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Abstract

Recently, coordinated attack campaigns started to be-
come more widespread on the Internet. In May 2017,
WannaCry infected more than 300,000 machines in 150
countries in a few days and had a large impact on crit-
ical infrastructure. Existing threat sharing platforms
cannot easily adapt to emerging attack patterns. At
the same time, enterprises started to adopt machine
learning-based threat detection tools in their local net-
works. In this paper, we pose the question: What in-
formation can defenders share across multiple networks
to help machine learning-based threat detection adapt to
new coordinated attacks? We propose three informa-
tion sharing methods across two networks, and show
how the shared information can be used in a machine-
learning network-traffic model to significantly improve
its ability of detecting evasive self-propagating malware.

1 Introduction

With the increased connectivity of devices on the In-
ternet, attackers have an opportunity to launch coordi-
nated global attacks targeting multiple networks. Self-
propagating malware (SPM) such as Mirai [5] and Wan-
naCry [18] infected hundred of thousands of machines
and caused significant damage on a global scale. More
recently, a widespread campaign in the supply chain of
the SolarWinds remote monitoring software infiltrated
thousands of organizations around the world [4].

Public threat intelligence platforms such as Mal-
ware Information Sharing Platform (MISP) [1] provide
a database of malware signatures and indicators of com-
promise (IoCs) to enable network owners to deploy so-
lutions to protect against known threats. These plat-
forms can be used to detect known threats, but they
fail to adapt quickly to new attack campaigns. More-
over, adversaries can easily create many malware vari-
ants in an attempt to evade static signature detection.
Recently, machine learning-based threat detection tech-
niques have been proposed (e.g., [23, 7, 21, 15]) and they
have started to be widely adopted in the industry [3, 2].
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Most of these ML systems train models locally on the
enterprise network, and attempt to detect attacks using
the security logs of a single enterprise.

In this paper, we pose the question: What infor-
mation can defenders share across networks to help ma-
chine learning-based threat detection adapt to new co-
ordinated attacks? Our hypothesis is that ML-based
tools can significantly increase their detection ability by
leveraging attack information shared across multiple de-
fenders. We demonstrate the advantages of information
sharing via a case study of detecting SPM attacks using
the PortFiler network traffic system [14]. We propose
and analyze three methods for information sharing, in-
cluding (1) sharing an entire ML model; (2) sharing
weights for an ensemble model; (3) sharing weights for
an ensemble model and feature distribution information.
All of these methods share aggregated information and
protect the privacy of security logs, an important con-
sideration in sharing threat information. Our analysis
shows that a locally-trained ML ensemble can detect
more evasive malware with 0.91 precision at 0.86 recall
on average using shared threat information and feature
distribution information. We conclude by discussing the
challenges on designing and deploying global defensive
ML models to counteract coordinated attacks.

2 Methodology

We provide an overview of the PortFiler system de-
signed to proactively detect SPM attacks in an enter-
prise network [14]. We discuss our machine learning
(ML) methodology, and three information sharing ap-
proaches to improve local detection. The overview of
the information sharing platform is given in Figure 1.

2.1 PORTFILER System Overview. Port-
Filer [14] is an unsupervised ML threat detection
system that uses Zeek network connection logs [17]
collected at the border of the enterprise network. This
data contains connection metadata information such
as timestamp, duration, source and destination IP
and port, transport protocol, payload size, number of
packets, and connection state. PortFiler monitors
a set of configurable ports, including port 23 (Telnet)
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Figure 1: Overview of the information sharing platform where Net-A shares either its local ML model, feature
weights for the ensemble, or feature distribution to improve the local ML model of Net-B.

used by Mirai, port 445 (SMB) used by WannaCry, as
well as ports 22 (SSH), 80 (HTTP), and 443 (HTTPS).

PortFiler learns the distribution of network traf-
fic on each port during the training period, using a set of
35 statistical traffic features aggregated by one-minute
time windows. Ensembles of KDE models are shown to
be the most resilient to evasion [14]. The models that
are part of the ensembles are trained on individual fea-
tures. During testing, each model generates an anomaly
score. All scores are combined into a final score using:
(1) uniform weights (Mean Ensemble); or (2) different
weights (Weighted Ensemble).

2.2 Information Sharing for SPM. SPM attacks
rarely target a single network or organization, due to
their ability to quickly propagate across the Internet.
Our main hypothesis is that organizations can share
threat information after SPM attack detection to help
other organizations improve their detection. We pro-
pose several scenarios of sharing information between
networks. Privacy is a major consideration for threat
information sharing and all our methods protect the
privacy of security logs, as we only share aggregated
information on network traffic, as described below:
Model Sharing. Net-A trains the ML model on its
network logs, and shares the model directly with Net-
B. This approach saves training time at Net-B, but
differences in traffic patterns between the two sites may
render the transferred model less efficient in capturing
anomalies at Net-B.
Weight Sharing. Net-A and Net-B train two en-
semble models independently on their own logs. As-
suming that Net-A is detecting an SPM attack, it com-
putes feature weights based on the detected samples and
shares them with Net-B.

To compute feature weights, Net-A applies a Ran-
dom Forest classifier trained on the malicious samples,
as well as legitimate samples to derive feature impor-
tance. The feature weights will then be normalized val-
ues of feature importance, summing up to 1. Net-B
uses the Weighted Ensemble trained on its own net-
work traffic, with the model weights shared by Net-
A. Intuitively, the features that are most relevant for
the detected attack get assigned higher weights, and
will contribute more in the anomaly score generated
by the Weighted Ensemble at Net-B. We compare the
Weighted Ensemble with shared weights to the unsu-
pervised Mean Ensemble with equal weights at Net-B.
Weight Adaptation. Feature distributions on the
two networks can be significantly different, and, thus,
some feature weights do not transfer effectively. To
alleviate this effect, we propose to share information
about feature distribution from Net-A, in particular
the first four moments of distribution of each feature
values: mean, variance, skewness and kurtosis. Net-B
compares the distribution of its own features to those of
Net-A and selects only the closest features and their
weights in the Weighted Ensemble. The method is
outlined below:

1. Each network computes its moments of distribu-
tion: MA[X], MB [X] for each feature vector X.

2. Net-A computes the feature weights.
3. Net-A shares its feature weights and moments of

distribution with Net-B.
4. Net-B computes Euclidean distance between the

moments of the two networks: ||MA[X]−MB [X]||2

Finally, Net-B selects top k (i.e., k = 10) features
ordered by distance and carries out detection using only
these top features.



3 Evaluation

3.1 Dataset We used Zeek connection logs collected
by University of Virginia (UVA) and Virginia Tech
(VT). Our experimental setup uses one week of training
and one day of testing at each network on July 2020,
9.64 billion events for UVA, and 9.69 billion events
for VT. The dataset was anonymized to not reveal
personal information about the machines or users on the
network1. To evaluate our system, we merge malicious
Mirai traces [16] at testing time on different ports. We
generated an evasive variant of Mirai, 128 times slower
than the original, by sampling a fraction of connections
to reduce the scanning rate. Ongun et al. [14] showed
that scanning speed may differ among prevalent SPM
families.

3.2 Experiments We simulated a scenario where
Net-A (UVA) is infected by the original Mirai malware.
Net-A runs the unsupervised Mean Ensemble model
of PortFiler and detects this attack with accuracy
above 0.96. We assume that Net-B (VT) is infected
later either by a similar fast Mirai variant, or by the
128x slower variant. We evaluated the three proposed
information sharing methods from Net-A to Net-B,
where PortFiler is also deployed with the same set
of features. We start our evaluation with a baseline
model where no information sharing is employed and
then compare the three sharing methods.
Baseline. We consider the Mean Ensemble of KDE
models trained on Net-B, without any shared informa-
tion. Figure 2 shows the recall in the top k alerts for
the fast and slow Mirai variants. Our test data con-
tains 63 malicious samples (one-minute time intervals)
out of 1440 in total. Ideal recall in top k is k/m, where
m is the number of malicious samples. Therefore, an
ideal model would rank all 63 malicious samples on top,
without any false positives. This translates into a recall
of 1.0 after processing the top 63 alerts. We represent
the number of Mirai samples in our plots with a vertical
line. The baseline model performs well on the fast Mirai
variant (Figure 2a). However, its performance is much
reduced on the slow Mirai variant (Figure 2b) on most
ports.
Model Sharing. Here, Net-A shares the entire ML
model (Mean Ensemble) and the results at Net-B are
shown in Figure 3. The fast Mirai variant is detected
generally well, except on port 445. This is due to
different background traffic patterns at the two sites.
Net-A blocks most of the traffic on port 445, while

1The IRB office reviewed our data collection process and
determined that our research does not qualify as Human Subject
Research.

(a) Fast Mirai variant (b) Slow Mirai variant

Figure 2: Baseline at Net-B, the accuracy is low for
slow variant with no shared information. The vertical
line represents the number of Mirai samples.

Net-B still allows internal traffic on this port. This
leads to an important observation: on some ports, the
model is not directly transferable between sites. Prior
analysis of the traffic patterns is necessary to establish
whether the model can be shared. For the slower Mirai
variant, we generally see a performance degradation
when the model is shared compared to the baseline. At
slower malware propagation speeds, the detector is more
sensitive to traffic variations between the networks.

(a) Fast Mirai variant (b) Slow Mirai variant

Figure 3: Model Sharing. Traffic pattern variations
between the two sites where training and testing are
done decrease accuracy. The vertical line represents the
number of Mirai samples.

Weight Sharing. Each site trains an ensemble model
on their own data. Net-A uses the Mean Ensemble
detector to rank and label malicious time windows and
derive feature weights. These weights are shared with
Net-B, which uses its own trained model, along with
these shared weights to detect anomalies in the test
data. Figure 4 shows the detector’s performance on
Net-B test data. This method is able to correctly
identify malicious time windows better than either the
baseline or the model sharing scenario. It obtains
almost perfect detection on the fast Mirai variant, and
generally better results on the slower Mirai variant.
However, on ports 22 and 80 the results can be further
improved.
Weight Adaptation. We take the weight sharing ap-
proach one step further by adjusting the weights based
on the statistical distance between feature distributions



(a) Fast Mirai variant (b) Slow Mirai variant

Figure 4: Weight Sharing. Detection is improved by
giving higher weights to features that are more relevant
to a particular attack.

at the two sites and using only the 10 closest features.
The fast Mirai attack is detected with maximum recall
and precision and thus the graph has been omitted. Fig-
ure 5 shows the system’s ability to detect malicious time
windows at Net-B on the slow Mirai attack. The re-
call metric is improved across all ports, illustrating the
benefit of an adaptive approach for weight sharing. Pre-
cision and false positive comparison of sharing methods
are presented in Table 1 and 2 of Appendix B.

Figure 5: Weight Adaptation (slow variant). This
method performs best, by adapting the shared weights
based on the statistical distances between features at
the two sites.

4 Related Work

Vasilomanolakis et al. [20] provide a taxonomy of collab-
orative intrusion detection systems. Earlier work on dis-
tributed intrusion detection leverages matching attack
graph signatures to detect coordinated attacks [22, 13].
Alert correlation has been proposed to reduce the num-
ber of false positives by sharing alerts centrally to con-
firm malicious behavior [8, 6]. Hu et al. [10] uses boost-
ing classifiers for distributed threat detection. Param-
eterized local models are collected to build a global
model improving the detection rates. Nguyen et al. [12]
study the first federated-learning-based anomaly detec-
tion system for IoT networks.

Threat intelligence sharing has been studied to con-
sider different challenges such as efficient coordination,
addressing legal regulations, and standardization ef-
forts [19, 11, 9].

5 Discussion and Conclusion

We proposed three information sharing methods across
two networks and showed how the shared information
can be used in an ML model to significantly improve
its ability to detect evasive self-propagating malware.
We showed that network traffic distribution differs
significantly per port across organizations and direct
model transfer is not effective. While weight sharing
works better than model sharing, the weight adaptation
method, which selects feature weights according to the
closest features in the two networks, performs best at
detecting the evasive variant.

We highlight the need for global defensive models
that can benefit from information sharing across defend-
ers to better protect against coordinated adversaries.
We discuss several challenges and open problems to re-
alize this vision:
Generalization and Evasion. Although we show the
effectiveness of our approach against SPM attacks, gen-
eralization to other attacks remains an open question.
Can the ensemble model be used with different weights
to adapt to other attacks? We have shown resilience to
evasion against an adversary slowing down the propa-
gation rate, but how resilient are these methods against
more advanced evasive strategies?
Threat intelligence sharing. Platforms such as
MISP [1] facilitate threat sharing of IPs, domains, and
malware file hashes. These indicators help detect at-
tacks with known behavior, but how well do they work
for new attack campaigns or even attack variants? It
is relatively easy for attackers to rotate their domain
and IP infrastructures to evade static indicators. De-
termining a set of malware invariants to detect evolving
attacks is one of the challenges in this space.
Multiple Parties. We experimented with informa-
tion sharing between two networks, but can informa-
tion sharing across multiple defenders provide an oppor-
tunity to develop more resilient ML detectors? Possi-
ble architectures include centralized threat sharing plat-
forms (similar to MIPS), and peer-to-peer models. The
P2P model offers a more flexible trust model, while
the centralized model provides more coordination and a
global perspective on the threat landscape. An impor-
tant open question is how to determine which informa-
tion is trustworthy and how to detect potential attackers
that manipulate the shared information.
Privacy considerations. When designing threat in-
formation sharing methods, privacy of the security logs
needs to be maintained. Federated learning provides de-
centralized learning methods to aggregate local model
parameters trained by individual clients into a global
ML model. Its applicability to ML models for threat
detection is an interesting topic of future work.
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A Additional Experiments.

We also conducted several experiments intended to
further understand why the slow Mirai variant exhibits
better recall on some ports compared to others in
Figure 4b.

To this end, we aggregated the feature distances
to produce a single distance metric per port. We
experimented with two aggregation methods: a simple
average and a weighted average where the weights
are the feature importance coefficients. We analyzed
whether weight sharing performs better on ports with
shortest aggregated distance between the two networks.

Before aggregation, distances per feature were com-
puted with the following methods:

• Euclidean distance over the first four moments
of distribution as described in the methodology
section.

• Euclidean distance over scale-adjusted moments of
distribution. Given that the orders of magnitude
of mean, variance, skewness and kurtosis are E[X],
E[X2], E[X3] and E[X4], respectively, we compute
E[X], E[X2]1/2, E[X3]1/3, E[X4]1/4 to bring them
to the same scale.

• For completeness, we also experimented with Earth
mover’s distance (Wasserstein metric) between fea-
ture distributions on the two networks, instead of
using the moments of distribution. This method is
not intended for practical uses, due to the difficulty
of transferring entire feature distributions from one
network to the other.

While these experiments helped us better under-
stand the data, they were not conclusive in explaining
the difference in performance on the five ports in Fig-
ure 4b. Since traffic patterns and feature distributions
are quite complex, a single aggregated distance metric
may not capture the necessary information. Determin-
ing on which ports the weights transfer better is more
subtle and requires further research.

B Comparison of Sharing Methods.

We compare the three methods proposed using various
performance metrics. We have previously discussed the
recall metric in Section 3. In this section, we look at

Infected Port
80 443 22 23 445

Model Sharing 0.16 0 0.06 0.86 0.03
Weight Sharing 0.35 0.61 0.06 0.70 0.70

Weight Adaptation 1.0 0.81 0.96 0.98 0.76

Table 1: Performance in terms of Preci-
sion in the top-60 ranked alerts across the
ports, for the slow Mirai variant at VT.

Infected Port
80 443 22 23 445

Model Sharing 50 60 56 8 58
Weight Sharing 39 23 56 18 18

Weight Adaptation 0 11 2 1 14

Table 2: Performance in terms of False
Positives in the top-60 ranked alerts across
the ports, for the slow Mirai variant at VT.

precision and false positives for each of the five ports on
the slow Mirai variant.

Table 1 illustrates performance in terms of preci-
sion, while Table 2 illustrates performance in terms of
false positives in top-60 alerts.

As these tables show, the Weight Sharing method
generally improves on the Model Sharing method. The
Weight Adaptation method delivers best precision with
fewest false positives across the board.

C PORTFILER: Traffic Features.

We present a high-level overview of features used in
PortFiler in four categories. We extract these fea-
tures for each port separately. We define these features
for each 1-minute time window. The complete list of
features are described in [14].

1. Traffic statistics features: We extract the number
of distinct internal and external IPs communicating
on that port, number of connections, and number of
new distinct external IPs.

2. Duration features: We extract max, min, variance
and mean of duration values.

3. Bytes and packets features: We extract max, vari-
ance, and mean of sent and received bytes and packets
values. We also define the number of connections with
no bytes received as a separate feature.

4. Connection state features: We extract the number
of connections for each Zeek connection state string
(e.g., S0, S1, OTH). We also define the number of
failed connections as a separate feature.


