
A preliminary version of this paper appears in the proceedings of INDOCRYPT 2020. This is the
full version.

Dual-Mode NIZKs: Possibility and Impossibility
Results for Property Transfer

Vivek Arte1 Mihir Bellare2

February 2021

Abstract

This paper formulates, and studies, the problem of property transference in dual-mode
NIZKs. We say that a property P (such as soundness, ZK or WI) transfers, if, one of the
modes having P allows us to prove that the other mode has the computational analogue of P,
as a consequence of nothing but the indistinguishability of the CRSs in the two modes. Our
most interesting finding is negative; we show by counter-example that the form of soundness
that seems most important for applications fails to transfer. On the positive side, we develop
a general framework that allows us to show that zero knowledge, witness indistinguishability,
extractability and weaker forms of soundness do transfer. Our treatment covers conventional,
designated-verifier and designated-prover NIZKs in a unified way.

1
Department of Computer Science & Engineering, University of California San Diego, USA. Email: varte

@eng.ucsd.edu. URL: cseweb.ucsd.edu/~varte/. Supported in part by the grants of the second author.
2
Department of Computer Science & Engineering, University of California San Diego, USA. Email: mihir

@eng.ucsd.edu. URL: cseweb.ucsd.edu/~mihir/. Supported in part by NSF grant CNS-1717640 and a gift from

Microsoft corporation.

1

Contents

1 Introduction 3

2 Preliminaries 7

3 Proof systems and Dual Mode proof systems 8

4 A study in soundness 10

5 Transference framework and positive results 14

6 SND in application: A test case 21

References 23

A Proof of Proposition 4.3 28

B Proof of Theorem 5.2 29

C Proof of Theorem 6.1 31

D Related Work 33

2

1 Introduction

Non-interactive zero-knowledge (NIZK) systems [BFM88, BDSMP91] are blossoming. New appli-
cations are fueling the development of schemes that are not only more e�cient than classical ones
but may also be simpler, more elegant and more powerful in application. One way this happens is
via the concept of dual mode [GOS06b, GOS06a, GOS12, AFH+16, HU19, LPWW20].

Background. Groth, Ostrovsky and Sahai [GOS06b, GOS06a, GOS12] build a pair of NIZK
systems ⇧0,⇧1 such that (1) the prover and verifier are the same for both (2) the two systems
have CRSs that, although di↵erent, are computationally indistinguishable under the SubGroup
Decision or Decision Linear Assumptions, and (3) ⇧0 has perfect soundness while ⇧1 has perfect
zero-knowledge (ZK).

Why do this? GOS wanted a (single) NIZK system that was perfect ZK and computationally
sound. The claim would be that ⇧1 has these properties, because CRS indistinguishability, plus
the perfect soundness of ⇧0, would automatically imply computational soundness of ⇧1. In our
language, soundness has been “transferred” from ⇧0 to ⇧1, as a consequence of nothing but CRS
indistinguishability.

Recognition of the power of this technique lead to the formalization of dual-mode systems.
Rather than a single or accepted definition, however, there are many, with a common core and
varying peripherals [AFH+16, HU19, LPWW20]. At its core, a dual-mode system D⇧ has a CRS
generator that takes an input µ 2 {0, 1} (the desired mode), and the CRSs generated in the two
modes must be computationally indistinguishable. Proving and verification algorithms are as in a
(single mode) NIZK system. The modes are called binding and hiding, and the (varying) peripheral
requirements placed on them in prior works are summarized in Figure 1.

Looking across usage and applications in the literature, the value of dual-mode continues to
lie in transference, namely, being able to prove that if a property (like soundness) is present in
one mode then its computational analogue is also present in the other, as a consequence just of
the indistinguishability of the CRSs in the two modes. But there is growing recognition that
transference can be subtle and not as simple as it seems. For example, certain (weaker) forms
of soundness are proven to transfer, but for other (stronger) forms, the natural proof approach
fails, and whether or not the transference holds remains an open question [GOS12, LPWW20].
This lead GOS, in the journal version of their work [GOS12], to introduce culpable soundness, an
intermediate notion that they could show transfers.

Overview of our contributions. We want to understand the limitations and possibilities of
transference, including which properties transfer, which don’t, and why. We divide our contribu-
tions into the following parts.

. Definitions. We start by defining a dual-mode system D⇧ in a di↵erent way; we ask only for
the (core) CRS indistinguishability requirement. Unlike prior works (cf. Figure 1), no requirements
are placed on the individual modes. We then define, in the natural way, the (single-mode) systems
D⇧0,D⇧1 induced by D⇧. A property P (soundness, ZK, WI, ...) is a requirement on a single-mode
system, not a dual-mode one. Transference of a property P is now the question: If D⇧µ satisfies P,
does D⇧1�µ satisfy the computational analogue of P?

. Negative results. We show that certain strong (desirable, application-enabling) forms of
soundness fail to transfer. These negative results are established by giving explicit counter-examples
under standard assumptions (CDH, DDH). This shows that the di�culties noted in prior work with
regard to proving transference for certain forms of soundness [GOS12, LPWW20], are inherent.

. Positive results. We formalize a “property” P as a property specification PS and give
su�cient conditions on PS for it to successfully transfer. Through this we show that ZK, WI and

3

Who Requirements for mode 0
Requirements

for mode 1

[AFH+16] perfect soundness and extractability perfect ZK and WI
[HU19] statistical soundness and extractability statistical WI

[LPWW20] statistical soundness statistical ZK

Our work None None

Figure 1: Requirements placed on the two modes in definitions of dual-mode systems.

extractability (we define them in strong ways that are application-enabling) do transfer, as do
weaker (as per what follows, not application-enabling) forms of soundness. Our framework may
have future value in helping evaluate or establish transference of the many definitional variants of
the basic properties that arise.

. Applicability assessment. It is desirable that the forms of soundness that transfer be
suitable for applications, leading us to ask, which are? We examine a canonical application of
NIZKs, the one to digital signatures [BG90, CDG+17], and find that the form of soundness it
needs is one that our negative results show does not transfer. Thus, our finding is that the most
application-enabling (stronger, desirable) forms of soundness fail to transfer, while weaker forms
do transfer.

. Unified treatment. We define single and dual-mode systems in a way that includes, as
special cases, the conventional [BFM88, BDSMP91], designated verifier [ES02, PsV06, DFN06]
and designated prover [KW18, KNYY19] settings. Our definition of CRS indistinguishability asks
that it hold even when the adversary knows the proving and verification keys (if any). Sound-
ness is required even in the presence of a verification oracle, to capture the reusable designated
verifier setting [LPWW20]. Our results apply to all these settings. The motivation for this broad
treatment is the many recent advances in settings beyond the conventional one [KW18, KNYY19,
LPWW20, BCGI18, BCG+19]. In the rest of this Introduction, however, we will for simplicity
confine discussion to the conventional setting.

Definitions. Recall that the syntax of a (classical, single-mode) NIZK system specifies three
polynomial-time algorithms: CRS-generator ⇧.C that produces the common reference string crs
 $ ⇧.C(1�) from the (unary representation of the) security parameter �; proof-generator ⇧.P that
produces the proof pf $ ⇧.P(1�, crs, x, w) from an instance x and witness w; and verifier ⇧.V that
produces a boolean decision d ⇧.V(1�, crs, x, pf) for a candidate proof pf. For such systems,
one can consider many security properties, including soundness, extractability, zero-knowledge and
witness indistinguishability. But each property has many variant forms (statistical, perfect, non-
adaptive, adaptive, single or multi-theorem, ...), and, even within these, di↵erences in definitional
details, so that in the end there is a veritable zoo of notions.

We define a dual-mode proof system D⇧ to have the same syntax as a (single-mode) proof system
except that the CRS generator D⇧.C takes an additional input µ 2 {0, 1}, the desired mode. (Prover
algorithm D⇧.P and verifier algorithm D⇧.V remain as before.) The only semantic requirement
is mode indistinguishability, asking that the CRSs generated in modes 0, 1 be computationally
indistinguishable.

Next we define the induced (single-mode) proof systems D⇧0 and D⇧1. For both, the prover
algorithm is D⇧.P and the verifier algorithms is D⇧.V. The di↵erence is their CRS generation
algorithms, that of D⇧µ being D⇧.C with the mode input set to µ 2 {0, 1}. Since the induced proof
systems are single-mode ones, one can speak of their having, or not having, a property P from the

4

list above. Transference for a property P is now the following question: If D⇧µ satisfies P, does
D⇧1�µ also satisfy P?

Transference intuition. One would imagine that any property P transfers, by the following
proof. Suppose P holds for one mode, wlog D⇧0. We want to show it also holds in D⇧1. Let A
be a PT (polynomial-time) adversary violating P in D⇧1. We build a PT adversary D violating
mode indistinguishability. As per the definition of the game for the latter, the input to D is a
crs of a challenge mode µ $ {0, 1}, and D is trying to determine µ. Adversary D runs A on
input crs and tests if it violates P. If so, it predicts that µ = 1, else that µ = 0. The di�culty
is that “testing whether A violates P” may not be doable in polynomial-time. In particular, for
soundness (depending on the precise definition of the property as we consider below), it may involve
testing membership in the underlying language, which, for languages of interest, is not doable in
polynomial-time. This di�culty is recognized [GOS12, LPWW20]. However, it does not mean
that the property necessarily fails to transfer; it just means that the obvious proof approach fails.
Is there another, more clever one, that succeeds? We will answer this question negatively, giving
counterexamples to show non-transference for certain properties of interest in applications.

Soundness notions. The underlying NP-relation R defines a language LR(crs). (As per [Gro06],
and to cover systems in the literature, the language is allowed to depend on the CRS.) Soundness
of a (single-mode) proof system ⇧ for R asks that an adversary given crs be unable to find an
x 62 LR(crs), and a proof pf, such that ⇧.V(1�, crs, x, pf) = true. The di�culty, for transference, is
that testing whether the adversary wins seems to require testing that x 62 LR(crs), which is likely
not doable in PT. With attention drawn to this issue, however, one sees that whether or not the
test is required depends on exactly how the soundness game is defined. The broad format is that
the game picks and gives crs to the adversary, who then provides the game with x, pf, and the
game then performs a “winning test.” Now we consider two definitions: SND-P (penalty style) and
SND-E (exclusion style). (This follows the consideration of similar notions for IND-CCA encryption
in [BHK15].) In SND-P, the winning test is that x 62 LR(crs) and ⇧.V(1�, crs, x, pf) = true, and
SND-P security asks that any PT adversary has negligible winning probability. In SND-E the
winning test is just that ⇧.V(1�, crs, x, pf) = true, and SND-E security asks for negligible winning
probability, not for all adversaries, but for a subclass we call membership conscious: the probability
that the x they provide is in LR(crs) is negligible. (Membership consciousness is an assumption on
the adversary. Nothing in the game verifies it.) Clearly, SND-P is stronger: SND-P) SND-E.
(Any SND-P secure ⇧ is also SND-E secure.) We can show that SND-E is strictly weaker: SND-E
6) SND-P. (There exists a ⇧ that is SND-E secure but not SND-P secure.)

Soundness transference. We show that (1) SND-E transfers, but (2) SND-P does not. The
first follows from general results we discuss below. With regard to the second, that the winning
test is not PT is an indication that transfer may fail, but not a proof that it does. (What it means
is that the particular, above-discussed approach to prove transference fails.) In Theorem 4.4, we
show non-transference via a counter-example. We give a dual-mode proof system D⇧ and relation
R such that (2a) D⇧ satisfies mode indistinguishability (2b) D⇧1 satisfies SND-P for R but (2c) D⇧0

does not satisfy SND-P for R. These results assume hardness of the DDH (Decision Di�e-Hellman)
problem in an underlying group. We show (2a) and (2b) by reductions to the assumed hardness of
DDH. We show (2c) by an attack, a description of an explicit PT adversary that, with probability
one, violates SND-P for D⇧0.

Penalty or exclusion? The lack of transference of SND-P is more than an intellectual curiosity;
it inhibits applicability. We consider building digital signatures from NIZKs, a canonical application
that originates in [BG90], and, with [CDG+17], is seeing renewed interest as a way to obtain e�cient

5

post-quantum signatures. We look closely at the proof to see that while SND-P su�ces, SND-E
does not appear to do so. This phenomenon seems fairly general: applications of NIZKs that rely
on soundness seem to need SND-P, not SND-E.

Transference framework. We turn to positive results, proving that certain (important) prop-
erties P do transfer. We could give such proofs individually for di↵erent choices P, but this has a
few drawbacks. First, proofs which at heart are very similar will be repeated. Second, proofs will
be needed again for new or further property variants that we do not consider. Most important,
however, from our perspective, ad hoc proofs fail to yield theoretical understanding; exactly what
about a property allows it to transfer?

To address this we give a framework to obtain positive transference results. The intent is
to formalize the above-described transference intuition. We start with a definition, of an object,
denoted PS, that we call a property specification PS. While the game defining P would typically
pick crs by running ⇧.C, the corresponding property specification sees the game output (result, win
or not, of executing the game with an adversary) as a function of crs, e↵ectively pulling the latter
out of the game. We then give a general result (Theorem 5.2, the Transfer Theorem) saying that
property specifications transfer successfully as long as they are polynomial time.

To apply this to show transference of a particular property P, we must specify the corresponding
property specification PS and show that it is polynomial time. We do it for SND-E, zero-knowledge,
witness indistinguishability and extractability to conclude that all these properties transfer success-
fully. (A property specification can be given for SND-P, but it is not polynomial time.)

Discussion and related work. It is valuable, for applications, to have proof systems satisfying
SND-P. The dual-system framework does not automatically provide this for its induced proof
systems, because these properties do not transfer. This does not, however, say whether or not the
induced proof systems have these properties for particular dual-mode systems in the literature. For
example, does the PZK mode of the [GOS06b] system satisfy SND-P? We have found neither an
attack to show it does not, nor a proof to show it does, and consider this an interesting question
to settle.

Broadly, our work calls for care in using dual-mode systems in applications. One needs to
check that the mode one is using has the desired properties, rather than expect that they arrive by
transference. Our Transfer Theorem can help with such checks.

In our Theorem 4.4 counter-example showing that SND-P does not transfer, the relation R is
CRS-dependent. To settle, by proof or counter-example, whether SND-P transfers for relations
that are not CRS-dependent, is an interesting open question.

Abe and Fehr (AF) [AF07] show that if ⇧ is statistical ZK for an NP-complete relation for R
then it is unlikely that it can be proven SND-P via a certain restricted type of blackbox reduction
to what they call a standard decision problem. Now suppose D⇧ is a dual-mode system for R such
that D⇧1 satisfies statistical ZK and D⇧0 satisfies SND-P. Then the AF result says that, if mode
indistinguishability is proven via a blackbox reduction to a standard decision problem, then one
will be unlikely to be able to give a blackbox proof that SND-P transfers to D⇧1. This however
does not rule out transference altogether; it rules out proving it in certain limited ways. (Possibly
transference could be shown via non-black box reductions, or assumptions that are not standard
decision problems.) In comparison, our Theorem 4.4 gives an example where transference not only
cannot be proven, but demonstrably fails.

In Appendix D, we survey related work in detail, discussing di↵erent models, and di↵erent
definitions of soundness, in the literature.

Bug fix. Recall that one of our claims is that SND-E transfers. For the definition of SND-E given

6

in the preliminary version of our paper [AB20], this claim was not true. (In fact, for that definition,
the counter-example in the proof of Theorem 4.4, showing SND-P does not transfer, also showed
that SND-E does not transfer.) To recover the claim, we have, in this version, strengthened the
definition of membership consciousness of an adversary, and thus the definition of SND-E. With
this Theorem 5.3, showing SND-E transfers, is recovered.

2 Preliminaries

Notation. If w is a vector then |w| is its length (the number of its coordinates) and w[i] is its i-th
coordinate. Strings are identified with vectors over {0, 1}, so that |Z| denotes the length of a string
Z and Z[i] denotes its i-th bit. By " we denote the empty string or vector. By xky we denote the
concatenation of strings x, y. If x, y are equal-length strings then x�y denotes their bitwise xor. If
S is a finite set, then |S| denotes it size.

If X is a finite set, we let x $ X denote picking an element of X uniformly at random and
assigning it to x. Algorithms may be randomized unless otherwise indicated. If A is an algorithm,
we let y AO1,...(x1, . . . ;!) denote running A on inputs x1, . . . and coins !, with oracle access
to O1, . . ., and assigning the output to y. By y $ AO1,...(x1, . . .) we denote picking ! at random
and letting y AO1,...(x1, . . . ;!). We let [AO1,...(x1, . . .)] denote the set of all possible outputs
of A when run on inputs x1, . . . and with oracle access to O1, An adversary is an algorithm.
Running time is worst case, which for an algorithm with access to oracles means across all possible
replies from the oracles. We use ? (bot) as a special symbol to denote rejection, and it is assumed
to not be in {0, 1}⇤.

A function ⌫ : N ! N is negligible if for every positive polynomial p : N ! R there is a �p 2 N
such that ⌫(�)  1/p(�) for all � � �p. “PT” stands for “polynomial time.” By 1� we denote the
unary representation of the integer security parameter � 2 N.
Games. We use the code-based game-playing framework of BR [BR06]. A game G (see Figure 2 for
examples) starts with an optional Init procedure, followed by a non-negative number of additional
procedures, and ends with a Fin procedure. Execution of adversary A with game G consists of
running A with oracle access to the game procedures (which accordingly are also called oracles),
with the restrictions that A’s first call must be to Init (if present), its last call must be to Fin,
and it can call these two procedures at most once each. The output of the execution is the output
of Fin. By Pr[G(A)) y] we denote the probability that the execution of game G with adversary
A results in this output being y, and write just Pr[G(A)] for the probability that the execution of
game G with adversary A results in the output of the execution being the boolean true.

Note that our adversaries have no input or output. The role of what in other treatments is the
adversary input is, for us, played by the response to the Init query, and the role of what in other
treatments is the adversary output is, for us, played by the query to Fin.

Di↵erent games may have procedures (oracles) with the same names. If we need to disambiguate,
we may write G.O to refer to oracle O of game G.

In games, integer variables, set variables, boolean variables and string variables are assumed
initialized, respectively, to 0, the empty set ;, the boolean false and ?.
CDH and DDH assumptions. A group generator GG is a PT algorithm that takes as input a
security parameter 1� and outputs a triple (p,G, g) $ GG(1�) consisting of a prime p, (a description
of) a group G of order p and a generator g 2 G \ { G} of G. We recall the Computational Di�e-
Hellman (CDH) and Decisional Di�e-Hellman (DDH) problems associated to GG via the games in
Figure 2. We define Adv

cdh
GG,�(A) = Pr[Gcdh

GG,�(A)] to be the cdh-advantage of an adversary A. The
CDH problem is hard for GG, or the CDH assumption holds for GG, if for every PT adversary A

7

Game G
cdh
GG,�

Init():

1 (p,G, g) $ GG(1
�
)

2 a, b $ Zp

3 Return (p,G, g, ga, gb)

Fin(C):

4 Return (C = gab)

Game G
ddh
GG,�

Init():

1 (p,G, g) $ GG(1
�
) ; d $ {0, 1} ; a, b, c $ Zp

2 If (d = 1) then C gab else C gc

3 Return (p,G, g, ga, gb, C)

Fin(d0):

4 Return (d0 = d)

Figure 2: Games defining the CDH and DDH assumptions for GG.

the function � 7! Adv
cdh
GG,�(A) is negligible. We define Adv

ddh
GG,�(A) = 2Pr[Gddh

GG,�(A)] � 1 to be
the ddh-advantage of an adversary A. The DDH problem is hard for GG, or the DDH assumption
holds for GG, if for every PT adversary A the function � 7! Adv

ddh
GG,�(A) is negligible.

3 Proof systems and Dual Mode proof systems

A proof system provides a way for one party (the prover) to prove some “claim” to another party
(the verifier). A claim pertains to membership of an instance x in an NP language, the latter
defined by an NP relation R.

NP relations. Following [Gro06], and to cover existing proof systems, we allow the relation to
depend on the CRS. Thus a relation is a function R : {0, 1}⇤ ⇥ {0, 1}⇤ ⇥ {0, 1}⇤ ! {true, false}
that takes the CRS crs, a instance x and a candidate witness w to return either true (saying w
is a valid witness establishing the claim) or false (the witness fails to validate the claim). For
crs, x 2 {0, 1}⇤ we let R(crs, x) = {w : R(crs, x, w) = true } be the witness set of x. R is said to
be an NP relation if it is PT and there is a polynomial R.wl : N! N called the maximum witness
length such that every w in R(crs, x) has length at most R.wl(|crs|+ |x|) for all x 2 {0, 1}⇤. We let
LR(crs) = {x : R(crs, x) 6= ; } be the language associated to R and crs.

Proof systems. A proof system is the name of the syntax for the primitive that enables the
production and verification of such proofs, in the classical, single-mode sense. Soundness, zero-
knowledge and many other things will be security properties for such (single-mode) proof systems.
We give a general, unified syntax that allows us to recover, as special cases, various models such as
the common reference/random string (CRS) models [BFM88, BDSMP91, Dam00, FF00, Ps05], the
designated-verifier (DV) model [ES02, PsV06, DFN06], the designated-prover (DP) model [KW18,
KNYY19], and the preprocessing (PP) model [DMP90]. (Further discussion and history of these
models is provided in Appendix D.) Now proceeding formally, a proof system ⇧ specifies the fol-
lowing PT algorithms:

- CRS generation. Via (crs, td, kP, kV) $ ⇧.C(1�), the crs-generation algorithm ⇧.C takes the
(unary representation of the) security parameter and returns an output crs called the common
reference string, a trapdoor td, a proving key kP and a verification key kV.

- Proof generation. Via pf $ ⇧.P(1�, crs, kP, x, w) the proof generation algorithm ⇧.P takes the
unary security parameter, crs, a prover key kP, an instance x and a witness w to produce a
proof string.

- Proof verification. Via d ⇧.V(1�, crs, kV, x, pf) the deterministic proof verification algorithm
⇧.V produces a decision d 2 {true, false} indicating whether or not it considers pf valid.

8

Game G
mode
D⇧,�

Init():

1 b $ {0, 1}
2 (crs, td, kP, kV) $ D⇧.C(1�, b)

3 Return (1
�, crs, kP, kV)

Fin(b0):

4 Return (b0 = b)

Games G
snd-p
⇧,R,� / G

snd-e
⇧,R,�

Init():

1 (crs, td, kP, kV) $ ⇧.C(1�)

2 Return (1
�, crs, kP)

Vf(x, pf):

3 d ⇧.V(1�, crs, kV, x, pf)

4 If (x 2 LR(crs)) then Return d

5 If (d) then win true

6 Return d

Fin():

7 Return win

Game G
mcg
R,�,C,V

Init():

1 (crs, td, kP, kV) $ C(1
�
)

2 Return (1
�, crs, kP)

Vf(x, pf):

3 d V(1
�, crs, kV, x, pf)

4 If (x 2 LR(crs)) then bad true

5 Return d

Fin():

6 Return bad

Figure 3: Left: Game defining mode indistinguishability for a dual-mode proof system D⇧. Top Right:
Games defining SND-P and SND-E soundness of proof system ⇧ for relation R. Bottom Right: Game
defining membership consciousness of the adversary playing it.

We say that ⇧ satisfies completeness for relation R if ⇧.V(1�, crs, kV, x, pf) = true for all � 2 N, all
(crs, td, kP, kV) 2 [⇧.C(1�)], , all x 2 LR(crs), all w 2 R(crs, x) and all pf 2 [⇧.P(1�, crs, kP, x, w))].
This required completeness is perfect, but this can be relaxed if necessary.

Recovering the different models within our syntax. The common reference string model
(or CRS model) is the special case of our syntax in which ⇧.C always sets both the proving key
and verification key to the empty string, kP = kV = ". In some constructions [PsV06, ES02], the
verification key is dependent on both the crs and the trapdoor td, while in other constructions
[QRW19, LQR+19, LPWW20] it is dependent only on the crs. This distinction can be captured
as a condition on ⇧.C. The designated prover (DP) model corresponds to ⇧.C always setting the
verification key to the empty string, kV = ". The preprocessing (PP) model is captured by our
syntax with no further restrictions. Here, the proving and verification keys may be dependent on
the crs [KNYY19], or it might even be that the crs and td are set to the empty string and the keys
do not depend on these parameters [KW18], all of which can be captured as conditions on ⇧.C.

Dual-mode systems. We define a dual-mode proof system D⇧ as also specifying a PT CRS
generation algorithm D⇧.C, a PT proof generation algorithm D⇧.P and a PT deterministic proof
verification algorithm D⇧.V. The syntax of the last two is identical to that in a proof system as
defined above. The di↵erence is the CRS generator D⇧.C, which now (in addition to 1�) takes an
input µ 2 {0, 1} called the mode, and returns a tuple (crs, td, kP, kV), as before.

9

For the common reference string model, the security requirement for a dual-mode proof sys-
tem would be that the common reference strings created in the two modes are computationally
indistinguishable. We suggest and introduce a generalization to our broader syntax, asking that
the common reference strings and the proving and verification keys created in the two modes are
indistinguishable. We call this mode indistinguishability. To formalize this, consider game G

mode
D⇧,�

of Figure 3 associated to dual-mode proof system D⇧, and let the mode advantage of adversary A
be defined by Adv

mode
D⇧,�(A) = 2Pr[Gmode

D⇧,�(A)]� 1. Mode indistinguishability asks that for all PT
adversaries A, the function � 7! Adv

mode
D⇧,�(A) is negligible.

A dual-mode proof system D⇧ gives rise to two (standard) proof systems that we call the
proof systems induced by D⇧ and denote D⇧1 and D⇧0. Their proof generation and verification
algorithms are those of D⇧, meaning D⇧µ.P = D⇧.P and D⇧µ.V = D⇧.V, for both µ 2 {0, 1}. The
di↵erence between the two proof systems is in their CRS generation algorithms. Namely D⇧µ.C is

defined by: (crs, td, kP, kV) $ D⇧.C(1�, µ); Return (crs, td, kP, kV).

Comparison with prior notions. Unlike prior definitions [AFH+16, HU19, LPWW20], we do
not tie to D⇧, or mandate for it, any properties like soundness or ZK. These properties are defined
(only) for (single-mode) proof systems. Accordingly, we can talk about whether or not the induced
proof systems meet them. This allows us to decouple the core dual-mode concept from particular
properties.

Our definition of mode indistinguishability asks that (crs, kP, kV) be indistinguishable across the
two modes, while prior definitions asked only that crs be indistinguishable across the modes. For the
cases where dual-mode systems have been defined in the past, the two coincide. This is clearly true
for the common reference string model, since here kP, kV are ". For the designated-verifier setting
of [LPWW20], our definition may at first seem di↵erent, but it isn’t, because in [LPWW20], kV
is determined from crs by a key-generation algorithm, and doesn’t depend on the trapdoor. (And
meanwhile, kP = ".) A distinguisher can thus compute kP, kV from crs, making our definition
equivalent to that of [LPWW20] in this case. The case where our definition is di↵erent from asking
just for crs indistinguishability is when kP, kV depend on the coins underlying crs, td. Dual-mode
systems for this setting, however, do not seem to have been defined prior to our work.

4 A study in soundness

We study soundness transference, showing that whether or not it holds depends on exactly how
soundness is defined. We start thus with definitions.

SND-E and SND-P soundness. Soundness for a relation R asks that it be hard to create a valid
proof for x 62 LR(crs). We consider two ways to define this, namely the penalty style (SND-P)
and the exclusion style (SND-E). These two styles, and their issues, were first formally considered
in [BHK15] in the context of IND-CCA public-key encryption and KEMs. In the penalty style the
adversary is penalized by the game when it submits a verification query where the claim is in the
language, the game testing this and not allowing it to win in this case. In the exclusion style, the
adversary is simply prohibited from making queries with claims in the language, meaning a claim
of SND-E security quantifies only over the sub-class of adversaries that never make such queries
(or make them with negligible probability).

Consider the games in Figure 3. A verification oracle Vf is used to cover the designated-verifier
setting. Game G

snd-p
⇧,R,� includes the boxed code, so that when the adversary submits x 2 LR(crs)

to Vf, the oracle returns the output of the verification algorithm on the query without setting
the win flag. Otherwise, the game returns the decision taken by ⇧.V based on the instance x

10

(now known not to be in LR(crs)) and proof pf provided by the adversary, and only sets win if
the verifier algorithm returns true in this case. From the transference perspective, the relevant
fact is that the membership test will usually not be PT. We let Adv

snd-p
⇧,R,�(A) = Pr[Gsnd-p

⇧,R,�(A)]
be the sndp-advantage of A. We say that ⇧ is computational SND-P for R if for all PT A the
function � 7! Adv

snd-p
⇧,R,�(A) is negligible; statistical SND-P if for all A, regardless of running time,

the function � 7! Adv
snd-p
⇧,R,�(A) is negligible; perfect SND-P if for all A, regardless of running time,

Adv
snd-p
⇧,R,�(A) = 0. Saying just that ⇧ is SND-P means it could be any of the three, meaning the

default assumption is computational.
Game G

snd-e
⇧,R,� excludes the boxed code. Regardless of whether or not x is in LR(crs), the

adversary wins if the verifier decision d computed at line 3 is true. This clearly doesn’t by itself
capture soundness, since the adversary can submit x 2 LR(crs) to Vf. This is ruled out, not in the
game, but by restricting attention to adversaries that are what we call membership conscious. The
benefit, from the transference perspective, is that the checks made by the game are now PT. We
let Adv

snd-e
⇧,R,�(A) = Pr[Gsnd-e

⇧,R,�(A)] be the snde-advantage of A.
Consider game Gmcg

R,�,C,V, also in Figure 3. Here C,V are algorithms that parameterize the game,
the second being deterministic and returning either true or false. They represent choices of CRS
generation and verification algorithms of a proof system. We let Adv

mcg
R,�,C,V(A) = Pr[Gmcg

R,�,C,V(A)].
We say that an adversary A is membership conscious for R if, for all choices of PT algorithms C,V,
the function � 7! Adv

mcg
R,�,C,V(A) is negligible. That is, the adversary almost never submits a Vf

query x that is in LR(crs), regardless of how crs, kP, kV are distributed or chosen, and regardless of
the replies given to its queries. We denote by Amc

R the class of all membership conscious adversaries
for R. Now we say that ⇧ is computational SND-E for R if for all PT A 2 Amc

R the function
� 7! Adv

snd-e
⇧,R,�(A) is negligible; statistical SND-E if for all A 2 Amc

R , regardless of running time,
the function � 7! Adv

snd-e
⇧,R,�(A) is negligible; perfect SND-E if for all A 2 Amc

R , regardless of running
time, Adv

snd-e
⇧,R,�(A) = 0. Saying just that ⇧ is SND-E means it could be any of the three, meaning

the default assumption is computational.
In the preliminary version of this work [AB20], we had given a weaker definition of membership

consciousness of A, that asked that A rarely query x 2 LR(crs) only for the C,V being ⇧.C,⇧.V,
respectively. Under this definition, the claim that SND-E transfers was wrong. The reason was
that whether or not A is membership conscious depended on ⇧, and was not maintained in moving
from one mode to the other. We have now strengthened the definition of membership consciousness
of A, asking that A rarely query x 2 LR(crs) for all choices of C,V, not just those of ⇧ made in
game G

snd-e
⇧,R,�. This makes membership consciousness independent of ⇧. Under this definition, we

recover the result that SND-E transfers.

Relations between definitions. To better understand the di↵erences between the notions, we
briefly study some relations between them. The following says that SND-P always implies SND-E:

Proposition 4.1 Let ⇧ be a proof system and R a relation. If ⇧ is computational (respectively
statistical, perfect) SND-P then it is also computational (respectively statistical, perfect) SND-E.

The proof is simple. Let A be a membership-conscious adversary for R that wins the SND-E game,
violating SND-E. Then it also wins the SND-P game. (Its advantage as measured in the SND-P
game can only be less than its advantage as measured in the SND-E game by a negligible amount.)
And since SND-P quantifies over all PT adversaries (whether membership conscious for R or not),
we have an adversary violating SND-P.

Another observation is that an unbounded adversary can check membership in the language.
Due to this, the two formulations of soundness coincide in the statistical and perfect cases:

11

Proposition 4.2 Let ⇧ be a proof system and R a relation. Then (1) ⇧ is statistically SND-P for
R i↵ it is statistically SND-E for R, and (2) ⇧ is perfectly SND-P for R i↵ it is perfectly SND-E
for R.

The interesting case is the computational one. Here the two definitions do not coincide. We defer
the proof of the following to Appendix A.

Proposition 4.3 Assume there exists a group generator relative to which DDH is hard. Then there
exists a proof system ⇧ and relation R such that (1) ⇧ is SND-E for R but (2) ⇧ is not SND-P for
R.

We will see in Section 6 that SND-P is what works for applications, SND-E being too weak. Thus,
it is desirable that SND-P transfer. Unfortunately, we show below that, in general, it does not.
Later, we will show that SND-E does, however, transfer.

Non-transference of SND-P. We give a counter-example to show that SND-P does not, in
general, transfer. The counter-example constructs an explicit relation R and dual-mode proof
system D⇧ such that D⇧ satisfies mode indistinguishability and SND-P holds in mode 1, but we
can give an attack showing it does not hold in mode 0. D⇧ is a conventional (common reference
string model) system, meaning kP = kV = ", which means the result holds also in the designated
verifier and prover settings.

Theorem 4.4 Assume there exists a group generator relative to which DDH is hard. Then there
exists a dual-mode proof system D⇧ and relation R such that (1) D⇧ satisfies mode indistinguisha-
bility and (2) D⇧1 satisfies SND-P for R, but (3) D⇧0 does not satisfy SND-P for R.

Proof of Theorem 4.4: Let GG be a group generator relative to which DDH is hard. Consider
the relation R shown in Figure 4. Its first input is the CRS, which has the form (p,G, g, A,B,C),
where (p,G, g) 2 [GG(1�)] and A,B,C 2 G. The second input X is the instance. The third input
w is the witness, which we assume is in Zp. Recall that dlogG,g(Y) 2 Zp is the discrete logarithm

of Y 2 G to base g. Let a, b, c 2 Zp be such that A = ga, B = gb and C = gc. The relation
tests three things, returning true i↵ all hold. The test that gw = A forces the witness w to be
a = dlogG,g(A), meaning it can have only one value. The third test requires X to be a group

element, and the second test then says that X may be any group element except Bw = gbw = gba.
Recall that the language associated to R, (p,G, g, A,B,C) is the set of all X for which there exists
a witness w making R((p,G, g, A,B,C), X,w) = true, so we have LR((p,G, g, A,B,C)) = G \ {gab},
meaning it is all group elements except gab. Since violating soundness requires submitting an
X 62 LR((p,G, g, A,B,C)), this means that there is only one choice of X that potentially violates
soundness, namely gab.

Now consider the dual-mode proof system D⇧ whose algorithms D⇧.C, D⇧.P, D⇧.V are described
in Figure 4. The CRS generator picks a group G and returns CRS (p,G, g, A,B,C) such that, again
letting A = ga, B = gb and C = gc, if µ = 0 then (A,B,C) is a DH-tuple —meaning C = gab— and
if µ = 1 then A,B,C are uniform and independent group elements. Under the DDH assumption,
the two CRSs are indistinguishable, while the proving and verification keys are identical in both
modes since they are set to the empty string. Formally, this is claim (1) of the theorem statement,
which we show by a reduction from the mode-indistinguishability of D⇧ to the DDH assumption for
the group generator GG. For this, let A be a PT adversary. We construct the PT time adversary
Addh shown in Figure 4. For all � 2 N we have

Adv
mode
D⇧,R,�(A)  Adv

ddh
GG,�(Addh) ,

12

Relation R((p,G, g, A,B,C), X,w):

1 Return (gw = A) ^ (X 6= Bw
) ^ (X 2 G)

D⇧.C(1�, µ):

2 (p,G, g) $ GG(1
�
) ; a, b $ Zp

3 If (µ = 1) then c $ Zp

4 Else c ab mod p

5 A ga ; B gb ; C gc

6 crs (p,G, g, A,B,C)

7 td " ; kP " ; kV "

8 Return (crs, td, kP, kV)

D⇧.P(1�, crs, kP, X,w):

9 (p,G, g, A,B,C) crs ; Return "

D⇧.V(1�, crs, kV, X, pf):

10 (p,G, g, A,B,C) crs

11 If (X /2 G) then return false

12 Else return true

Adversary A0:

1 (1
�, crs, kP) $ Gsnd-p

D⇧0,R,�
.Init

2 (p,G, g, A,B,C) crs

3 Gsnd-p
D⇧0,R,�

.Vf(C, ") ; Gsnd-p
D⇧0,R,�

.Fin

Adversary Addh:

1 (p,G, g, A,B,C) $ Gddh
GG,�.Init

2 AInit,Fin

Init:

3 Return ((p,G, g, A,B,C), ", ")

Fin(b0):

4 Gddh
GG,�.Fin(1� b0)

Adversary Acdh:

1 (p,G, g, A,B) $ Gcdh
GG,�.Init

2 AInit,Vf,Fin

Init:

3 c $ Zp ; C gc

4 Return ((p,G, g, A,B,C), ")

Vf(X, pf):

5 S S [{X}
6 If (X 2 G) then return true

7 Return false

Fin():

8 X $ S ; Gcdh
GG,�.Fin(X)

Figure 4: Relation R, dual-mode proof system D⇧ and various adversaries for the proof of Theorem 4.4.

which justifies claim (1). The other algorithms of D⇧ perform trivially: The proof generator always
returns the empty string as the proof, and the verifier algorithm always accepts.

Let D⇧0 and D⇧1 be the induced proof systems of D⇧. We show claim (3) of the theorem by an
attack, namely an adversary violating SND-P for D⇧0. The adversary A0 is shown in Figure 4.
It starts, at line 1, by calling the Init oracle of its game G

snd-p
D⇧0,R,�

. The CRS (p,G, ga, gb, C) in

this game is generated by D⇧0.C, and hence C = gab. This gives the adversary an instance outside
the language LR((p,G, ga, gb, C)), namely X = C. It can now submit C to Vf at line 3. What
it submits as the proof does not matter (the choice made is the empty string) since D⇧.V always
accepts as long as the statement is in the group G; the challenge in violating SND-P was to find
an instance outside the language. This Vf query will set the win flag, and therefore this adversary
will win the game when it calls Fin. We have Adv

snd-p
D⇧0,R,�

(A0) = 1, establishing claim (3) of the
theorem.

It remains to show claim (2), namely that D⇧1 does satisfy SND-P. This is true under the CDH
assumption on GG, which is implied by the DDH assumption we have made, and is proved by
reduction. Given a PT adversary A trying to win game G

snd-p
D⇧1,R,�

, we construct the PT cdh-

adversary Acdh shown in Figure 4. It is playing game G
cdh
GG,�. From the Init oracle of that game,

it obtains (p,G, g, A,B), and then runs A, simulating A’s Init,Vf,Fin oracles as shown. When
A calls Init, our Acdh can return a legitimate mode-1 CRS by itself picking C at random and
returning (p,G, g, A,B,C). When A calls Vf with an argument X (and a proof pf which does not

13

matter) that, if it sets the win flag, will be gab, where A = ga and B = gb. If only one Vf query
was allowed, Acdh could call its own Fin oracle with X to also win. However, since multiple Vf
queries can be made, the best Acdh can do is to pick one of the statements queried to the Vf by
A at random to submit to its Fin oracle. This adds a multiplicative factor of the number of Vf
queries made by A, say q(�), to the bound. For all � 2 N we have

Adv
snd-p
D⇧0,R,�

(A)  q ·Adv
cdh
GG,�(Acdh) .

This completes the proof of claim (3) and thus of the Theorem.

We will show later that SND-E does transfer. In light of this, a good sanity check is, where would
the proof of Theorem 4.4 break down for SND-E? D⇧1 would continue to satisfy SND-E. However,
adversary A0 of Figure 4 does not violate the SND-E security of D⇧0. The reason is that it is not
membership conscious for R. This reflects the strong formulation of the latter definition. While A0

does not make queries C 2 LR(crs) when the CRS generation algorithm is C = D⇧.C0, there are
other choices of C,V for which its query C would indeed be in LR(crs), which violates the definition
of membership consciousness for R.

In Theorem 4.4, the SND-P in mode-1 is computational, not statistical or perfect. A good
question is, if mode-1 has statistical or perfect SND-P, then does it transfer, meaning does mode-0
have computational SND-P? The di�culty of proving the answer is “yes” remains, namely that the
PT mode-indistinguishability adversary still has to test membership in the language, which may
not be PT. We do not see a way in which stronger SND-P in mode-1 helps the transfer. But, for
this case, neither do we have a counter-example.

In Theorem 4.4, the relation R depends on the CRS. An interesting open question is whether
one can prove a similar negative result for a relation which does not depend on the CRS.

5 Transference framework and positive results

Let D⇧ be a dual-mode proof system satisfying mode indistinguishability. Recall we say that a
“property” P (for example, zero-knowledge, soundness, extractability) transfers, if, for any µ 2
{0, 1}, we have: If D⇧µ satisfies P then D⇧1�µ satisfies the computational counterpart of P. In this
Section we want to give positive results, showing some properties P do transfer.

We could try to do this exhaustively for target properties P1,P2, . . .: prove P1 transfers; then
prove P2 transfers; and so on. This ad hoc approach has several drawbacks. First, proofs which
at heart are very similar will be repeated. Second, proofs will be needed again for new or further
properties that we do not consider. (Counting definitional variants in the literature, the number of
properties of interest, namely the length of the list above, is rather large.) Third, we’d like a better
theoretical understanding of what exactly are the attributes of a property that allow transference.

To address this, we give a framework to obtain positive transference results. We start by
formalizing what we call a property specification PS. While the game defining P will pick the
CRS and the proving and verification keys by running the CRS generator, PS will aim to see the
adversary advantage in this game as a function of an external choice of CRS and keys, e↵ectively
pulling the choice of CRS and keys out of the game. We will then give a general result (the Transfer
Theorem) saying that polynomial-time property specifications transfer successfully. To apply this
to get a positive transfer result for some property P of interest, one then has to show that P can be
captured by a polynomial time property specification PS. We will illustrate such applications by
providing PS explicitly for a few choices of P. It will soon be easy to just look at the game defining
P and see from it whether or not P can be cast as a polynomial-time PS, making it simple to see
which properties transfer successfully.

14

PS[⇧].Outcrs,kPkV,�(A)

st $ PS.StI(1�, crs, kP, kV)
Run AOr

Return out

Oracle Or(Oname,Oarg) // Oname 2 PS.ONames

(Orsp, st) $ PS[⇧.P,⇧.V].Or(Oname,Oarg, st)
If ((Oname = Fin) and (out = ?)) then
out Orsp

Return Orsp

Figure 5: Description of the execution of PS with a proof system ⇧, security parameter �, input (crs, kP, kV)
2 [⇧.C(1�)] and an adversary A.

When the property specification PS is not polynomial time, our Transfer Theorem does not
apply. This does not necessarily mean the property fails to transfer, but is an indication in that
direction. To show that a particular (non polynomial-time) property P fails to transfer, one can
give a counter-example, as with Theorem 4.4.

Property specifications. A property specification PS is a function that, given a proof system
⇧, returns a triple (PS.StI, PS[⇧.P,⇧.V].Or, PS.type). The first component PS.StI is an algorithm
that we refer to as the state initializer, and, as the notation indicates, it does not depend on ⇧.
The second component PS[⇧.P,⇧.V].Or is an algorithm that we refer to as the oracle responder.
We require that it invokes the prover and verifier algorithms of ⇧ as oracles, so that if two proof
systems have the same prover and verifier algorithms, the corresponding oracle responders are
identical. The final component PS.type 2 {dec, ser} is a keyword (formally, just a bit), indicating
the type of problem, decision or search.

The state initializer takes the unary security parameter and a tuple (crs, kP, kV) 2 [⇧.C(1�)]
to return an initial state, st $ PS.StI(1�, crs, kP, kV). Then, given a string Oname 2 PS.ONames

✓ {0, 1}⇤ called an oracle name, another string Oarg called an oracle argument, and also given a
current state st , the oracle responder returns a pair (Orsp, st) $ PS[⇧.P,⇧.V].Or(Oname,Oarg,
st) consisting of an oracle response Orsp and an updated state. The finite set of oracle names
PS.ONames (also defined by PS but not allowed to depend on ⇧) must contain the special name
Fin, and it must be that the response Orsp is in the set {true, false} whenever (Orsp, st) $

PS[⇧.P,⇧.V].Or(Fin,Oarg, st).

A property specification PS is said to be polynomial time (PT) if for every proof system ⇧

there is a polynomial p such that algorithms PS.StI and PS[⇧.P,⇧.V].Or run in time bounded by p
applied to the lengths of their inputs.

We can run PS with a proof system ⇧, security parameter �, input (crs, kP, kV) 2 [⇧.C(1�)]
and an adversary A to get a boolean output, which is denoted PS[⇧].Outcrs,�(A). This output is
determined by the process on the left in Figure 5, the right showing the oracle provided to A. In
the figure, the execution initializes the state to st PS.StI(1�, crs, kP, kV). Then it runs A with
access to the oracle Or shown on the right. Given the string naming an oracle, and an argument
for it, Or provides the response as defined by PS[⇧.P,⇧.V].Or. The first time the oracle named
Fin is called, the computed response is retained as out , and the latter becomes the output of the
execution, namely the value returned as PS[⇧].Outcrs,kP,kV,�(A). We define the ps-advantage of A,
depending on whether it is a search or decision problem, via

Adv
ps
PS[⇧],�(A) = Pr

h
PS[⇧].Outcrs,kP,kV,�(A) : (crs, kP, kV) $ ⇧.C(1�)

i

if PS.type = ser, and

Adv
ps
PS[⇧],�(A) = 2 · Pr

h
PS[⇧].Outcrs,kP,kV,�(A) : (crs, kP, kV) $ ⇧.C(1�)

i
� 1

15

State initializer PS
sndp
R .StI(1�, crs, kP, kV) / PS

snde
R .StI(1�, crs, kP, kV):

1 st (1
�, crs, kP, kV, false) ; Return st

PS
sndp
R [⇧.P,⇧.V].Or(Oname,Oarg, st) / PS

snde
R [⇧.P,⇧.V].Or(Oname,Oarg, st):

2 (1
�, crs, kP, kV,win) st

3 If (Oname = Init) then return ((1
�, crs, kP), st)

4 If (Oname = Vf) then

5 (x, pf) Oarg ; d ⇧.V(1�, crs, kV, x, pf)

6 If (x 2 LR(crs)) then return (d, st)

7 If (d) then win true ; st (1
�, crs, kP, kV,win)

8 Return (⇧.V(1�, crs, kV, x, pf), st)

9 If (Oname = Fin) then return (win, st)

Figure 6: Algorithms associated by the SND-P property specification PS
sndp
R and the SND-E property

specification PS
snde
R to proof system ⇧, where R is an NP-relation. The boxed code is only included in the

SND-P specification.

if PS.type = dec. Here Pr
⇥
PS[⇧].Outcrs,kP,kV,�(A) : (crs, kP, kV) $ ⇧.C(1�)

⇤
is the probability

that the output of the property specification is true when the CRS and proving and verification keys
are chosen at random according to ⇧.C. We say that ⇧ satisfies PS for a class (set) of adversaries
Aps

PS if for every adversary A 2 Aps
PS, the function � 7! Adv

ps
PS[⇧],�(A) is negligible. Parameterizing

the definition by a class of adversaries allows us to cover restrictions like membership-consciousness,
and to capture computational and statistical variants of a property.

The SND-E and SND-P property specifications. We pause to illustrate property specifica-
tions by an example before providing the Transfer Theorem. We describe the property specifications
PS

snde
R and PS

sndp
R corresponding to the SND-E and SND-P properties for R, respectively, in Fig-

ure 6. The state initializer algorithms are the same for both, setting the initial state st to the
crs, proving key and verification key they are given as input, together with the security param-
eter, and a boolean variable set to false. The oracle responder algorithms di↵er only at line 6,
which is included for SND-P and excluded for SND-E. To each of the oracles Init,Vf,Fin in the
games of Figure 3, we associate a string naming it, these being Init,Vf,Fin, respectively, so that
PS

snde
R .ONames = PS

sndp
R .ONames = {Init,Vf,Fin}. Passing the name of an oracle, and arguments

for it, to the oracle responder, results in the response of that oracle being returned. (Also returned
is the state, which is updated here, but may not be in other property specifications.) The problem

type is PS
snde
R .type = PS

sndp
R .type = ser, meaning both are search problems. As this shows, there

is a quite direct connection between the games and the property specification, the key di↵erence
being that the latter has the CRS as input while the former picks it internally.

We connect the actual properties with their formal property specifications via the following,
which says that, for x 2 {e, p}, the sndx-advantage is identical to the corresponding ps-advantage.

Proposition 5.1 Let R be an NP-relation, ⇧ a proof system and A an adversary. Then for all
� 2 N we have:

Adv
snd-e
⇧,R,�(A) = Adv

ps
PSsndeR [⇧],�

(A) and Adv
snd-p
⇧,R,�(A) = Adv

ps

PSsndpR [⇧],�
(A) .

In the case of SND-E, Proposition 5.1 does not restrict to membership conscious adversaries, even
though these are the ones of eventual interest; the claim of the Proposition is true for all adversaries.

16

The key di↵erence between the two property specifications is in their running time. Property
specification PS

snde
R is polynomial time. But property specification PS

sndp
R is only polynomial time

if testing membership of x in LR(crs) can be done in time polynomial in the lengths of x and crs,
which, for relations of interest, is usually not the case. Our Transfer Theorem applies to PS

snde
R

but, due to its not in general being polynomial time, not to PS
sndp
R .

Transfer theorem. We are now ready to state the Transfer Theorem. Refer above for what it
means for a proof system ⇧ to satisfy a property specification PS for a class of adversaries Aps

PS.
The following says that when this is true in one mode of a dual-mode proof system D⇧, then
its computational counterpart is true in the other mode. Below, we let APT be the class of all
polynomial-time adversaries; the intersection of Aps

PS with APT in the conclusion of the Theorem
captures that the transferred property is the computational counterpart of the original one. The
proof is in Appendix B.

Theorem 5.2 Let D⇧ be a dual-mode proof system that is mode indistinguishable. Let µ 2 {0, 1}.
Let PS be a polynomial-time property specification. Assume D⇧µ satisfies PS for a class of adver-
saries Aps

PS. Then D⇧1�µ satisfies PS for the class of adversaries Aps
PS \APT.

Transference of SND-E. We can apply this to conclude transference of SND-E as follows.

Theorem 5.3 Let R be an NP relation. Let D⇧ be a dual-mode proof system for relation R that is
mode-indistinguishable, and let µ 2 {0, 1}. Assume D⇧µ is SND-E for R. Then D⇧1�µ is SND-E
for R.

Proof of Theorem 5.3: From Proposition 5.1, we know thatAdv
snd-e
D⇧µ,R,�(A) = Adv

ps
PSsndeR [D⇧µ],�

(A)

and Adv
snd-e
D⇧1�µ,R,�(A) = Adv

ps
PSsndeR [D⇧1�µ],�

(A), where the SND-E property specification is as de-

scribed in Figure 6. We also know from the definition of the SND-E property specification that
it is a polynomial-time property specification. As a result, we can use the result of Theorem 5.2.
More specifically, we can apply Equation (1) from the proof of Theorem 5.2 to this setting:

Adv
ps
PSsndeR [D⇧1�µ],�

(A)  Adv
ps
PSsndeR [D⇧µ],�

(A) + 2 ·Adv
mode
D⇧,�(Aµ) .

In the above equation, the adversary A 2 Amc
R is membership conscious for the relation R. We can

now use the mode indistinguishability property of D⇧ and the assumption that D⇧µ is SND-E for
R to conclude that D⇧1�µ is SND-E for R.

The above proof makes use of the updated (stronger) definition of membership consciousness,
which ensures that the adversary A is membership-conscious across both modes of D⇧.

This is however a simple case. For ZK, the property specification definition is more delicate,
and some work will be needed to check that it obeys the conditions required by the definition of a
property specification.

We now turn to establishing transference for other properties. We will give their definitions,
and the property specifications, side by side.

Zero knowledge. The property specification allowing showing transference for ZK is more inter-
esting, in part because it is a decision problem.

We formalize what is usually called adaptive zero knowledge, as the form most useful for ap-
plications. A simulator S specifies a PT algorithm S.C (the simulation CRS-generator) and a PT
algorithm S.P (the simulation proof-generator). Consider game G

zk
⇧,R,S,� specified in Figure 7. ZK-

adversary A can adaptively request proofs by supplying an instance and a valid witness for it. The

17

Game G
zk
⇧,R,S,�

Init():

1 (crs1, td1, kP, kV1) $ ⇧.C(1�)

2 (crs0, td0, kV0) $ S.C(1�)

3 b $ {0, 1} ; crs crsb ; kV kVb
4 Return (1

�, crs, kV)

Pf(x,w):

5 If (¬R(crs, x, w)) then return ?
6 If (b = 1) then

7 pf $ ⇧.P(1�, crs, kP, x, w)

8 Else pf $ S.P(1�, crs, kV, td0, x)

9 Return pf

Fin(b0):

10 Return (b0 = b)

State initializer PS
zk
R,S.StI(1

�, crs, kP, kV):

1 b $ {0, 1}
2 If (b = 0) then (crs, td, kV) $ S.C(1�)

3 st (1
�, crs, td, kP, kV, b) ; Return st

PS
zk
R,S[⇧.P,⇧.V].Or(Oname,Oarg, st):

4 (1
�, crs, td, kP, kV, b) st

5 If (Oname = Init) then

6 return (crs, kV, st)

7 If (Oname = Pf) then

8 (x,w) Oarg

9 If (¬R(crs, x, w)) then

10 return (?, st)
11 If (b = 1) then

12 pf $ ⇧.P(1�, crs, kP, x, w)

13 Else pf $ S.P(1�, crs, kV, td, x)

14 Return (pf, st)

15 If (Oname = Fin) then

16 b0 Oarg ; Return ((b = b0), st)

Figure 7: Left: Game defining zero-knowledge (relative to simulator S) for proof system ⇧. Right: The state
initializer and oracle responder algorithms associated by the ZK property specification PS

zk
R,S to proof system

⇧, where R is an NP-relation and S is a simulator.

proof is produced either by the honest prover using the witness, or by the proof simulator S.P using
a simulation trapdoor td0. The adversary outputs a guess b0 as to whether the proofs were real or
simulated. Let Adv

zk
⇧,R,S,�(A) = 2Pr[Gzk

⇧,R,S,�(A)]� 1 be its zk-advantage relative to S.

We say that ⇧ is computational ZK for R if there exists a simulator S such that for all PT A the
function � 7! Adv

zk
⇧,R,S,�(A) is negligible; statistical ZK for R if there exists a simulator S such that

for all A, regardless of running time, the function � 7! Adv
zk
⇧,R,S,�(A) is negligible; and perfect ZK

for R if there exists a simulator S such that for all A, regardless of running time, Adv
zk
⇧,R,S,�(A) = 0.

Saying just that ⇧ is ZK means it could be any of the three, meaning the default assumption is
computational.

We describe the property specification PS
zk
R,S corresponding to the ZK property for relation R

and simulator S. Figure 7 shows the algorithms that it associates to a given proof system ⇧. While
game G

zk
⇧,R,S of Figure 7 picks the CRS and the proving and verification keys via ⇧.C when b = 1,

state initializer PSzkR,S.StI takes the CRS and the proving and verification keys as input and sets this
CRS as the CRS when b = 1. If b = 0, this CRS is overwritten at line 2. The state is the 6-tuple
at line 4. To each oracle Init,Pf,Fin in game G

zk
⇧,R,S we associate a string naming it, these being

Init,Pf,Fin, respectively, so that PS
zk
R,S.ONames = {Init,Pf,Fin}. Passing the name of an oracle,

and arguments for it, to PS
zk
R,S[⇧.P,⇧.V].Or, results in the response of that oracle being returned.

(Also returned is the state, which here is not updated, but may be in other property specifications.)
The type is PSzkR,S.type = dec, meaning this is a decision problem.

To connect the ZK property with the property specification PS
zk
R,S, we see that the zk-advantage

is identical to the ps-advantage:

Proposition 5.4 Let R be an NP-relation, S a simulator, ⇧ a proof system and A an adversary.

18

Game G
wi
⇧,R,�

Init():

1 (crs, td, kP, kV) $ ⇧.C(1�)

2 b $ {0, 1}
3 Return (1

�, crs, kV)

Pf(x,w0, w1):

4 d0 R(crs, x, w0))

5 d1 R(crs, x, w1)

6 If (¬d0 or ¬d1) then return ?
7 pf $ ⇧.P(1�, crs, kP, x, wb)

8 Return pf

Fin(b0):

9 Return (b0 = b)

State initializer PS
wi
R .StI(1�, crs, kP, kV):

1 b $ {0, 1} ; st (1
�, crs, kP, kV, b)

2 Return st

PS
wi
R [⇧.P,⇧.V].Or(Oname,Oarg, st):

3 (1
�, crs, kP, kV, b) st

4 If (Oname = Init) then return (crs, kV, st)

5 If (Oname = Pf) then

6 (x,w0, w1) Oarg

7 If (¬R(crs, x, w0) or ¬R(crs, x, w1)) then

8 Return (?, st)
9 pf $ ⇧.P(1�, crs, kP, x, wb)

10 Return (pf, st)

11 If (Oname = Fin) then

12 b0 Oarg ; Return ((b = b0), st)

Figure 8: Left: Games defining witness indistinguishability of proof system ⇧. Right: The state initializer
and oracle responder algorithms associated by the WI property specification PS

wi
R to proof system ⇧, where

R is an NP-relation.

Then for all � 2 N we have:

Adv
zk
⇧,R,S,�(A) = Adv

ps
PSzkR,S[⇧],�

(A) .

Transference of ZK. We can now conclude the transference of ZK as follows.

Theorem 5.5 Let R be an NP relation. Let D⇧ be a dual-mode proof system for relation R that is
mode-indistinguishable, and let µ 2 {0, 1}. Assume D⇧µ is ZK for R. Then D⇧1�µ is ZK for R.

Proof of Theorem 5.5: From the assumption that D⇧µ is ZK for R, we know that there
exists a simulator S relative to which the function � 7! Adv

zk
D⇧µ,R,S,�(A) is negligible. From

Proposition 5.4, we know that Adv
zk
D⇧µ,R,S,�(A) = Adv

ps
PSzkR,S[D⇧µ],�

(A) and Adv
zk
D⇧1�µ,R,S,�(A) =

Adv
ps
PSzkR,S[D⇧1�µ],�

(A), where the ZK property specification is as described in Figure 7. We also

know from the definition of the ZK property specification that it is a polynomial-time property
specification. As a result, we can use the result of Theorem 5.2, that is, we can apply Equation (1)
from the proof of Theorem 5.2 to this setting:

Adv
ps
PSzkR,S[D⇧1�µ],�

(A)  Adv
ps
PSzkR,S[D⇧µ],�

(A) + 2 ·Adv
mode
D⇧,�(Aµ) .

We can now use the mode indistinguishability property of D⇧ and the assumption that D⇧µ is ZK
for R to conclude that D⇧1�µ is ZK for R (the same simulator S works for both modes).

Witness indistinguishability. This asks that, knowing x 2 LR(crs) and knowing two witnesses
w0, w1 2 R(crs, x), it is hard to tell under which of the two a proof has been computed [FS90].
Consider game G

wi
⇧,R,� specified in Figure 8. Let Adv

wi
⇧,R,�(A) = 2Pr[Gwi

⇧,R,�(A)]� 1. We say that
⇧ is computational WI for R if for all PT A the function � 7! Adv

wi
⇧,R,�(A) is negligible; statistical

WI if for all A, regardless of running time, the function � 7! Adv
wi
⇧,R,�(A) is negligible; perfect WI

19

if for all A, regardless of running time, � 7! Adv
wi
⇧,R,�(A) = 0. Saying just that ⇧ is WI means it

could be any of the three, meaning the default assumption is computational.
We describe the algorithms of the property specification PS

wi
R corresponding to the WI property

for the relation R in Figure 8. The type is PS
wi
R .type = dec, meaning it is a decision problem.

Connecting the WI property with its property specification PS
wi
R , we claim that the wi-advantage

is identical to the ps-advantage.

Proposition 5.6 Let R be an NP-relation, ⇧ a proof system and A an adversary. Then for all
� 2 N we have:

Adv
wi
⇧,R,�(A) = Adv

ps
PSwi

R [⇧],�
(A) .

Transference of WI. We can now conclude the transference of WI as follows.

Theorem 5.7 Let R be an NP relation. Let D⇧ be a dual-mode proof system for relation R that is
mode-indistinguishable, and let µ 2 {0, 1}. Assume D⇧µ is WI for R. Then D⇧1�µ is WI for R.

Proof of Theorem 5.7: From Proposition 5.6, we know thatAdv
wi
D⇧µ,R,�(A) = Adv

ps
PSwi

R [D⇧µ],�
(A)

and Adv
wi
D⇧1�µ,R,�(A) = Adv

ps
PSwi

R [D⇧1�µ],�
(A), where the WI property specification is as described

in Figure 8. We also know from the definition of the WI property specification that it is a
polynomial-time property specification. As a result, we can use the result of Theorem 5.2, that is,
we can apply Equation (1) from the proof of Theorem 5.2 to this setting:

Adv
ps
PSwi

R [D⇧1�µ],�
(A)  Adv

ps
PSwi

R [D⇧µ],�
(A) + 2 ·Adv

mode
D⇧,�(Aµ) .

We can now use the mode indistinguishability property of D⇧ and the assumption that D⇧µ is WI
for R to conclude that D⇧1�µ is WI for R.

XT extractability. The notion of ⇧ being a proof of knowledge [GMR89, BG93, DP92] for
R requires that whenever a (potentially cheating) prover, modeled as the adversary, is able to
produce a valid proof, there is an extractor that, based on a trapdoor underlying the common
reference string, can extract the witness from the information available to the adversary. We
generalize extractability for the di↵erent models we consider along the lines of [CC18] (which defined
knowledge-extractability for DV-NIZKs). Our formalization is via game G

xt specified in Figure 3.
It is parameterized by an extractor S, an object that specifies algorithms S.C (the extraction-CRS
generator) and S.X (the extraction witness-generator). Let Adv

xt
⇧,R,S,�(A) = Pr[Gxt

⇧,R,S,�(A)] be
the xt-advantage of A.

The notion of ⇧ being XT-secure would be that there exists a polynomial time extractor S such
that � 7! Adv

xt
⇧,R,S,�(A) is negligible for all polynomial time adversaries A.

The XT property specification. We describe the property specification PS
xt
R,S corresponding

to the XT property for the relation R in Figure 9. The type is PS
xt
R,S.type = ser, meaning it is a

search problem. Connecting the XT property with its property specification PS
xt
R,S, we claim that

the xt-advantage is identical to the ps-advantage.

Proposition 5.8 Let R be an NP-relation, ⇧ a proof system and A an adversary. Then for all
� 2 N we have:

Adv
xt
⇧,R,S,�(A) = Adv

ps
PSxtR,S[⇧],�

(A) .

20

Game G
xt
⇧,R,S,�

Init():

1 (crs, td, kP, kV) $ S.C(1�)

2 Return (1
�, crs, kP)

Vf(x, pf):

3 Return ⇧.V(1�, crs, kV, x, pf)

Fin(x, pf):

4 If (¬⇧.V(1�, crs, kV, x, pf)) then
5 return false

6 w $ S.X(1�, crs, td, x, pf)

7 Return ¬R(crs, x, w)

State initializer PS
xt
R,S.StI(1

�, crs, kP, kV):

1 (crs
0, td, k0

P, k
0
V) $ S.C(1�)

2 st (1
�, crs0, td, k0

P, k
0
V) ; Return st

PS
xt
R,S[⇧.P,⇧.V].Or(Oname,Oarg, st):

3 (1
�, crs, td, kP, kV) st

4 If (Oname = Init) then

5 Return ((1
�, crs, kP), st)

6 If (Oname = Vf) then

7 Return ⇧.V(1�, crs, kV, x, pf)

8 If (Oname = Fin) then

9 (x, pf) Oarg

10 If (⇧.V(1�, crs, kV, x, pf) = false) then

11 Return false

12 w $ S.X(1�, crs, td, x, pf)

13 Return ((R(crs, x, w) = false), st)

Figure 9: Left: Game defining XT extractability of a proof system ⇧ for a relation R. Right: The state
initializer and oracle responder algorithms associated by the XT property specification PS

xt
R,S[⇧] to proof

system ⇧, where R is an NP-relation and S is a simulator.

Transference of XT. We can now conclude the transference of XT as follows.

Theorem 5.9 Let R be an NP relation. Let D⇧ be a dual-mode proof system for relation R that is
mode-indistinguishable, and let µ 2 {0, 1}. Assume D⇧µ is XT for R. Then D⇧1�µ is XT for R.

Proof of Theorem 5.9: From the assumption that D⇧µ is XT for R, we know that there exists an
extractor S relative to which the function � 7! Adv

xt
⇧,R,S,�(A) is negligible. From Proposition 5.8, we

know that Adv
xt
D⇧µ,R,S,�(A) = Adv

ps
PSxtR,S[D⇧µ],�

(A) and Adv
xt
D⇧1�µ,R,S,�(A) = Adv

ps
PSxtR,S[D⇧1�µ],�

(A),

where the XT property specification is as described in Figure 9. We also know from the definition
of the XT property specification that it is a polynomial-time property specification. As a result, we
can use the result of Theorem 5.2, that is, we can apply Equation (1) from the proof of Theorem 5.2
to this setting:

Adv
ps
PSxtR,S[D⇧1�µ],�

(A)  Adv
ps
PSxtR,S[D⇧µ],�

(A) + 2 ·Adv
mode
D⇧,�(Aµ) .

We can now use the mode indistinguishability property of D⇧ and the assumption that D⇧µ is XT
for R to conclude that D⇧1�µ is XT for R (the same extractor S works for both modes).

6 SND in application: A test case

The properties that one would most like to successfully transfer are the ones of most utility in
applications. Since whether or not soundness transfers depends on exactly how it is defined (recall
that SND-E transfers and SND-P does not) we would like to see which of the two is needed by
applications. To this end we examine here in detail one representative and canonical application
of NIZKs that uses soundness, namely the construction of a digital signature scheme from [BG90].
We find that the type of soundness needed is SND-P. SND-E does not appear to su�ce. And

21

Game G
uf
DS,�

Init():

1 (sk, vk) $ DS.K(1�) ; Return vk

Sign(m):

2 � $ DS.S(1�, sk, vk,m)

3 S S [{m} ; Return �

Fin(m,�):

4 vf DS.V(1�, vk,m,�)

5 Return (vf and (m 62 S))

Game G
uf
F,�

Init():

1 K $ {0, 1}�

Fn(m):

2 S S [{m} ; Return F(1
�,K,m)

Fin(m,T):

3 vf (F(1
�,K,m) = T)

4 Return (vf and (m 62 S))

Game G
bind
CS,�

Init():

1 cp $ CS.P(1�) ; Return cp

Fin(K, d,K0, d0):

2 If (K = K0
) then return false

3 c CS.C(1�, cp,K, d)

4 c0 CS.C(1�, cp,K0, d0)

5 Return (c0 = c)

Game G
hide
CS,�

Init():

1 cp $ CS.P(1�) ; b $ {0, 1}
2 Return cp

CMT(K0,K1):

3 d $ {0, 1}�

4 c CS.C(1�, cp,Kb, d) ; return c

Fin(b0):

5 Return (b0 = b)

Figure 10: Top Left: Game defining UF security of a signature scheme DS. Top Right: Game defining UF
security for MAC F. Middle: Games defining BIND and HIDE security for commitment scheme CS.

signatures do not seem like an anomaly in this regard; indeed it seems that applications usually
require SND-P, not SND-E. This makes the transference position for these two more of a concern.

We slightly strengthen the results of [BG90]. While they relied on statistical soundness, we only
assume computational (else the question of SND-P versus SND-E is moot due to Proposition 4.2),
and we use a MAC rather than a PRF. We also generalize the underlying NIZK proof system to be
in the designated-prover model. We can then capture the original CRS model setting by requiring
the proving key kP to be the empty string.

Digital signatures. A (digital) signature scheme DS specifies PT algorithms for key-generation,
signing and verifying, as follows. Via (sk, vk) $ DS.K(1�), the signer generates a secret signing
key sk and public verification key vk. Via � $ DS.S(1�, sk, vk,m), the signer generates a signature
of a message m 2 {0, 1}⇤. Via vf DS.V(1�, vk,m,�), the verifier deterministically generates a
boolean decision as to the validity of �. Correctness requires that DS.V(1�, vk,m,�) = true for all
� 2 N, all � 2 [DS.S(1�, sk, vk,m)], all (sk, vk) 2 [DS.K(1�)] and all m 2 {0, 1}⇤.

The security metric is unforgeability (UF) [GMR88]. The game is in Figure 10. We let
Adv

uf
DS,�(A) = Pr[Guf

DS,�(A)] be the uf-advantage of adversary A. A signature scheme DS is

said to be UF-secure if for al PT adversaries A, the function � 7! Adv
uf
DS,�(A) is negligible.

Building blocks. We give definitions for the building blocks we need, namely MACs and com-
mitment schemes.

A MAC is a PT deterministic algorithm F that takes 1�, a key K 2 {0, 1}� and an input
m 2 {0, 1}⇤ to return an output F(1�,K,m) 2 {0, 1}⇤. The security metric is again unforgeability:
A MAC is the symmetric analogue of a signature scheme. Consider the game G

uf
F in Figure 10.

The uf-advantage of adversary A is Adv
uf
F,�(A) = Pr[Guf

F,�(A)]. We say that F is UF-secure if for

22

Relation R(crs, (1�, cp, c, Y,m), (K, d)):

1 d1 (CS.C(1�, cp,K, d) = c) ; d2 (Y = F(1
�,K,m)) ; Return (d1 and d2)

Key-generation algorithm DS.K(1�):

2 cp $ CS.P(1�) ; K $ {0, 1}� ; d $ {0, 1}� ; c CS.C(1�, cp,K, d)

3 (crs, td, kP, ") $ ⇧.C(1�) ; sk (K, d, kP) ; vk (crs, cp, c) ; Return (sk, vk)

Signing algorithm DS.S(1�, sk, vk,m):

4 (crs, cp, c) vk ; (K, d, kP) sk ; Y F(1
�,K,m) ; x (1

�, cp, c, Y,m)

5 pf $ ⇧.P(1�, crs, kP, x, (K, d)) ; Return (Y, pf)

Verifying algorithm DS.V(1�, vk,m,�):

6 (crs, cp, c) vk ; (Y, pf) � ; x (1
�, cp, c, Y,m) ; Return ⇧.V(1�, crs, ", x, pf)

Figure 11: The relation R and the digital signature scheme DS for Theorem 6.1.

all PT adversaries A, the function � 7! Adv
uf
F,�(A) is negligible.

A commitment scheme CS specifies a PT parameter generation algorithm CS.P and a de-
terministic commitment algorithm CS.C such that CS.C(1�, cp, ·, ·) : {0, 1}⇤ ⇥ {0, 1}� ! {0, 1}⇤
for all � 2 N and for every cp 2 [CS.P(1�)]. The scheme is set up by generating parameters
cp $ CS.P(1�). Then via c CS.C(1�, cp,K, d), one generates a commitment to stringK 2 {0, 1}⇤
with randomly-chosen de-commitment key d $ {0, 1}�. The bind advantage of an adversary A is
Adv

bind
CS,�(A) = Pr[Gbind

CS,�(A)], where the game is in Figure 10. It is required that the d, d0 queried

by the adversary to Fin are in {0, 1}�. We require perfect binding, namely that Adv
bind
CS,�(A) = 0

for all adversaries A, regardless of their running time. The hide advantage of an adversary A is
Adv

hide
CS,�(A) = 2Pr[Ghide

CS,�(A)]� 1, where the game is in Figure 10. We say that CS is hiding if for

all PT A the function � 7! Adv
hide
CS,�(A) is negligible. (The hiding requirement is computational.)

Construction. With MAC F and commitment scheme CS as above, let R be the relation of
Figure 11. Then let ⇧ be a proof system that satisfies completeness, SND-P for R and ZK for R,
and let DS be the signature scheme whose algorithms are shown in Figure 11. Theorem 6.1 says
that DS is UF secure. The proof of this theorem is in Appendix C.

Theorem 6.1 Let F be a UF-secure MAC. Let CS be a commitment scheme that is perfectly binding
and (computationally) hiding. Let R be the relation of Figure 11. Let ⇧ be a proof system that is
SND-P and ZK for R. Let DS be the signature scheme whose algorithms are shown in Figure 11.
Then DS is UF-secure.

The question that we now discuss is whether the SND-E soundness notion will su�ce for this
application. Recall that SND-E requires adversaries to be membership-conscious. However, in
a reduction from an adversary to an adversary against SND-E, there is no clear way to ensure
that membership-consciousness holds, which indicates that SND-E might not be su�cient for this
application.

23

References

[AB20] Vivek Arte and Mihir Bellare. Dual-mode NIZKs: Possibility and impossibility results for
property transfer. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran,
editors, INDOCRYPT 2020, volume 12578 of LNCS, pages 859–881. Springer, Heidelberg,
December 2020. (Cited on page 7, 11.)

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In Salil P. Vadhan,
editor, TCC 2007, volume 4392 of LNCS, pages 118–136. Springer, Heidelberg, February 2007.
(Cited on page 6.)

[AFH+16] Martin R. Albrecht, Pooya Farshim, Dennis Hofheinz, Enrique Larraia, and Kenneth G. Pater-
son. Multilinear maps from obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-
A, Part I, volume 9562 of LNCS, pages 446–473. Springer, Heidelberg, January 2016. (Cited
on page 3, 4, 10, 34, 36.)

[BCG+19] Elette Boyle, Geo↵roy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. E�cient
pseudorandom correlation generators: Silent OT extension and more. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–
518. Springer, Heidelberg, August 2019. (Cited on page 4.)

[BCGI18] Elette Boyle, Geo↵roy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS
2018, pages 896–912. ACM Press, October 2018. (Cited on page 4.)

[BDSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-
knowledge. SIAM Journal on Computing, 20(6):1084–1118, 1991. (Cited on page 3, 4, 8.)

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its ap-
plications (extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.
(Cited on page 3, 4, 8.)

[BFM90] Manuel Blum, Paul Feldman, and Silvio Micali. Proving security against chosen cyphertext at-
tacks. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 256–268. Springer,
Heidelberg, August 1990. (Cited on page 34.)

[BG90] Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures and message authen-
tication based on non-interative zero knowledge proofs. In Gilles Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 194–211. Springer, Heidelberg, August 1990. (Cited on page 4, 5,
21, 22.)

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 390–420. Springer, Heidelberg, August 1993.
(Cited on page 20.)

[BHK15] Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. Subtleties in the definition of IND-CCA:
When and how should challenge decryption be disallowed? Journal of Cryptology, 28(1):29–48,
January 2015. (Cited on page 5, 10.)

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 409–426. Springer, Heidelberg, May / June 2006. (Cited on page 7.)

[CC18] Pyrros Chaidos and Geo↵roy Couteau. E�cient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part III, volume 10822 of LNCS, pages 193–221. Springer, Heidelberg,
April / May 2018. (Cited on page 20.)

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Roth-
blum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and Edith
Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019. (Cited on page 35,
36.)

24

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and
signatures from symmetric-key primitives. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1825–1842. ACM Press, Octo-
ber / November 2017. (Cited on page 4, 5.)

[Dam00] Ivan Damg̊ard. E�cient concurrent zero-knowledge in the auxiliary string model. In Bart Pre-
neel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 418–430. Springer, Heidelberg,
May 2000. (Cited on page 8, 33.)

[DFN06] Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-knowledge from homo-
morphic encryption. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS,
pages 41–59. Springer, Heidelberg, March 2006. (Cited on page 4, 8, 34.)

[DMP90] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge with
preprocessing. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 269–282.
Springer, Heidelberg, August 1990. (Cited on page 8, 34.)

[DP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without in-
teraction (extended abstract). In 33rd FOCS, pages 427–436. IEEE Computer Society Press,
October 1992. (Cited on page 20.)

[ES02] Edith Elkind and Amit Sahai. A unified methodology for constructing public-key encryption
schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint Archive, Report
2002/042, 2002. http://eprint.iacr.org/2002/042. (Cited on page 4, 8, 9, 34.)

[FF00] Marc Fischlin and Roger Fischlin. E�cient non-malleable commitment schemes. In Mihir
Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 413–431. Springer, Heidelberg,
August 2000. (Cited on page 8, 33.)

[FHHL18] Pooya Farshim, Julia Hesse, Dennis Hofheinz, and Enrique Larraia. Graded encoding schemes
from obfuscation. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume
10770 of LNCS, pages 371–400. Springer, Heidelberg, March 2018. (Cited on page 36.)

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In 22nd
ACM STOC, pages 416–426. ACM Press, May 1990. (Cited on page 19.)

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April
1988. (Cited on page 22.)

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Racko↵. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. (Cited on page 20.)

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, December 1994. (Cited on page 33.)

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques
for NIZK. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 97–111.
Springer, Heidelberg, August 2006. (Cited on page 3, 34, 35, 36.)

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358. Springer,
Heidelberg, May / June 2006. (Cited on page 3, 6, 34, 35, 36.)

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-
knowledge. Journal of the ACM (JACM), 59(3):1–35, 2012. (Cited on page 3, 5.)

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS,
pages 444–459. Springer, Heidelberg, December 2006. (Cited on page 5, 8, 34, 35, 36.)

25

http://eprint.iacr.org/2002/042

[GS08] Jens Groth and Amit Sahai. E�cient non-interactive proof systems for bilinear groups. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer,
Heidelberg, April 2008. (Cited on page 34, 35, 36.)

[HHNR17] Gunnar Hartung, Max Ho↵mann, Matthias Nagel, and Andy Rupp. BBA+: Improving the
security and applicability of privacy-preserving point collection. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1925–1942. ACM
Press, October / November 2017. (Cited on page 35, 36.)

[HU19] Dennis Hofheinz and Bogdan Ursu. Dual-mode NIZKs from obfuscation. In Steven D. Galbraith
and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages 311–341.
Springer, Heidelberg, December 2019. (Cited on page 3, 4, 10, 34, 36.)

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier proofs and their
applications. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 143–
154. Springer, Heidelberg, May 1996. (Cited on page 34.)

[KNYY19] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Designated ver-
ifier/prover and preprocessing NIZKs from Di�e-Hellman assumptions. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 622–651.
Springer, Heidelberg, May 2019. (Cited on page 4, 8, 9, 34.)

[KW18] Sam Kim and David J. Wu. Multi-theorem preprocessing NIZKs from lattices. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS,
pages 733–765. Springer, Heidelberg, August 2018. (Cited on page 4, 8, 9, 34.)

[LPWW20] Benôıt Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu. New constructions of sta-
tistical NIZKs: Dual-mode DV-NIZKs and more. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 410–441. Springer, Heidelberg,
May 2020. (Cited on page 3, 4, 5, 9, 10, 34, 36.)

[LQR+19] Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs, and David J. Wu. New construc-
tions of reusable designated-verifier NIZKs. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 670–700. Springer, Heidelberg,
August 2019. (Cited on page 9.)

[Ps05] Rafael Pass and Abhi shelat. Unconditional characterizations of non-interactive zero-knowledge.
In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 118–134. Springer, Hei-
delberg, August 2005. (Cited on page 8, 33.)

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning
with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 89–114. Springer, Heidelberg, August 2019. (Cited on page 35,
36.)

[PsV06] Rafael Pass, abhi shelat, and Vinod Vaikuntanathan. Construction of a non-malleable encryp-
tion scheme from any semantically secure one. In Cynthia Dwork, editor, CRYPTO 2006,
volume 4117 of LNCS, pages 271–289. Springer, Heidelberg, August 2006. (Cited on page 4, 8,
9, 34.)

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for e�cient and com-
posable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 554–571. Springer, Heidelberg, August 2008. (Cited on page 34.)

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verifier NIZKs for
all NP from CDH. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II,
volume 11477 of LNCS, pages 593–621. Springer, Heidelberg, May 2019. (Cited on page 9.)

26

Relation R((p,G, g, A,B,C), X,w):

1 Return (gw = A) ^ (X 6= Bw
) ^ (X 2 G)

⇧.C(1�):

1 (p,G, g) $ GG(1
�
) ; µ $ {0, 1}

2 a, b $ Zp

3 If (µ = 0) then c $ Zp

4 Else c ab mod p

5 A ga ; B gb ; C gc

6 crs (p,G, g, A,B,C)

7 td " ; kP " ; kV "

8 return (crs, td, kP, kV)

⇧.P(1�, (p,G, g, A,B,C), kP, X,w):

9 Return "

⇧.V(1�, (p,G, g, A,B,C), kV, X, pf):

10 If (X /2 G) then return false

11 Return true

Adversary Asnd-p:

1 (1
�, crs, kP) $ Gsnd-p

⇧,R,�.Init

2 (p,G, g, A,B,C) crs

3 Gsnd-p
⇧,R,�.Vf(C, ") ; Gsnd-p

⇧,R,�.Fin

Games G0 - G8

Init():

1 (p,G, g) $ GG(1
�
)

2 µ $ {0, 1} ; a, b $ Zp

3 If (µ = 0) then c $ Zp

4 Else c ab mod p

5 A ga ; B gb ; C gc

6 Return ((p,G, g, A,B,C), ")

Fin():

7 Return win

Vf(X, pf):

8 If (X 2 G \ {gab}) then bad true

9 vf (X 2 G) ; u1 (X = C) ; u2 (µ = 0)

10 If vf then win true // G0

11 If (vf ^ u1 ^ u2) then win true // G1

12 If (vf ^ u1 ^ ¬u2) then win true // G2

13 If (vf ^ ¬u1 ^ u2) then win true // G3

14 If (vf ^ ¬u1 ^ ¬u2) then win true // G4

15 If (vf ^ u1 ^ u2 ^ ¬bad) then win true // G5

16 If (vf ^ u1 ^ u2 ^ bad) then win true // G6

17 If (vf ^ ¬u1 ^ u2 ^ ¬bad) then win true // G7

18 If (vf ^ ¬u1 ^ u2 ^ bad) then win true // G8

19 If vf then return true

20 Return false

Figure 12: Top: Relation R, proof system ⇧, and adversary Asnd-p for the proof of Proposition 4.3. Bottom:
Games for the proof of Proposition 4.3.

27

Adversary A1
ddh:

1 (p,G, g, A,B,C) $ Gddh
GG,�.Init

2 AInit,Vf,Fin

Init():

3 Return ((p,G, g, A,B,C), ")

Vf(X, pf):

4 If ((X 2 G) ^ (X = C)) then

5 win true

6 Return (X 2 G)

Fin():

7 If win then Gddh
GG,�.Fin(1)

8 Else Gddh
GG,�.Fin(0)

Adversary A2
ddh:

1 (p,G, g, A,B,C) $ Gddh
GG,�.Init

2 AInit,Vf,Fin

Init():

3 Return ((p,G, g, A,B,C), ")

Vf(X, pf):

4 If ((X 2 G) ^ (X 6= C)) then

5 win true

6 Return (X 2 G)

Fin():

7 If win then Gddh
GG,�.Fin(1)

8 Else Gddh
GG,�.Fin(0)

Adversary A1
cdh:

1 (p,G, g, A,B) $ Gcdh
GG,�.Init

2 c $ Zp ; C gc ; AInit,Vf,Fin

Init():

3 Return ((p,G, g, A,B,C), ")

Vf(X, pf):

4 If ((X 2 G) ^ (X = C)) then

5 S S [{X}
6 Return (X 2 G)

Fin():

7 X $ S ; Gcdh
GG,�.Fin(X)

Adversary A2
cdh:

1 (p,G, g, A,B) $ Gcdh
GG,�.Init

2 c $ Zp ; C gc ; AInit,Vf,Fin

Init():

3 Return ((p,G, g, A,B,C), ")

Vf(X, pf):

4 If ((X 2 G) ^ (X 6= C)) then

5 S S [{X}
6 Return (X 2 G)

Fin():

7 X $ S ; Gcdh
GG,�.Fin(X)

Figure 13: More adversaries for the proof of Proposition 4.3.

A Proof of Proposition 4.3

In this appendix, we provide a counterexample to prove the separation between SND-E and SND-P
in the computational setting.

Proof of Proposition 4.3: Consider a proof system ⇧ for the relation R, both of which are
described in Figure 12. We show that (1) ⇧ is SND-E for R but (2) ⇧ is not SND-P for R, assuming
DDH is hard relative to the group generator.

We provide an adversary strategy to show (2) in Figure 12. When µ = 1, the adversary always wins
the SND-P game, and when µ = 0, it wins the SND-P game with negligible probability. Therefore,
we can conclude that:

Adv
snd-p
⇧,R,�(Asnd-p) �

1

2

We now show (1) via a sequence of games, described in Figure 12. First, notice that Adv
snd-e
⇧,R,�(A) =

Pr [G0(A)]. Further, we have

Pr [G0(A)] = Pr [G1(A)] + Pr [G2(A)] + Pr [G3(A)] + Pr [G4(A)]

We can construct adversaries A1
ddh and A2

ddh against the DDH game (described in Figure 13) such

28

that

Pr [G2(A)]� Pr [G1(A)]  Adv
ddh
GG,�(A

1
ddh)

Pr [G4(A)]� Pr [G3(A)]  Adv
ddh
GG,�(A

2
ddh)

We can further write

Pr [G1(A)] = Pr [G5(A)] + Pr [G6(A)]

Pr [G3(A)] = Pr [G7(A)] + Pr [G8(A)]

We can see that

Pr [G6(A)]  Adv
mcg
R,�,⇧.C,⇧.V(A) , Pr [G8(A)]  Adv

mcg
R,�,⇧.C,⇧.V(A) .

Now, since the adversary A must be membership-conscious for the relation R (i.e. A 2 Amc
R), we

can infer that

Pr [G6(A)]  negl(�) , Pr [G8(A)]  negl(�) .

We also construct adversaries A1
cdh and A2

cdh against the CDH game in Figure 13 such that

Pr [G5(A)]  Adv
cdh
GG,�(A

1
cdh) , Pr [G7(A)]  Adv

cdh
GG,�(A

2
cdh) .

Putting all this together, we get

Adv
snd-e
⇧,R,�(A)  Adv

ddh
GG,�(A

1
ddh) +Adv

ddh
GG,�(A

2
ddh)

+ 2Adv
cdh
GG,�(A

1
cdh) + 2Adv

cdh
GG,�(A

2
cdh) + negl(�)

This shows that the scheme is SND-E secure assuming the hardness of the DDH and CDH assump-
tions relative to the group generator.

B Proof of Theorem 5.2

Proof of Theorem 5.2: Let A be a polynomial-time adversary. We build a polynomial-time
adversary Aµ such that for all � 2 N we have

Adv
ps
PS[D⇧1�µ],�

(A)  Adv
ps
PS[D⇧µ],�

(A) + 2 ·Adv
mode
D⇧,�(Aµ) . (1)

The theorem follows.

To establish Equation (1), recall that, as per the definition of a property specification, the oracle
responder algorithm depends only on the prover and verifier algorithms of the proof system it is
given, invoking these as oracles. But, by the definition of the proof systems induced proof by a
dual-mode proof system, for both D⇧0 and D⇧1, the prover algorithm is D⇧.P and the verifier
algorithm is D⇧.V. This means that the oracle responder algorithms corresponding to D⇧0 and
D⇧1 are identical, both being PS[D⇧.P,D⇧.V].Or.

With this, consider the games Gd, defined, for d 2 {0, 1}, in Figure 14. At line 1, they generate
the CRS and the proving and verification keys in mode d, and then run the state initializer (we use
here the fact that it does not depend on the proof system) to get an initial state. In responding to
Or queries at line 2, they use the oracle responder with prover and verifier algorithms set to those

29

Game Gd // d 2 {0, 1}
Init():

1 (crs, td, kP, kV) $ D⇧.C(1�, d) ; st $ PS.StI(1�, crs, kP, kV)

Or(Oname,Oarg):

2 (Orsp, st) $ PS[D⇧.P,D⇧.V].Or(Oname,Oarg)

3 If ((Oname = Fin) and (out = ?)) then out Orsp

4 Return Orsp

Fin():

5 Return out

Adversary Aµ

1 (crs, kP, kV) $ G
mode
D⇧,� .Init ; st PS.StI(1�, crs, kP, kV) ; Run AOr

2 If out then a 1 else a 0

3 Return (a� µ)

Or(Oname,Oarg):

4 (Orsp, st) $ PS[D⇧.P,D⇧.V].Or(Oname,Oarg)

5 If ((Oname = Fin) and (out = ?)) then out Orsp

6 Return Orsp

Figure 14: Top: Games for the proof of Theorem 5.2. Bottom: Adversary for the proof of Theorem 5.2.

of the dual-mode proof system, as per the above. Then for both d = 0 and d = 1 we have

Adv
ps
PS[D⇧d],�

(A) =

⇢
Pr[Gd(A)] if type = ser

2Pr[Gd(A)]� 1 if type = dec.

Thus if type = ser we have

Adv
ps
PS[D⇧1�µ],�

(A) = Pr[G1�µ(A)] = Pr[Gµ(A)] + (Pr[G1�µ(A)]� Pr[Gµ(A)])

= Adv
ps
PS[D⇧µ],�

(A) + (Pr[G1�µ(A)]� Pr[Gµ(A)]) .

And if type = dec we have

Adv
ps
PS[D⇧1�µ],�

(A) = 2Pr[G1�µ(A)]� 1

= 2Pr[Gµ(A)]� 1 + 2 · (Pr[G1�µ(A)]� Pr[Gµ(A)])

= Adv
ps
PS[D⇧µ],�

(A) + 2 · (Pr[G1�µ(A)]� Pr[Gµ(A)]) .

We build PT mode indistinguishability adversary Amode so that

Pr[G1�µ(A)]� Pr[Gµ(A)]  Adv
mode
D⇧,�(Aµ) .

The adversary Aµ is shown at the bottom in Figure 14. At line 1 it obtains a CRS and proving
and verification keys from its own Init oracle. It then runs A and simulates the Or oracle of the
latter as shown. Let b be the randomly chosen bit in G

mode
D⇧,� . Then

Adv
mode
D⇧,�(Aµ) = Pr [a�µ = 1 | b = 1]� Pr [a�µ = 1 | b = 0] .

30

Let us consider the two cases depending on whether µ is 0 or 1.

µ = 0 : Adv
mode
D⇧,�(A0) = Pr [a = 1 | b = 1]� Pr [a = 1 | b = 0]

= Pr[G1(A)]� Pr[G0(A)]

µ = 1 : Adv
mode
D⇧,�(A1) = Pr [a = 0 | b = 1]� Pr [a = 0 | b = 0]

= Pr [a = 1 | b = 0]� Pr [a = 1 | b = 1]

= Pr[G0(A)]� Pr[G1(A)]

We can combine the two cases together as follows:

Adv
mode
D⇧,�(Aµ) = Pr[G1�µ(A)]� Pr[Gµ(A)] .

This completes the proof.

C Proof of Theorem 6.1

Proof of Theorem 6.1: Let ADS be a polynomial time adversary. Then we construct PT
adversaries Asndp,Azk,Ahide,Auf (shown explicitly in Figures 16 and 17) such that

Adv
uf
DS,�(ADS)  Adv

snd-p
⇧,R,�(Asndp) +Adv

zk
⇧,R,S,�(Azk)

+Adv
hide
CS,�(Ahide) +Adv

uf
F (Auf) .

The theorem then follows.

Consider the games of Figure 15. Games G0, G1, G2 di↵er only in one line, the ones used, respec-
tively, in these games, being lines 8,9,10, which change how the game decides whether or not the
adversary’s forgery attempt should let it win the game. We have

Adv
uf
DS(ADS) = Pr[G0(ADS)]

= Pr[G1(ADS)] + (Pr[G0(ADS)]� Pr[G1(ADS)]) .

We claim to have designed the Figure 16 adversary Asndp so that

Pr[G0(ADS)]� Pr[G1(ADS)]  Adv
snd-p
⇧,R,�(Asndp) .

Notice first that the condition setting vf in G1 (line 8) is exactly the test for membership in LR(crs).
For brevity, we let x denote the (1�, cp, c, Y,m) tuple corresponding to the (m,�) pair queried to
the Fin procedure by the adversary ADS in games G0 and G1. Then

Pr[G0(ADS)] = Pr[⇧.V(1�, crs, ", x, pf)] and Pr[G1(ADS)] = Pr[x 2 LR(crs)] .

31

Games G0,G1,G2

Init():

1 cp $ CS.P(1�) ; K $ {0, 1}� ; d $ {0, 1}� ; c CS.C(1�, cp,K, d)

2 (crs, td, ", ") $ ⇧.C(1�) ; vk (crs, cp, c) ; return vk

Sign(m):

3 Y F(1
�,K,m) ; pf $ ⇧.P(1�, crs, ", (1�, cp, c, Y,m), (K, d))

4 � (Y, pf) ; S S [{m} ; Return �

Fin(m,�):

5 (Y, pf) �

6 If (m 2 S) then return false

7 vf ⇧.V(1�, crs, ", (1�, cp, c, Y,m), pf) // Game G0

8 vf 9(K0, d0) : (CS.C(1�, cp,K0, d0) = c) ^ (F(1
�,K0,m) = Y) // Game G1

9 vf (F(1
�,K,m) = Y) // Game G2

10 Return vf

Games G3,G4

Init():

1 cp $ CS.P(1�) ; K,K0 $ {0, 1}� ; d $ {0, 1}� ; (crs, td, ") $ S.C(1�)

2 c CS.C(1�, cp,K, d) // Game G3

3 c CS.C(1�, cp,K0, d) // Game G4

4 vk (crs, cp, c) ; return vk

Sign(m):

5 Y F(1
�,K,m) ; pf $ S.P(1�, crs, td, ", (1�, cp, c, Y,m))

6 � (Y, pf) ; S S [{m} ; Return �

Fin(m,�):

7 (Y, pf) �

8 If (m 2 S) then return false

9 vf (F(1
�,K,m) = Y) ; Return vf

Figure 15: Games for proof of Theorem 6.1.

This gives us (let � = Pr[G0(ADS)]� Pr[G1(ADS)])

� = Pr[⇧.V(1�, crs, ", x, pf)]� Pr[x 2 LR(crs)]

= Pr[⇧.V(1�, crs, ", x, pf) ^ (x /2 LR(crs))]

+ Pr[⇧.V(1�, crs, ", x, pf) ^ (x 2 LR(crs))]� Pr[(x 2 LR(crs))]

 Pr[⇧.V(1�, crs, ", x, pf) ^ (x /2 LR(crs))]

= Adv
snd-p
⇧,R,�(Asndp)

We now show by explicitly providing the adversaries Azk, Ahide, and Auf , that

Pr[G1(ADS)]  Adv
zk
⇧,R,S,�(Azk) +Adv

hide
CS,�(Ahide) +Adv

uf
F (Auf) . (2)

We have

Pr[G1(ADS)] = Pr[G2(ADS)] + (Pr[G1(ADS)]� Pr[G2(ADS)]) .

32

Adversary Azk:

1 cp $ CS.P(1�) ; K $ {0, 1}� ; d $ {0, 1}�

2 (crs, ") $ Gzk
⇧,R,S,�.Init ; c CS.C(1�, cp,K, d)

3 vk (crs, cp, c) ; AInit,Sign,Fin
ds

Init:

4 Return vk

Sign(m):

5 Y F(1
�,K,m)

6 pf $ Gzk
⇧,R,S,�.Pf((1

�, cp, c, Y,m), (K, d))

7 � (Y, pf) ; S S [{m} ; Return �

Fin(m,�):

8 (Y, pf) �

9 If (m 2 S) then Gzk
⇧,R,S,�.Fin(0)

10 If (F(1
�,K,m) = Y) then b0 1 else b0 0

11 Gzk
⇧,R,S,�.Fin(b

0
)

Adversary Asndp:

1 cp $ CS.P(1�) ; K $ {0, 1}�

2 d $ {0, 1}� ; c CS.C(1�, cp,K, d)

3 (1
�, crs, kP) $ Gsnd-p

⇧,R,�.Init

4 vk (crs, cp, c) ; AInit,Sign,Fin
DS

Init:

5 Return vk

Sign(m):

6 Y F(K,m) ; x (1
�, cp, c, Y,m)

7 pf $ ⇧.P(1�, crs, kP, x, (K, d))

8 Return (Y, pf)

Fin(m,�):

9 (Y, pf) � ; Gsnd-p
⇧,R,�.Vf((1�, cp, c, Y,m), pf)

10 Gsnd-p
⇧,R,�.Fin()

Figure 16: Adversaries for the proof of Theorem 6.1.

The assumption that CS is perfectly binding implies that

Pr[G1(ADS)] = Pr[G2(ADS)] .

Next we have

Pr[G2(ADS)] = Pr[G3(ADS)] + (Pr[G2(ADS)]� Pr[G3(ADS)]) .

We claim to have designed the Figure 16 adversary Azk so that

Pr[G2(ADS)]� Pr[G3(ADS)]  Adv
zk
⇧,R,S,�(Azk) .

Next we have

Pr[G3(ADS)] = Pr[G4(ADS)] + (Pr[G3(ADS)]� Pr[G4(ADS)]) .

We claim to have designed the Figure 17 adversaries Ahide and Auf so that

Pr[G3(ADS)]� Pr[G4(ADS)]  Adv
hide
CS,�(Ahide) ,

Pr[G4(ADS)]  Adv
uf
F (Auf) .

Putting these together gives us the inequality (2).

This completes the proof.

D Related Work

It has been shown that non-interactive zero-knowledge proof systems for languages outside of
BPP cannot exist in the plain model [GO94]. The existing literature instead considers a variety of
di↵erent models under which they provide constructions achieving non-interactive zero knowledge.

The Common Reference String (CRS) model. This widely used model is also known as the
auxiliary string model [Dam00] or the public-parameter model [FF00, Ps05]. In this model, there

33

Adversary Ahide:

1 cp $ Ghide
CS,�.Init ; K,K0 $ {0, 1}�

2 c $ Ghide
CS,�.CMT(K,K0

)

3 (crs, td, ") $ S.C(1�)

4 vk (crs, cp, c) ; AInit,Sign,Fin
ds

Init:

5 Return vk

Sign(m):

6 S S [{m} ; Y F(1
�,K,m)

7 x (1
�, cp, c, Y,m)

8 pf $ S.P(1�, crs, td, ", x)

9 � (Y, pf) ; return �

Fin(m,�):

10 (Y, pf) �

11 If (m 2 S) then Ghide
CS,�.Fin(0)

12 If ((F(1
�,K,m) = Y)) then b0 1

13 Else b0 0

14 Ghide
CS,�.Fin(b

0
)

Adversary Auf :

1 cp $ CS.P(1�) ; K0 $ {0, 1}�

2 d $ {0, 1}� ; (crs, td, ") $ S.C(1�)

3 c CS.C(1�, cp,K0, d)

4 vk (crs, cp, c)

5 Guf
F,�.Init ; AInit,Sign,Fin

ds

Init:

6 Return vk

Sign(m):

7 Y Guf
F,�.Fn(m)

8 x (1
�, cp, c, Y,m)

9 pf $ S.P(1�, crs, td, ", x)

10 Return (Y, pf)

Fin(m,�):

11 (Y, pf) � ; Guf
F,�.Fin(m,Y)

Figure 17: More adversaries for the proof of Theorem 6.1.

is assumed to exist a trusted party that generates a common reference string which is available to
both the prover and the verifier. The common random string model [BFM90] can be considered to
be a special case of the CRS model, in which the common string generated by the trusted party is
sampled from a uniform distribution.

The Preprocessing model [DMP90]. In this model, there is assumed to be an initial, statement-
independent trusted setup (preprocessing) phase, that results in the generation of a proving key
(which will be needed to generate proofs) and a verification key (which is needed to verify proofs).
Soundness is now required to hold even against a prover with oracle access to the verifier (but
no access to the verification key), while zero-knowledge is required to hold against a verifier with
oracle access to the prover (but no access to the proving key).

The Designated Verifier and Designated Prover models.
The designated verifier (DV) model (introduced in [JSI96] for interactive proofs and in [ES02,
PsV06, DFN06] for non-interactive proofs) and the designated prover (DP) model [KW18, KNYY19]
can be studied as special cases of the preprocessing model. In the DV model, the proving key is
considered to be empty, so that any party can generate a proof of a statement, but verification
can only be done by the party with the secret verification key. Analogously, in the DP model, the
verification key is considered to be empty, so that any party can verify a proof of a statement, but
proof generation can only be done by the party with the secret proving key.

Dual-Mode NIZKs. The abstraction of the dual-mode cryptosystem was first considered in
[PVW08] for the setting of oblivious transfer. A similar technique named “parameter switching”
was used in [GOS06b] in the context of non-interactive zero-knowledge. Though this technique was
used in multiple constructions [Gro06, GOS06a, GOS06b, GS08], the term “dual-mode NIZK” was
first used in [AFH+16] as one of the building blocks for multilinear maps. Dual-mode NIZKs have
been constructed from obfuscation in [HU19], while [LPWW20] constructs dual-mode NIZKs in

34

the designated verifier model from di↵erent assumptions. The works of [CCH+19, PS19] also con-
struct NIZK systems that can be used in two modes, but do not explicitly consider the dual-mode
abstraction.

We now examine the definitions of soundness in papers that use the dual-mode within our
notation to see whether they transfer. Let R be a relation and ⇧ a proof system.

[GOS06b]. They call their definition non-adaptive computational soundness. It requires that for
all non-uniform PT adversaries A and all x /2 LR (the language here does not depend on the CRS)—

Pr
h
(crs, ", ", ") $ ⇧.C(1�) ; pf $ A(x, crs) : ⇧.V(1�, crs, ", x, pf) = false

i
⇡ 1 .

The “⇡ 1” above is shorthand for saying there is a negligible function ⌫ such that the probability
on the left is � 1 � ⌫(�). Now there is some ambiguity in the definition, namely that it is not
clear how ⌫ is quantified. Does it depend on A? On x? The meaningful choice here is to assume
the authors meant it to depend on A but not on x, so that the definition becomes that for all
non-uniform PT adversaries A there exists a negligible function ⌫ such that for all x /2 LR and all
�—

Pr
h
(crs, ", ", ") $ ⇧.C(1�) ; pf $ A(x, crs) : ⇧.V(1�, crs, ", x, pf) = true

i
 ⌫(�) .

This notion of soundness does transfer. The proof relies, however, crucially on non-uniformity;
mode indistinguishability must be assumed for non-uniform adversaries. This, however, is indeed
the setting of the paper, so we conclude that soundness as per [GOS06b] transfers successfully,
supporting the claim made (without explicit proof) in the paper.

However, this non-adaptive definition of soundness is not well suited (too weak) for some ap-
plications, because it does not allow x to depend on the CRS. This arises for example in the
application to signatures we discussed in Section 6 . Also the definition does not seem written
to allow dependence of the language on the CRS, yet in their system to prove that a ciphertext
encrypts a bit, the language does depend on the CRS.

[GOS06a, Gro06, GS08, HHNR17]. All of these works use equivalent definitions for (perfect)
soundness for a non-interactive proof system ⇧ for relation R. They require that for all non-uniform
adversaries A and all �—

Pr


(crs, ", ", ") $ ⇧.C(1�);

: ⇧.V(1�, crs, x, pf) = false if x /2 LR(crs)(x, pf) $ A(crs)

�
= 1 .

The computational variant would presumably be that for all non-uniform PT adversaries A there
exists a negligible function ⌫ such that for all �—

Pr


(crs, ", ", ") $ ⇧.C(1�);

: ⇧.V(1�, crs, ", x, pf) = false if x /2 LR(crs)(x, pf) $ A(crs)

�
� 1� ⌫(�) .

Again, there is some ambiguity, namely as to the meaning of the “if.” We would expect that
what is written after the colon, here “⇧.V(1�, crs, ", x, pf) = false if x /2 LR(crs),” is an event
in the probability space described by what precedes the colon, and in this light have trouble
understanding the “if.” Our best interpretation was to view the “if” as an implication. That is,
“⇧.V(1�, crs, ", x, pf) = false if x /2 LR(crs)” becomes “(x /2 LR(crs)) =) (⇧.V(1�, crs, ", x, pf) =
false),” which in turn becomes “(⇧.V(1�, crs, ", x, pf) = false) or (x 2 LR(crs)).” The condition
above now becomes

Pr


(crs, ", ", ") $ ⇧.C(1�);

: (⇧.V(1�, crs, ", x, pf) = true) ^ (x /2 LR(crs))(x, pf) $ A(crs)

�
 ⌫(�) .

35

This definition is equivalent to the SND-P notion of soundness we give in Figure 3. As we have
shown in Theorem 4.4, this notion of soundness need not in general transfer, so that the soundness
definition of [GOS06a, Gro06, GS08, HHNR17] also fails in general to transfer. Note Theorem 4.4
holds in both the uniform and non-uniform settings; unlike for the [GOS06b] definition discussed
above, non-uniformity does not seem aid transfer here. All this is with the caveat that we may be
mis-interpreting the “if.”

On the other hand, the soundness in this definition is adaptive, making it good for applications,
as we indicate via Section 6 . The pattern we see is that weak (less application-enabling) soundness
transfers and strong (more application-enabling) soundness does not transfer.

[AFH+16, FHHL18]. This work uses a definition of perfect soundness for a non-interactive proof
system. Their definition implies that for all �—

Pr


(crs, td, ", ") $ ⇧.C(1�);

: (⇧.V(1�, crs, ", x, pf) = true) ^ (x /2 LR(crs))(x, pf) $ A(crs)

�
= 0 .

This corresponds to the SND-P notion of soundness, which, as we have seen, does not in general
transfer. However, the definition (and its computational variant, which is not defined in the paper)
is adaptive, which is application-enabling.

[HU19]. Their requirement of (statistical) soundness is that for all non-uniform adversaries A there
exists a negligible function ⌫ such that—

Pr


(crs, ", ", ") $ ⇧.C(1�);

: (⇧.V(1�, crs, ", x, pf) = true) ^ (x /2 LR(crs))(x, pf) $ A(crs)

�
 ⌫(�) .

The computational version is presumably that for all PT non-uniform adversaries there exists a
negligible function ⌫ such that for all � the same equation above holds. This definition is equivalent
to the SND-P notion of soundness we define in Figure 3. As we have shown in Theorem 4.4, this
notion of soundness does not in general transfer. However it is a strong, application-enabling
definition.

[CCH+19, PS19] These works consider two definitions of soundness, in the statistical case and in
the computational case. The statistical soundness definition is the stronger, adaptive version, and
corresponds to the SND-P notion of soundness in Figure 3. However, computational soundness
has a weaker, non-adaptive definition (corresponding to the SND-E notion). This corresponds
implicitly to our result that the transference would only hold for the weaker SND-E notion but not
for the SND-P notion.

[LPWW20]. Note that this work, unlike the previous works, is in the designated-verifier model.
It too, defines two forms of soundness, an adaptive version, and a non-adaptive version and points
out the di�culty in arguing what corresponds to the transference of the SND-P notion. It therefore
uses the weaker non-adaptive version for computational soundness.

36

	Introduction
	Preliminaries
	Proof systems and Dual Mode proof systems
	A study in soundness
	Transference framework and positive results
	SND in application: A test case
	References
	Proof of Proposition 4.3
	Proof of Theorem 5.2
	Proof of Theorem 6.1
	Related Work

