigures has a different σ2
η value, and each row of subfigures corresponds to a different

linear operator H. The analytical values, induced from Theorem 5, are presented using

solid-line curves, and the respective empirical results obtained from averaging over 750

experiments are denoted by circle markers. Each curve color refers to a different number

of transferred parameters.
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