Private Hierarchical Clustering and Efficient Approximation

Xianrui Meng
Xianru@amazon.com
Amazon Web Services

Alina Oprea
a.oprea@northeastern.edu
Northeastern University

ABSTRACT

In collaborative learning, multiple parties contribute their datasets
to jointly deduce global machine learning models for numerous
predictive tasks. Despite its efficacy, this learning paradigm fails to
encompass critical application domains that involve highly sensi-
tive data, such as healthcare and security analytics, where privacy
risks limit entities to individually train models using only their own
datasets. In this work, we target privacy-preserving collaborative hi-
erarchical clustering. We introduce a formal security definition that
aims to achieve balance between utility and privacy and present a
two-party protocol that provably satisfies it. We then extend our
protocol with: (i) an optimized version for single-linkage cluster-
ing, and (ii) scalable approximation variants. We implement all our
schemes and experimentally evaluate their performance and accu-
racy on synthetic and real datasets, obtaining very encouraging
results. For example, end-to-end execution of our secure approxi-
mate protocol for over 1M 10-dimensional data samples requires
35sec of computation and achieves 97.09% accuracy.

CCS CONCEPTS
« Security and privacy — Cryptography; « Computing
methodologies — Unsupervised learning.

KEYWORDS

secure computation; private hierarchical clustering; secure approx-
imation

ACM Reference Format:

Xianrui Meng, Dimitrios Papadopoulos, Alina Oprea, and Nikos Triandopou-
los. 2021. Private Hierarchical Clustering and Efficient Approximation. In
Proceedings of the 2021 Cloud Computing Security Workshop (CCSW’21), No-
vember 15, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3474123.3486760

1 INTRODUCTION

Big-data analytics is an ubiquitous practice with a noticeable im-
pact on our lives. Our digital interactions produce massive amounts
of data that are analyzed in order to discover unknown patterns

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCSW ’21, November 15, 2021, Virtual Event, Republic of Korea

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8653-1/21/11...$15.00
https://doi.org/10.1145/3474123.3486760

Dimitrios Papadopoulos
dipapado@cse.ust.hk
Hong Kong University of Science and Technology

Nikos Triandopoulos
ntriando@stevens.eduu
Stevens Institute of Technology

or correlations, which help us draw safer conclusions or make in-
formed decisions. At the core of this lies Machine Learning (ML) for
devising complex data models and predictive algorithms that pro-
vide hidden insights or automated actions, while optimizing certain
objectives. Example applications that successfully employ ML are
market forecast, service personalization, speech/face recognition,
autonomous driving, health diagnostics and security analytics.

Of course, data analysis is only as good as the analyzed data, but
this goes beyond the need to properly inspect, cleanse or transform
high-fidelity data prior to its modeling: In most learning domains,
analyzing “big data” is of twofold semantics: volume and variety.

First, the larger the dataset available to an ML algorithm, the bet-
ter its learning accuracy, as irregularities due to outliers fade away
faster. Indeed, scalability to large dataset sizes is very important,
especially so in unsupervised learning, where model inference uses
unlabelled observations (evading points of saturation, encountered
in supervised learning, where new training sets improve accuracy
only marginally). Also, the more varied the collected data, the more
elaborate its analysis, as degradation due to noise reduces and do-
main coverage increases. Indeed, for a given learning objective, say
classification or anomaly detection, combining more datasets of
similar type but different origin enables discovery of more complex,
interesting, hidden structures and of richer association rules (corre-
lation or causality) among attributes. So, ML models improve their
predictive power when they are built over multiple datasets owned
and contributed by different entities, in what is termed collaborative
learning—and widely considered as the golden standard [100].

Privacy-preserving hierarchical clustering. Several learning
tasks of interest, across a variety of application domains, such as
healthcare or security analytics, demand deriving accurate ML mod-
els over highly sensitive data—e.g., personal, proprietary, customer,
or other types of data that induce liability risks. By default, since
collaborative learning inherently implies some form of data sharing,
entities in possession of such confidential datasets are left with no
other option than simply running their own local models, severely
impacting the efficacy of the learning task at hand. Thus, privacy
risks are the main impediment to collaboratively learning richer
models over large volumes of varied, individually contributed, data.

The security and ML community has embraced the concept of
Privacy-preserving Collaborative Learning (PCL), the premise being
that effective analytics over sensitive data is feasible by building
global models in ways that protect privacy. This is closely related to
(privacy-preserving) ML-as-a-Service [42, 52, 53, 104] that utilizes
cloud providers for ML tasks, without parties revealing their sensi-
tive raw data (e.g., using encrypted or sanitized data. Existing work
on PCL mostly focuses on supervised rather than unsupervised

https://doi.org/10.1145/3474123.3486760
https://doi.org/10.1145/3474123.3486760

learning tasks (with a few exceptions such as k-means clustering).
As unsupervised learning is a prevalent paradigm, the design of
ML protocols that promote collaboration and privacy is vital.

In this paper, we study the problem of privacy-preserving hierar-
chical clustering. This unsupervised learning method groups data
points into similarity clusters, using some well-defined distance
metric. The “hierarchic” part is because each data point starts as
a separate “singleton” cluster and clusters are iteratively merged
building increasingly larger clusters. This process forms a natural
hierarchy of clusters that is part of the output, showing how the
final clustering was produced. We present scalable cryptographic
protocols that allow two parties to privately learn a model for the
joint clusters of their combined datasets. Importantly, we propose a
formal security definition for this task in the MPC framework and
prove our protocols satisfy it. In contrast, prior works for privacy-
preserving hierarchical clustering have proposed crypto-assisted
protocols but without offering rigorous security definitions or anal-
ysis (e.g., [27, 55, 57]; see detailed discussion in Section 8).

Motivating applications. Hierarchical clustering is a class of un-
supervised learning methods that build a hierarchy of clusters over
an input dataset, typically in bottom-up fashion. Clusters are initial-
ized to each contain a single input point and are iteratively merged
in pairs, according to a linkage metric that measures clusters’ close-
ness based on their contained points. Here, unlike other clustering
methods (k-means or spectral clustering), different distance metrics
can define cluster linkage (e.g., nearest neighbor and diameter for
single and complete linkage, respectively) and flexible conditions on
these metrics can determine when merging ends. The final output
is a dendrogram with all formed clusters and their merging history.
This richer clustering type is widely used in practice, often in areas
where the need for scalable PCL solutions is profound.

In healthcare, for instance, hierarchical clustering allows re-
searchers, clinicians and policy makers to process medical data
and discover useful correlations to improve health practices—e.g.,
discover similar genes types [34], patient profiles most in need of
targeted intervention [80, 110] or changes in healthcare costs for
specific treatments [68]. To be of any predictive value, such data
contains sensitive information (e.g., patient records, gene informa-
tion, or PII) that must be protected, also due to legislations such as
HIPPA in US or GDPR in EU. Also, in security analytics, hierarchi-
cal clustering allows enterprise security personnel to process log
data on network/users activity to discover suspicious or malicious
events—e.g., detect botnets [46], malicious traffic [79], compromised
accounts [19], or malware [13]. Again, such data contains sensi-
tive information (e.g., employee/customer data, enterprise security
posture, defense practices, etc.) that must be protected, also due
to industrial regulations or for reduced liability. As such, without
privacy provisions for joint cluster analysis, entities are restricted
to learn only local clusters, thus confined in accuracy and effective-
ness. E.g., a clinical-trial analysis over patients of one hospital may
introduce bias on geographic population, or network inspection of
one enterprise may miss crucial insight from attacks against others.

In contrast, our treatment of clustering as a PCL instance is a
solid step towards richer classification. Our protocols for private hi-
erarchical clustering incentivize entities to contribute their private
datasets for joint cluster analysis over larger and more varied data

collections, to get in return more refined results. For instance, hospi-
tals can jointly cluster medical data extracted from their combined
patient records, to provide better treatment, and enterprises can
jointly cluster threat indicators collected from their combined SIEM
tools, to present timely and stronger defenses against attacks.! At
all times, data owners protect the confidentiality of their private
data and remain compliant with current regulations.

Challenges and insights. A first challenge we faced is how to
rigorously specify the secure functionality that such protocols must
achieve. A secure protocol guarantees that no party learns any-
thing about the input of the other party, except what can be inferred
after parties learn the output. But since the output dendrogram of
hierarchical clustering already includes the (now partitioned) in-
put, this problem cannot directly benefit from MPC. This issue is
partially the reason why previous approaches for hierarchical clus-
tering (see discussion in Section 8 and an excellent survey of related
work by Hegde et al. [49]) lack formal security analysis or have
significant information leakage. To overcome this, our approach is
to modify and refine what private hierarchical clustering should
produce, redacting the joint output—sufficiently enough, to allow
the needed input privacy protection, but minimally so, to preserve
the learning utility. We introduce a security notion that is based on
point-agnostic dendrograms, which explicitly capture only the merg-
ing history of formed joint clusters and useful statistics thereof, to
balance the intended accuracy against the achieved privacy. To the
best of our knowledge, our formal security definition (Section 3) is
the first such attempt for the case of hierarchical clustering.

The next challenge is to securely realize this functionality ef-
ficiently. Standard tools for secure two-party computation, e.g.,
garbled circuits [113, 114], result in large communication, while
fully homomorphic encryption [41] is still rather impractical, so
designing scalable hierarchical clustering PCL protocols is chal-
lenging. Moreover, hierarchical clustering of n points is already
computation-heavy—of O(n?) cost. As such, approximation algo-
rithms, e.g., CURE [47], are the de facto means to scale to massive
datasets, but incorporating approximation to private computation
is not trivial—as complications often arise in defining security [37].

In Section 4, we follow a modular design approach and use cryp-
tography judiciously by devising our main construction as a mixed
protocol (e.g., 28, 50, 63]). We decompose our refined hierarchical
clustering into building blocks and then we select a combination of
tools that achieves fast computation and low bandwidth usage. In
particular, we conveniently use garbled circuits for cluster merging,
but additive homomorphic encryption [86] for cluster encoding,
while securely “connecting” the two steps’ outputs.

In Section 5, we evaluate the performance and security of our
main protocol and present an optimized variant of O(n?) cost for
single linkage. In Section 6, we integrate the CURE method [47]
for approximate clustering into our design, to get the best-of-two-
worlds quality of high scalability and privacy. We study different
secure approximate variants that exhibit trade-offs between effi-
ciency and accuracy without extra leakage due to approximation.
In Section 7, we report results from the experimental evaluation of

!In line with current trends toward collaborative learning in healthcare/security analyt-
ics; e.g., Al-based clinical-trial predictions [1], threat-intelligence sharing [7, 8, 29, 36].

our protocols on synthetic and real data that confirm their practical-
ity. For example, end-to-end execution of our private approximate
single-linkage protocol for 1M 10 — d records, achieves 97.09% ac-
curacy at very with only 35sec of computation time.

Summary of contributions. Overall, in this work our results can

be summarized as follows:

e We provide a formal definition and secure two-party protocols
for private hierarchical clustering for single or complete linkage.

e We present an optimized protocol for single linkage that signifi-
cantly improves the computational and communication costs.

e We combine approximate clustering methods with our protocols
to get variants that achieve both scalability and strong privacy.

o We experimentally evaluate the performance of our protocols
via a prototype implementation over synthetic and real datasets.

2 PRELIMINARIES

Hierarchical clustering (HC). For fixed positive integers d, [, let

D = {ovjlv; € ZZI ', be an unlabeled indexed dataset of n d-

dimensional points, where w.l.o.g, we set the domain to {0, ..., 2! -

1}. Over pairs x,y € D of points, point distance is measured

using the standard square Euclidean distance metric dist(x,y) =

Z;l:l(xj - yj)z. Over pairs X, Y C D of sets of points, set closeness

is measured using a linkage distance metric 5(X, Y), as a function of

the cross-set distances of points contained in X, Y. The most com-
monly used linkage distances are the single linkage (or nearest neigh-
bor) defined as §(X, Y) = minyex, yeydist(x, y), and the complete

linkage (or diameter) defined as §(X, Y) = maxyex,yeydist(x, y).
Standard agglomerative HC methods use set closeness to form

clusters in a bottom-up fashion, as described in algorithm HCAIlg

(Figure 1). It receives an n-point dataset D and groups its points

into a total of ¢ < n target clusters, by iteratively merging pairs

of closest clusters into their union. The merging history is stored

(redundantly) in a dendrogram T, that is, a forest of clusters of

n — ¢ + 1 levels, where siblings correspond to merged clusters and

levels to dataset partitions, build level-by-level as follows:

e Initially, each input point v; € D forms a singleton cluster {v;}
as a leaf in T (at its lowest level n).

o lteratively, in n — ¢ clustering rounds, the i root clusters (at top
level i) form i — 1 new root clusters in T (at higher level i — 1),
with the closest two merged into a union cluster as their parent,
and each other cluster copied to level i — 1 as its parent.

When a new level of #; target clusters is reached, HCAIlg halts and
outputs T. The exact value of ¢; € [1 : n] is determined during
execution via a predefined condition End checked over the current
state T and a termination parameter ¢ provided as additional input.

This allows for flexible termination conditions—e.g., stopping when

inter-cluster distance drops below an threshold specified by ¢, or

simply when exactly ¢; = ¢t target clusters are formed.

Typically, the dendrogram T is augmented to store some associ-
ated cluster metadata, by keeping, after any union/copy cluster is
formed, some useful statistics over its contained points. Common
such statistics for cluster C is its size size(C) = |C| and representa-
tive value rep(C), usually defined as its centroid (i.e., a certain type
of average) point. Overall, for a set M of cluster statistics of interest
and specified linkage distance and termination condition, HCAlg is

viewed to operate on indexed dataset D = {v;}!, and return an

Hierarchical Clustering Algorithm HCAIlg
Input: Indexed set D = {v;}}_, termination parameter ¢
Output: Dendrogram T, clusters C(T), metadata M(T)
Parameters: Linkage distance (-, -), termination condition End(-, -),
cluster statistics set M 2 {rep(-),size(-)}

[Initially, at level n]

1. Initialize dendrogram T: Foreachi=1,...,n:

— Create node u; as the ith left-most leaf in T.

- Set C(u;) = {v;} as the singleton cluster of u;.

— Compute M(u;) = {m(v;)|m € M} as statistics of u;.

2. Set up linkages: Compute linkages of all pairs of
singleton clusters as a dictionary D, where {C(u;), C(u;)}
is keyed under §(C(u;),C(uj)),1 <i<j <n.
[Iteratively, atleveli =n,..., ¢ +1]

1. Update T: If N; is the set of nodes in T at level i:

- Find in D the min-linkage pair (u, ") of nodes in Nj,
breaking ties using a fixed rule over leaf-node indices.

— Create node w € N;_; as parent of u and /; set

C(w) =C(u) UC(); for eachnode 2 € N; — {u,u’},
create node w € N;_; as parent of ; set C(w) = C(#@).

- For each node w € Nj;_1, compute M ().

2. Check termination: If End(T, t) == 1, terminate.

3. Update linkages: Compute linkage §(C(w), C(w)), for
all w € N;—; — {w}, and consistently update dictionary D.

Figure 1: Agglomerative hierarchical clustering.

M-augmented dendrogram T, comprised of: (1) the forest structure of
dendrogram T, specifying the full merging history of input points
into formed clusters (from n singletons to ¢; target ones); (2) the
cluster set C(T); and (3) the metadata set M(T) associated with
(clusters in) T. Assuming that HCAlg employs a fixed tie-breaking
method in merging clusters, its execution is deterministic.

Secure computation and threat model. We consider the stan-
dard setting for private two-party computation, where two parties
wishing to evaluate function f (-, -) on their individual, private in-
puts x1, x2, engage in an interactive cryptographic protocol that
upon termination returns to them the common output y = f(x1, x2).
Protocol security has this semantics: Subject to certain computa-
tional assumptions and misbehavior types during protocol execu-
tion, no party learns anything about the input of the other party,
other than what can be inferred by its own input x; and the learned
result y. In this context, we study privacy-preserving hierarchical
clustering in the semi-honest adversarial model which assumes that
parties are honest, but curious: They will follow the prescribed pro-
tocol but also seek to infer information about the input of the other
party, by examining the transcript of exchanged messages—the
latter, assumed to be transferred over a reliable channel.

Although, in practice, parties may choose to be malicious, devi-
ating from the prescribed protocol if they can benefit from this and
can avoid detection, the semi-honest adversarial model still has its
merits, especially in the studied PCL setting. Namely, it provides
essential privacy protection for any privacy-aware party to enter
the joint computation to benefit from collaborative learning. We
note that, by trading off efficiency, security can be hardened via
known generic techniques for compiling protocols secure in this
model into counterparts secure against malicious parties.

Garbled circuits. One of the most widely used tools for two-party
secure computation, Garbled Circuits (GC) [113, 114] allow two
parties to evaluate a boolean circuit on their joint data without
revealing their respective inputs. This is done by generating an
encrypted truth table for each gate while evaluating the circuit by
decrypting these tables in a way that preserves input privacy. In
Appendix A, we provide more details about the GC framework.

Homomorphic encryption. This technique allows carrying out
operations over encrypted data. Fully Homomorphic Encryption
(FHE) [41] can evaluate arbitrary functions over ciphertexts, but
remains rather impractical. Partially homomorphic encryption sup-
ports only specific arithmetic operations over ciphertexts, but al-
lows for very efficient implementations [86, 91]. We use Paillier’s
scheme for Additively Homomorphic Encryption (AHE) [86], sum-
marized as follows. For security parameter A, keys generated by
running (pk, sk) « Gen(l/l) and a public RSA modulus N, the
scheme encrypts (with public key pk) any message m in the plain-
text space Zy into a ciphertext [m], ensuring that decryption (with
secret key sk) of any ciphertext product [m] - [m’] mod N? (com-
putable without sk) results in the plaintext sum m + m” mod N.
Thus, decrypting [m]¥ mod N? results in km mod N, and the
ciphertext product [m] - [0] results in a fresh encryption of m.

3 FORMAL PROBLEM SPECIFICATION

We introduce a model for studying private hierarchical clustering,
the first to provide formal specifications for secure two-party pro-
tocols for this central PCL problem. Importantly, we define security
for a refined learning task that achieves a meaningful balance be-
tween the intended accuracy and privacy—a necessary compromise
for the problem at hand to even be defined as a PCL instance!

We first formulate two-party privacy-preserving hierarchical
clustering as a secure computation. Parties Py, P, hold indepen-
dently owned datasets P, Q of points in Zg,, and wish to per-
form a collaborative hierarchical clustering over the combined set
D = PU Q. They agree on the exact specification frc of this learn-
ing task, as a function of their individually contributed datasets
that encompasses all other parameters (e.g., for termination).

Let IT be a two-party protocol that correctly realizes fryc (-, -): Run
jointly on inputs x1, x2, IT returns the common output fgc(x1, x2).
Thus, parties Py, P, can learn cluster model frc (P, Q) by running
protocol IT on their inputs P, Q. As discussed, IT is considered to be
secure if its execution prevents an honest-but-curious party from
learning anything about the other party’s input that is not implied
by the learned output. We formalize this intuitive privacy require-
ment via the standard two-party ideal/real world paradigm [45].

Ideal functionality. First, we define what one can best hope for.
Cluster analysis with perfect privacy is trivial in an ideal world,
where Py, P, instantly hand-in their inputs x1, x2 to a trusted third
party, called the ideal functionality frc, that computes and an-
nounces frc(x1, x2) (and explodes). Here, the use of terms “perfect”
and “ideal” is fully justified for no information about any private
input is leaked during the computation. Some information about x1
or xz may be inferred after the output is announced, by combining
the known x3 or x; with the learned fgc(x1, x2): It is the inherent
price for collaboratively learning a non-trivial function.

Ideal Functionality f}; (-,)
Input: Sets P = {p;}7*, Q = {q; }
Output: Dendrogram T*, metadata M* 2 {rep(-),size(-)}

Parameters: Linkage distance §(-, -), termination condition End(-, ¢),
cluster statistics set M, selection function S(-)

[Pre-process] Form input of size n = n; + ny for HCAlg:
1.Set D = {d }] st. dx = pi, if k < ny, or else di = Gr—n;, -
2. Pick random permutation r : [n] — [n]; set D* = 7 (D).
[HC-process] Run HCAlg(D*, t) w/ parameters §, M, End.
[Post-process] Redact output T*, C(T*), M(T*) of HCAlg;:
1.Set M* = 0; Yo € T*:if S(v) == 1, M* « M* U {M(0) }.
2. Return T*, M*.

Figure 2: Ideal functionality f;; - for hierarchical clustering.

In the real world, Py, Py learn fgc(x1, x2) by interacting in the
joint execution of a protocol IT. We measure the privacy quality of
IT against the ideal-world perfect privacy, dictating that running
IT is effectively equivalent to calling the ideal functionality fyc.
Informally, IT securely realizes fic, if anything computable by an
efficient semi-honest party P; in the real world, can be simulated
by an efficient algorithm (called the simulator Sim), acting as P; in
the ideal world; i.e., IT leaks no information about a private input
during execution, subject to the price for learning fryc(x1, x2).

Next comes the question of which ideal functionality frc should
IT securely realize for private joint hierarchical clustering? Though
tempting, equating frc with the legacy algorithm HCAlg (Figure 1),
thus learning a full-form augmented dendrogram, slides us into
a degeneracy. Assume fyc merely runs HCAlg on the combined
indexed set D = PUQ = {dk}zzl, n = |P|+|Q|.2 The learned model
is the dendrogram T along with its associated clusters C(T) and
metadata M(T). But set C(T) itself reveals the input D; in this case,
the price for collaborative learning is full disclosure of sensitive
data and nothing is to be protected! This raises the question of
limiting exactly what information about P, Q should be revealed by
frc which is the focus of the remainder of this section.

Refined cluster analysis. In the PCL setting, we need a new defi-
nition of hierarchical clustering that distills the full augmented den-
drogram {T,C(T), M(T)} into a redacted, but still useful, learned
model, balancing between accuracy (to benefit from clustering)
and privacy (to allow collaboration). If allowing the ideal function-
ality fyc to return C(T) is one extreme that diminishes privacy,
removing the dendrogram T from the output—to learn only about
its associated information C(T), M(T)—is another that diminishes
accuracy. Indeed, if T, which captures the full merging history in its
structure, is excluded from the output of fyc, a core feature in HC
is lost: the ability to gain insights on how target clusters were formed,
under what hierarchies and in which order. This renders the HC
analysis only as good as much simpler techniques (e.g., k-means)
that merely discover pure similarity statistics of target clusters.
As the motivation for studying collaborative HC as a prominent
and widely used unsupervised learning task, in the first place, lies

2If P, Q are indexed, then D = Q||P, or else a fixed ordering is used.

exactly on its ability to discover such rich inter-cluster relations,
we must keep the forest structure of T in fi7¢’s output.

Avoiding the above two degenerate extremes suggests that the
learned model fyc (P, Q) should necessarily include the cluster
hierarchy T but not the clusters C(T) themselves. Yet, the obvious
middle-point approach of learning model f/ji-(P, Q) = {T,M(T)}
remains suboptimal in terms of privacy protections, as the learned
output can still be strongly correlated to exact input points. Indeed,
given T and a party’s own input, inferring points of the other party’s
input simply amounts to identifying singleton clusters, which is
generally possible by inspecting and correlating the (hard-coded in
HCAIg) indices in D with the metadata associated to singletons (or
their close neighbors). For instance, if w is the parent of singleton u
and cluster 4" in T, then P can infer input point C(u) of Py, either
directly from output M(u), if u is known to store none of its input
points, or indirectly from M(u”), M(w), if these output values imply
a value of M(u) that is consistent with none of its own inputs.

Also, even without singleton clusters in the output, there is still
leakage from the positioning of the points at the leaf level of T.
E.g., assuming P, Q are ordered from left to right, a merging of two
points at the right half of the tree during the first merge reveals
to Py that P, has a pair of points with smaller distance than the
minimum distance observed among points in P. Hence, it is crucial
to eliminate information about the positioning of clusters in T.

Point-agnostic dendrogram. Such considerations naturally lead
to a new goal: We seek to refine further, but minimally so, the
middle-point model f/7-(P,Q) = {T,M(T)} into an optimized
model f77~(P,Q) = {T*, M*(T)}, whereby no private input points
directly leak to any of the parties, after the output is announced. This
quality is well-defined, intuitive and useful: Unless the intended
joint hierarchical clustering explicitly copies some of input points
to the output, the learned model f;;~(P, Q) should allow no party to
explicitly learn, that is, to deterministically deduce with certainty,
any of the unknown input points of the other party.

We accordingly set our ideal functionality f7 - for hierarchical
clustering to outputs a point-agnostic augmented dendrogram, de-
fined by merely running algorithm HCAIg, subject to a twofold
correction of its input P, Q and returned dendrogram (Figure 2):

e Pre-process input: Run HCAIlg on indexed set D* that is a
random permutation over the combined set D = PUQ = {d}. }ZZI.
e Post-process output: Return the output T*, C(T*), M(T*) of
HCAIg redacted as T*, M*(T*) c M(T*), including metadata of
only a few safe clusters in T*.
Our ideal functionality f};. refines the ordinary dendrogram T,
C(T), M(T): Running HCAIg on the randomly permuted input D*
(instead of D) results in a new randomized forest structure T* (in-
stead of T) and, although its associated sets of formed clusters C(T*)
and metadata M (T*) remain the same, the learned model includes
no elements from C(T*), but only specific elements from M(T"),
determined by a selection function S(-) (as a parameter agreed upon
among the parties and hard-coded in f};). Such metadata is safe
to learn, in the sense that it does not directly leak any input points.

3Cluster hierarchy is vital in HC learning, e.g., in healthcare, revealing useful causal
factors that contribute to prevalence of diseases [34] and in biology, revealing useful
relationships among plants, animals and their habitat ecological subsystems [44].

We propose the following two orthogonal strategies for safe
metadata selection for point-agnostic dendrograms:

o s-Merging selection: M(w) € M(T") if w is the parent of u, u’
in T* and |C(u)|, |C(u’)| > s: any non-singleton cluster formed
by merging two clusters of size above threshold s > 0, is safe;

o Target selection: M(w) € M(T*) if w is root in T*: any target
cluster at level ¢ in T* is safe.

Above, the first strategy ensures that no direct leakage of private

input points occurs by correlating statistics of thin neighboring

clusters; in particular, no cluster statistics are learned for singletons
or their parents (s = 1), thus eliminating the type of leakage allowed
by model f/[i- (P, Q). The second strategy ensures that only statistics
of target clusters are learned, that is, input points may be directly
learned only explicitly as part of the intended cluster analysis.
Overall, the resulting dendrogram is point-agnostic in the sense
that neither the forest structure of T* nor the metadata M(T") re-
veal which singletons a party’s points are mapped to. As points are
randomly mapped to singletons, ties in cluster merging are ran-
domly broken, and no statistics are learned for singleton (or thin)
clusters, no party can deduce with certainty any of the other party’s
input points. For instance, the applied permutation eliminates leak-
age from the positioning of the singleton cluster at the leaves that,
in our previous example, allowed one to infer whether the other
party owned points with smaller distance than its own pairs, from
the first-round clustering result. More generally, anything inferable
about a party’s private input relates to a meta-analysis that must
necessarily encompass the (unknown) input distribution and the
random permutation used by f;; . This can be viewed as an inherent
price of collaborative hierarchical clustering. The following defines
the security of privacy-preserving hierarchical clustering.
Definition 3.1. A two-party protocol II, jointly run by Py, P on
respective inputs x1, x2 using individual random tapes rq, r; that
result in incoming-message transcripts t1, t2, is said to be secure
for collaborative privacy-preserving hierarchical clustering in the
presence of static, semi-honest adversaries, if it securely realizes
the ideal functionality f; - defined in Figure 2, by satisfying the
following: For i = 1, 2 and for any security parameter A, there exists

a non-uniform probabilistic polynomial-time simulator Simp, so

that Simpi(l’l,xi,fgc(xl,xz)) = viewﬂgi 2 {ri, ti}.

4 MAIN CONSTRUCTION

We now present our main construction, protocol PHC for Private
Hieararchical Clustering that securely realizes the ideal functional-
ity ff; (of Figure 2) when jointly run by parties P+, Pa.

General approach. As discussed earlier, for efficiency reasons,
we seek to avoid carrying out hierarchical clustering—a complex
and inherently iterative process of cubic costs—in its entirety by
computing over ciphertext (e.g., via GC or FHE). Instead, we adopt
a mixed-protocols design, decomposing hierarchical clustering into
more elementary tasks. We then use tailored secure and efficient
protocols for each task, and combine these components into a final
protocol, in ways that minimize the cost in converting data encoding
between individual sub-protocols. Hence, our solution is a secure
mixed-protocol specifically tailored for hierarchical clustering.

It is worth noting that generic solutions from 2-party compu-
tation (2PC) (e.g., [28]), would solve the problem but would not

Algorithm 1: PHC: Private Cluster Analysis

Pi’s Input: P = {p1, ..., pn, }, security parameter A

Py’s Input: Q = {q, ..., Qny }, security parameter A
Output: Merging history, {rep(-), size(-) } of ¢ target nodes
Parameters: Default configurations

-

Py: Generate (pk, sk) « Gen(11); send pk to P,
P: Generate (pk’, sk’) « Gen(11); send pk’ to P4
P+, Py: Jointly run PHC.Setup, PHC.Cluster, PHC.Output

@ N

easily scale to large datasets. During hierarchical clustering, we
need to maintain a distance matrix between two parties with space
complexity O(n?). If one relies solely on a single generic approach
such as GC or secret sharing, the communication bandwidth would
become the bottleneck. Hence, using additively homomorphic en-
cryption during our protocol’s setup phase in order to produce a
“shared permuted” distance matrix allows us not only to hide the
correspondence between euclidean distances and original points,
but also to be more communication efficient eventually. Another ad-
vantage compared to other 2PC techniques is that our approach can
achieve better precision as we explain in more detail in Section 7.

Our protocol securely implements f;; - for the configuration that
the parties specify: linkage d(-, -), termination condition End(, t),
cluster statistics set M, selection function S(-). Yet for simplicity,
hereby, we use the following default configurations, where:

(1) complete linkage over one-dimensional data is used;

(2) the termination condition results in ¢ target nodes;

(3) target selection is used for safe metadata selection; and

(4) only representative values and size statistics are learned.
That is, by (2) - (4) in what follows (and in our experiments in
Section 7), the set of redacted statistics M* consists of the repre-
sentatives repy, ..., repy, and sizes sizey, ..., sizeg, of {; =t target
clusters (recall that representatives are a predefined type of centroid
of the cluster, e.g., average or median), where ¢ is fixed in advance.
Configuration 1) is used only for clarity; we discuss optimizations
for single linkage and extensions to higher dimensions in Section 5
(and we report on the evaluation of such extensions in Section 7).

Protocol overview. After choosing configurations, P1, P, run pro-
tocol PHC (Algorithm 1), with inputs their datasets P, Q of ny, ny
points, n = ny + ny, security parameter A, and statistical parameter
k. Each party establishes its individual Paillier key-pair, and then
parties exchange their corresponding public keys.

Then, parties run sub-protocols PHC.Setup, PHC.Cluster and
PHC.Output, which comprise the three main phases in our protocol,
in direct analogy to the three components of f;; .. The general flow
of our protocol is described below, in reference to also Figure 3.

In a setup phase, sub-protocol PHC.Setup processes the n input
points, viewed as an input array I, and all pairwise distances among
these points, viewed as a n X n cluster distance matrix A. Here, I, A
are only virtual, corresponding to an early joint state of Py, P, that
is actually secret-shared between them. Specifically, P1 holds an
array L with exactly I’s elements but each AHE-encrypted under
P2’s secret key, and a n X n matrix R with random blinding terms,
whereas P, holds the matrix B = A + R with blinded pairwise cluster
distances. Importantly, as f7 - specifies, the joint state {I, A} is split
only after I’s elements and A’s rows and columns are randomly
shuffled, with P1, P, not knowing the exact shuffling used.

n=n;+n
Py — P,

Pk’ PK setting > pk
n; input points P, my; —» le«— nyinput points Q, M,
permuted with mpemy: n 1. Setup permuted with mpemy:

encrypted points in PUQ | |, n?blinded pairwise
& n? blinding terms R distances B=A+R

&

8
indices iy, j; of . indices iy, j; O B
<] > :
merged clusters clustering round 1 merged clusters &
g

. o

2. Clustering .

[

R indicesi . i . of 13
indices in.t, jnt O i indices in.t, jn-t Of o
<] -t H—> Iy

merged clusters clustering round n-t merged clusters o
2

@

©

representatives
values repy,..., rep;
of target clusters

representatives
3. Output —» values repy,..., repy
of target clusters

Figure 3: Overall workflow of our protocol PHC.

In a clustering phase, sub-protocol PHC.Cluster virtually runs
the ordinary hierarchical clustering algorithm HCAIlg on matrix A:
P1, Py process their individual states R, B to iteratively merge sin-
gletons into target clusters, based on inter-cluster distances in A.
Each iteration merges two clusters into a new one via three tasks:
e Find pair: First, P;,P; find the closest-cluster pair (i,j) =

argMin(A), i < j, to merge, i.e., the indices in A of the mini-

mum inter-cluster distance Dj;.
e Update linkages: Then, P1, P; update A to A’ = B’ — R’ with
the new cluster distances after pair (i, j) is merged into cluster

C = C; U Cj. This entails computing (and splitting via a fresh

blinding term) distance §(C, C’) between C and each not-merged

cluster C’, which equals to the largest.smallest) of §(C;,C’) and
8(Cj,C’) (by associativity of the max/min operator).
e Record merging: Finally, P1, P, record in A’ that the new clus-

ter C is formed by merging C; and C;.

In an output phase, sub-protocol PHC.Output processes the final
state {I, A} to compute the merging history and metadata for all
safe (target) clusters. As Figure 3 indicates, conceptually the output
can be considered to be computed in two phases: During clustering,
the indices of merged clusters learned after each clustering round
collectively encode information about the dendrogram T* and the
sizes of the ¢t target clusters. The output phase solely computes
the representative values of these clusters. This view is accurate
enough to ease presentation but, as we discuss later, the exact details
involve processing of carefully recorded data, after each one of the
n — t cluster-merging rounds executed during the clustering phase.

A main consideration when devising our protocol was to im-
prove efficiency via a modular design, where separate parts can
be securely achieved via different techniques. By securely splitting
the joint state {I, A} into {L, R}, B, we can implement all protocol
components that involve (distance or metadata) computations over
points using Paillier-based AHE, except when computing max (or
min), for which we rely on GC. Conveniently, all protocol compo-
nents required by the setup phase to form the joint state {I, A},
namely to construct, shuffle and split {I, A} into {L, R}, B, can be
securely implemented by relying on homomorphic encryption.

We next provide more details on how each component is im-
plemented. We assume points are unambiguously mapped into

Ak security and statistical parameters
termination parameter, # of target clusters

£ 0
(pk, sk), (pk’, sk’) public and secret keys of parties P1, P,

[d], [d] AHE-encrypted plaintext d under pk, pk’
{c) AHE-decrypted ciphertext ¢
> n X n matrices R, B stored by Py, P,

(01;0,) « GC(I1;L) | Py,Parun GCon I, I, to get Oy, O,
1, 7T permutations contributed by Py, P,
dist(p, q) square Euclidean distance of p, ¢
rep(-),size(-) representatives and sizes of clusters

Figure 4: Basic notation used in our protocol PHC.

integers in Zn and all homomorphic (resp. plaintext) operations
are reduced modulo N? (resp. N). We consistently denote the AHE-
encrypted, under pk (resp. pk’), plaintext d by [d] (resp. [d]) and
the AHE-decrypted, under any key, ciphertext ¢ by (c). Whenever
the context is clear, we denote each of the two n X n matrices R,
B (maintained by P1, P;) by 2. Finally, we denote the joint execu-
tion by P4, Py of a GC-based protocol GC, on private inputs I, I
to get private outputs Oy, Oz, by (O1;02) < GC(I;). Figure 4
summarizes the used notation by our detailed protocol descriptions.

Setup phase. P1, P, set up their states in three rounds of interac-
tions, as shown in Algorithm 2, using only homomorphic operations
over AHE-encrypted data and contributing equally to the random-
ized state permutation and splitting. Initially, P, prepares, encrypts
under its own key and sends to Py, information related to its in-
put set Q, which includes its encrypted points among other helper
information H, and their encrypted pairwise distances D (lines 1-4).
Then, P; is tasked to initialize the states L, R and B. First, the
list L of all encrypted (under pk’) points in P U Q is created (by
arranging the sets in some fixed ordering and then concatenating Q
after P), and all points are further blinded by random additive terms
in S (lines 5-9). Similarly, the matrix B of encrypted (also under
pk’) pairwise distances is computed (using the ordering induced
by L to arrange the points), and all distances are blinded by ran-
dom additive terms in S (lines 10-14). The computation of square
Euclidean distances across sets P, Q (line 12, using also elements
in H) and the blinding of L and B (lines 8, 13) are all performed
in the ciphertext domain via the homomorphic property of AHE
encryption. All blinding terms in S and R are then encrypted (each
under pk, lines 9, 14) and S, L, R and B are sent to Py, after their
elements are shuffled using a random permutation 7; (line 15).
Finally, P, roughly mirrors this by further blinding the encrypted
points in L and P¢’s encrypted terms in S by random additive terms
in §’ (both in the ciphertext domain, lines 16-19) and also blinding
the encrypted distances in B and Py’s encrypted terms in R by
random additive terms in R’ (the former in the plaintext domain
and the latter in the ciphertext domain, lines 20-22). The freshly
blinded S, L, R are sent to Py, after their elements are shuffled using a
random permutation m, (line 23). Finally, P1 decrypts the mutually-
contributed blinding terms in S and R, and uses the recovered values
in S to completely remove the terms from L (in the ciphertext
domain, by the properties of AHE encryption, lines 24-27). Due to
this, permutation 3 o 71 looks completely random to both parties,
while they have securely split joint state {I, A} into {L, R}, B.

Clustering phase. Once P1, P, have set up their states, they run
the hierarchical clustering iterative process (Algorithm 3) operating
solely on their individual matrices R, B via two special-purpose
GC-based protocols for secure comparison. Importantly, each party

Algorithm 2: PHC.Setup: Setup Phase

1 Py: %Create & send helper info
2 Compute matrix H: Hy; = [q;], Hz; = [-2q;]. H3,; = [[qf]] i€[1:ny]
3 Compute matrix D: D; ; = [dist(q, q;)] i,j €[1:ny]
4 Send {H,D} to P;

5 Pq: %Blind points, linkages
6 Compute array S: S; = s;, S; & {0, 1}* i€[l:n]
7 Compute array L: L; = [p;],if i < ny;else L; = Hyj—n,

8 BlindLas: L; := L; - [Si]

9 Encrypt Sas: S; == [S;]

10 Compute matrix R: R; j = r; j, 1y j & {0, 1}* i,j€[l:n]

11 Compute matrix B: B; j = [dist(p;, p;)].if i, j < ny;

12 Bij=Dj_n, jon,.if n1 <i,jielsefori < j,B;; = [p?] H;} -Hsj

13 Blind B as: B;j := B;j - [R; ;]

14 Encrypt Ras: R;; := [R;;]

15 Permute S, L, R and B via a random permutation 7 (n)

16 Send {S,L,R,B} to P, %Send permuted blinded data

17 Py %Blind received data
18 Compute array §': S} = s}, s} & {0,1}* ie[l:n]
19 Blind Las: L; := L; - [S]
20 Blind S as: S; := S; - [S]]
21 Compute matrix R": R;.J. = rl'.yj, r;yj & {0,1}* i,j€[1:n]

N
&

Decrypt and re-blind matrix B: B; ; = (B ;) + R;.'j

23 BlindRas: R;j :=R; - [R;j]

Permute S, L and R via a random permutation 7, (n)

Send {S,L,R} to Py %Send permuted points and blinding terms
26 Pq: %Store permuted points & linkages’ blinding terms

XYY
a R

27 Decrypt S as: S; == (S;) i€[l:n]
28 Unblind Las: L; :=L; - [[S,-]]*1
20 Decrypt Ras: R;j := (R; ;) i,j€[l:n]
Algorithm 3: PHC.Cluster: Clustering Phase

1 P, Py

2 Initialize merging history: 3;; = (i, L) i€[l:n]

3 Initialize: £ = 1,4 =t

4 repeat

5 Jointly run (i, j; i, j) < ArgMin(R;B), i < j
6 foreachk=1,...,n,k #1i,jdo

%Find pair

7 if 3k #1 and X #L1 then
s Pi: X i {0,1}* %Pick new blinding term
9 Py, P2: Jointly run %Find re-blinded max linkage

(L;Y) « MaxDiSt(Ri'k,Rj,k,X;Bi‘k,Bj'k)

10 Pq:Set: Rjx = X, Rxi = X %Update linkages
11 Py:Set: Bijx =Y, Bri =Y

12 Set: X ;= ((Z,,0),0), 25 = (243, 25,7, £), L)

13 Set: Xg j =1, %k =1 kell:n]\{j}
14 Set: £ :=f£+1 %Record merging

15 until £ > n — £

encodes cluster information in the diagonal of its matrix state X;
initially, the i-th entry stores (i, L), denoting the (never-merged
but already permuted) singleton of rank i. Hierarchical clustering
runs in exactly n — ¢; = n — t iterations, or clustering rounds.
First, at the start of each iteration, P1, P, find which pair of clus-
ters must be merged by jointly running the GC-protocol (i, j; i, j) <
ArgMin(R; B) (line 5): The parties contribute their individual ma-
trices R, B of blinding terms and blinded linkages, to learn the
indices (i, j) of the minimum value B;; — R;j, with i < j by
convention (since R, B are symmetric matrices). The garbled cir-
cuit for ArgMin first removes the blinding terms by computing
D = B — R, compares all values in D to find the minimum element
Dj,j = miny By y, and returns to both parties the indices i, j. Next,

Algorithm 4: PHC.Output: Output Phase

1 Py: %Compute encrypted point averages
2 Initialize arrays E, J: E; = J; =L i€[l:n]
3 foreachi=1,..., ndo

4
5

if R;; encodes a target cluster C; then

Find the index set I; of points in cluster C;
6 ‘ Set E; = [1jer, Lj. Ji = |1i]
7 Send {E,J} to P,
8 Py %Compute point averages
9 Decrypt E as: E; := (E;) i€[l:n]
10 Send E to P4
1 Py, Py
2 Output {2, Ei/ | Ji|, i |}

%Return output
i€[l:n]

-

once pair (i, j) is known to Py, Py, they proceed to jointly update
the linkages (lines 7-12). For each cluster k in X, they change its
linkage to the newly merged cluster as the maximum between
its linkages to clusters i, j, by jointly running the GC-protocol
(L;Y) « MaxDist(R;k, Rj k, X; Bik, Bjx) (line 10): The parties
contribute the two entries from their individual matrices R, B that
are needed for comparing the linkages B; . — R;x, Bj x — R . be-
tween cluster k and clusters i, j, and P, learns the maximum value
of the two but blinded by the random blinding term X inputted
by P1. The garbled circuit for MaxDist simply returns to (only) P,
the value max{B;x — Rjk, Bjr — R;x} + X. Finally, at the end of
iteration ¢, Py, Py record information about the merging of clusters
i, j, i < j (lines 14-15): By convention, the new cluster is stored
at location i, by adding the rank ¢ and the information stored at
location j (updated with a pointer to i), and by deleting all distances
related to cluster j. Overall, the full merging history is recorded.
In Appendix B, we provide details on our implementation of
GC-protocols ArgMin, MaxDist, also used in [11, 16, 65, 120].

Output phase. Once clustering is over, Py, P, compute in two
rounds of interaction (Algorithm 4) the common output, consisting
of the merging history and the representatives and sizes of the
target clusters using homomorphic operations over encrypted data.

First, Py computes encrypted point averages in all target clusters,
by exploiting the homomorphic properties of AHE (lines 1-7): Using
the diagonal in matrix R, Py first identifies each (of ¢ total) target
cluster C; and then finds the index set I; (over permuted input points
7z o 11 (P U Q)) of the points contained in C;, to finally compute
[Tjer, Lj = [1jer, [pj]- The resulted t encrypted point averages and
cluster sizes are sent to Py, who returns to Pq the t plaintext point
averages, i.e., X jey, Pj = ijeci pj for each C; (lines 8-10). At this
point, both parties can form the common output (line 12).

5 PROTOCOL ANALYSIS

Efficiency. Asymptotically, our protocol achieves optimal perfor-
mance, as it incurs no extra overheads to the performance costs
associated with running HC (ignoring the dependency on the se-
curity parameter 1). The asymptotic overheads incurred on Py, Py,
during execution of each phase of PHC, are as follows: In setup
phase, the cost overhead for each party is O(n?), primarily related
to the cryptographic operations needed to populate its individual
state 3. In clustering phase, each of the n — £ = O(n) total itera-
tions incurs costs proportional the complexity of running GC-based
protocols ArgMin, MaxDist, where the cost of garbling and evalu-
ating a circuit C, with a total number of wires |C|, is O(|C|). Thus,

during the ¢-th iteration: Evaluating circuit ArgMin entails n? — 2¢
comparisons of I2-bit values (of cluster distances) and subtractions
of k-bit values (of blinding terms), for a total size of O(k(n® — ¢£));
likewise, evaluating circuit MaxDist entails a constant number of
comparisons of k-bit values and O(n) such circuits are evaluated at
iteration ¢; thus, the total cost during this phase is O(Kn3) for each
party. In output phase, the cost is O(#;) = O(n) for each party. Thus,
the total running time for both parties is O(xn?). Communication
consists of O(n?) ciphertexts during setup (encrypted distances),
O(xn?) during each clustering round (for the garbled circuits’ truth
tables) and O(n?) ciphertexts during the output phase.

Optimized single-linkage protocol OPT. As described, our pro-
tocol exploits the associativity of operator max to update the com-
plete linkage between newly formed clusters C and other clusters C’,
as the max of the linkages between C’s constituent clusters and C’,
securely realized via GC-protocol (+;-) « MaxDist(-;-). Single link-
ages can be supported readily by updating inter-cluster distances be-
tween C and C’ as the min of the distances between C’s constituent
clusters and C’: Line 10 in Algorithm 3 now has Py, P; jointly run
GC-protocol (L;Y) < MinDist(R; g, R; . X; B k. Bj) (see Appen-
dix B) to split the new distance A; x = min{B; x — Ry, Bjx — Rjx}
into X, Y = A; ;. + X, without asymptotic efficiency changes.

More generally, the skeleton of protocol PHC allows for exten-
sions that support a wider class of linkage functions, such as average
or centroid linkage, by appropriately refining GC-protocols ArgMin,
MinDist—but still, at quadratic cost per merged cluster and cubic to-
tal cost. Yet, our single-linkage protocol can be optimized to process
each new cluster in only O(xn) time, for a reduced O(xn?) total run-
ning time, with GC-protocol (j; j) < ArgMin(X;Y) now refined,
on input arrays X, Y, to return as common output the minimum-
value index j of Y — X, excluding any non-linkage values.

The main idea is to exploit the associativity of operator min and
that single-linkage clustering only relates to minimum inter-cluster
distances, to find the closest pair (i, j) in linear time, by looking
up an array A = B — R storing the minimum row-wise distances in
A = B — R (a known technique in information retrieval [73, Section
17.2.1]). Our modified protocol takes only O(xn) comparisons per
clustering, as opposed to O(xn?) of our main protocol. As shown
in Section 7, this results in significant performance improvement.

Specifically, at the end of the setup phase, P1, P2 now also jointly
run (ji; ji) < ArgMin(R;;B;), i € [1 : n], to learn the minimum-
linkage index j; of the ith row B; —R; of A (excluding its ith location,
as B;j, R;; store cluster i), and they both initialize array J as J; =
ji» whereas Py initializes array R as R; = R;, j; and P array Bas
B; = B;, ji- Then, at the start of each iteration in the clustering
phase (line 5 in Algorithm 3) and assuming that L = +oco, Py, P2
now jointly run (i;i) « ArgMin(R; B) to find the closest-cluster
pair (i, j), j = Ji, in only O(kn) time. Conveniently, as soon as
they update linkages A; ;. = Ay ;, for some k # i, j (lines 9-12, as
Y — X with (J_; Y) — MinDiSt(Ri’k,Rj,k,X; Bi,k’ Bj,k))) P4, Py also
update the joint state {B — R, J} for updated row m € {i, k}: First,
by jointly running (z;z) « ArgMin(ﬁ;B) for arrays R = [X, R],
B = [Y,Bn] of size 2, and then, if z = 1, by setting Ry, = R,,
B = B, and J;y = {i,k} \ m. At the end of each iteration (lines
14-16), they also set Rj = Bj = jj = 1, as needed for consistency.

Protocol extensions. Our protocol can be easily adapted to han-
dle higher dimensions (d > 1). Its sub-protocol (PHC.Cluster) com-
pares squared Euclidean distances thus it is almost unaffected by
the number of dimensions; only the setup and output phases need
to be modified, as follows. P, computes helper information H, rep-
resenting each point not by 3 but by 3d encryptions (i.e., line 4 of
Algorithm 2 runs independently for each dimension). Analogously,
P1, P2 compute square Euclidean distances (lines 3 and 11-12) as
the sum of squared per-dimension differences across all dimen-
sions (over AHE). Shuffling remains largely unaffected, besides lists
L, S, S’ consisting of dn encryptions each. Finally, representatives
(line 6 in Algorithm 4) are now computed over vectors of d values.
Our protocol can also extended to other distance metrics, e.g., L1,
Ly or Euclidean, and any L, distance for p > 1, with modifications
for computing the distance matrix during setup. With squared Eu-
clidean the distances are securely computed with AHE; for other
metrics, more elaborate sub-protocol may be required.

Security. In Appendix C, we prove the following result:

THEOREM 5.1. Assuming Paillier’s encryption scheme is semanti-
cally secure and that ArgMin and MaxDist are securely realized by
GC-based protocols, protocol PHC securely realizes functionality ff; .

6 SCALABILITY VIA APPROXIMATION

The cryptographic machinery of our protocol imposes a notice-
able overhead in practice. Although it is asymptotically similar
to plaintext HC, standard operations are now replaced by crypto-
graphic ones—no matter how well-optimized the code, such crypto-
hardened operations will ultimately be slower. Hence, to scale to
larger datasets, we seek to exploit approximate schemes for hierar-
chical clustering. In our case, approximation refers to performing
clustering over a high-volume dataset by applying the HCAlg al-
gorithm only on a small subset of the dataset. The effect of this
is twofold: Cluster analysis is much faster but using fewer points
lowers accuracy and increases sensitivity to outliers.

In what follows, we adapt the CURE approximate clustering al-
gorithm [47] and seamlessly integrate it to our main protocol PHC,
within a flexible design framework that offers a variety of configu-
rations for balancing tradeoffs between performance and accuracy,
to overall get the first variants of CURE for private collaborative hi-
erarchical clustering. Although, in principle, our framework can be
applied to any approximate clustering scheme (e.g., BIRCH [117]),
we choose CURE for its strong resilience to outliers and high accu-
racy (even on samples less than 1% of original data)—features that
place it among the best options for scalable hierarchical clustering.

Described in Figure 5, on input the original dataset D of size n
and a number of approximation parameters, CURE first randomly
samples s data points from D to form sample set S. During A-
clustering, S is partitioned into p equally-sized parts 1, P, . .. Pp,
and the ordinary algorithm HCAIg runs p times to form a set C4 of
A-clusters: Its ith execution is on input P;, i € [1, p], until exactly
s/(pq) clusters are formed, of which only those of size at least #;
are included in C4 and the rest are eliminated as outliers. During
B-clustering, HCAIg runs once again, this time over set C4, to form
a set Cg of B-clusters, from which clusters of size less than t; > t;
are eventually eliminated as outliers. Finally, for each B-cluster in
Cp a number of R random representatives are selected, and each

The CURE approximate clustering algorithm

Output: Clusters C over D
[Sampling] Randomly pick s points in D to form sample S.
[Clustering A]

1. Partition S into p partitions P;s, each of size s/p.

Input: D, n,s,p,q,t1, 12, R

2. Run HCAIg to cluster each P; into s/(pq) target clusters.
3. Eliminate within each P; clusters of size less than ¢1.
[Clustering B]

1. Run HCAIg to cluster all remaining A-clusters C4 in S.

2. Eliminate clusters of size less than #, to get B-clusters Cg.
3. Set R random points in each B-cluster as its representatives.
[Classification]

1. Assign singletons in D to B-cluster of closest representative.

Figure 5: The CURE approximate clustering algorithm.

singleton point in D is included to the B-cluster containing its
closest representative. Table 1 summarizes suggested values for
each parameter as per CURE’s original description [47].

Private CURE-approximate clustering. We adapt the CURE al-

gorithm to design private protocols for approximate clustering in

our model for two-party joint hierarchical clustering. In apply-
ing our security formulation (Section 3) and our private protocols

(Sections 4, 5) to this problem instance, the following facts are vital:

1. CURE involves three main tasks: input sampling, clustering of
sample, and unlabeled-points classification.

2. Clustering involves p + 1 invocations of HCAlg’, which extends
ordinary algorithm HCAIg to receive clusters as input and com-
pute its output over an input subset.

3. If p = 1 and O4, Op are the A- and B-outliers, then:

i. HCAIg’ first runs on S to form C4 over Sy = S\ O4; Cq is

exactly the output of HCAlg run on Sy4; and next

ii. HCAIlg’ runs on C4 to form Cp over Sg = S\ {O4 U Op};

Cg is exactly the output of HCAlg run on Sg.

Fact 1 refines our protocol-design space to only securely realizing
the clustering task, where sampling and classification are viewed
as input pre-processing and output post-processing of clustering.
Specifically, Py, Py: (1) individually form random input samples
Sp, S of their own datasets P, Q; (2) compute B-clusters and their
representatives (as specified by CURE); and (3) use these B-cluster
representatives to individually classify their own unlabeled points.

As such, the default private realization of CURE would entail
having the parties perform clustering A and B jointly. Yet, since our
design space is already restricted to provide approximate solutions,
we also consider two protocol variants, where parties trade even
more accuracy for efficiency, by performing: (1) clustering A locally
and only B jointly; and, in the extreme case (2) clustering A and B
locally. We denote these protocols by PCure2, PCure1 and PCure0.

In PCure0, P1, P non-collaboratively compute B-clusters of their
samples and announce the representatives selected. Though a de-
generate solution, as it involves no interaction, this consideration
is still useful: First, to serve as a baseline for evaluating the other
variants, but mostly to further refine our design space. PCure0 (triv-
ially) preserves privacy during B-cluster computation, but violates
the privacy guarantees offered by our point-agnostic dendrograms,
by revealing a subset of a party’s input points to the other party.
To rectify this, present also in PCure2 and PCurel, we fix R = 1

Parameters ‘ Description ‘ Value
n,s Sizes of dataset and its sample | < 1M, [10% : 107]
p.q # parts, cluster/part control r=135¢q9=3
t, by A-, B-cluster outlier thresholds 3=t <=5
R Representatives per B-cluster R=1,3,5710

Table 1: CURE clustering parameters and values.

and have each B-cluster be represented by its centroid. Using aver-
age values is expected to have no impact on accuracy, at least for
spherical clusters (in [47], R > 1 is only used to improve accuracy
of non-spherical clusters). Fact 2 then ensures that B-clusters (and
their centroids) can be computed by essentially running algorithm
HCAlg, possibly with slight modifications (discussed below).

In PCurel, Py, P2 non-collaboratively compute A-clusters of
their samples and then jointly merge them to B-clusters. Semanti-
cally, they run HCAIg, not starting at level n (singletons) but at an
intermediate level i, where each input A-cluster contains at least
t; points. Our PHC can be employed, with one modification: At
setup, the parties’ joint state encodes their individual A-clusters
and their pairwise linkages. Accordingly, sub-protocol PHC.Setup
is modified: (1) Lines 3 and 11 now compute inter-cluster distances
(of same-party pairs), and (2) lines 2 and 12 are used as a subroutine
to compute all point distances across a given A-cluster pair, over
which inter-cluster linkages (of cross-party pairs) are evaluated
with ArgMin. The running time of modified PHC.Setup is O(As?),
as O(s?) distances are computed across O(s) A-cluster points.

In PCure2, Py, P jointly compute A- and B-clusters. This in-
troduces the challenge of how to transition from A to B. Simply
running p copies of HCAIlg in parallel for A-clusters does not pro-
vide the cluster linkages that are necessary for HCAlg to compute
B-clusters. Possible solutions are either to treat A-clusters as single-
tons, which can drastically impair accuracy, or running an interme-
diate MPC protocol to bootstrap HCAIg with cluster linkages, which
can impair performance. Instead, we simply fix p = 1, seamlessly
using the final joint state of clustering A as initial state for cluster-
ing B. Missing speedups by parallelism is compensated by avoiding
a costly bootstrap-protocol, at no accuracy loss, as our experiments
confirm (p > 1, is only suggested for parallelism in [47]).

Finally, the security of protocols PCure1 and PCure2 can be re-
duced to that of PHC. Our modular design and facts 2 and 3, ensure
that security in our private CURE-approximate clustering is cap-
tured by our ideal functionality f;;~ of Section 3: The intended
two-party computation merely involves computing B-cluster repre-
sentatives, which f}*IC provides, and any input/output modification
in HCAIg causes a trivial change to the pre-/post-processing com-
ponent of f; -, consistent to our point-agnostic dendrograms.

7 EXPERIMENTAL EVALUATION

Our main goal is to evaluate the computational cost of our protocols
and to determine the improvement of the optimized and approxi-
mate variants. We use four datasets from the UCI ML Repository [2],
restricted to numeric attributes: (1) Iris for iris plants classification
(150 records, 4 attributes); (2) Wine for chemical analysis of wines
(178 records, 13 attributes); (3) Heart for heart disease diagnosis
(303 records, 20 attributes); and (4) Cancer for breast cancer diag-
nostics (569 records, 30 attributes). As these are relatively small, we
also generate our own synthetic datasets, scaling the size to millions
of samples. Note that our protocol’s performance depends mainly

1600

1400

1200

1000

Running Time (sec)
8
8

Running Time (sec)

250 500 750 1000 1250 1500 1750 2000
Dataset Size
(a) Computation cost of PHC.

250 500 750 1000 1250 1500 1750 2000
Dataset Size

(b) Computation cost of OPT.

250 .
B Computation-PHC [Z7] Computation-OPT
) 5 30
o
g 200 g
= =25
[[
150
£ £ 20
= =
2 100 ‘g’ 15
c = ——
= €10
=3
50 2
= 5
o 0
Iris Wine Heart Cancer Iris Wine Heart Cancer
Dataset Dataset

(c) Real-data performance of PHC. (d) Real-data performance of OPT.
Figure 6: Performance of PHC (left) Vs. OPT (right).

on the dataset size, is invariant to actual data values, and varies
very little with data dimensionality, as our experiments confirm.

We introduced several variants of approximate clustering based
on CURE and want to evaluate their accuracy and determine pos-
sible between performance-accuracy tradeoffs. Traditionally, hi-
erarchical clustering is an unsupervised learning task, for which
accuracy metrics are not well defined. However, it is common to
evaluate the accuracy of clustering via ground truth datasets in-
cluding class labels on samples. A good clustering algorithm will
generate “pure clusters” and separate data according to the ground
truth. Each cluster will be labeled with the majority class of its
samples, and the accuracy of the protocol is defined as the fraction
of input points that are clustered into their correct class relative
to the ground truth. We employ this measure of accuracy to evalu-
ate approximate clustering variants (PCure0, PCure1, and PCure2).
Our standard privacy-preserving clustering protocol PHC and the
optimized version OPT maintain the same accuracy as the original
non-private protocol, hence we do not report accuracy for them.

We generate synthetic d-dimensional datasets of sizes up to 1M
records and d € [1, 20], using a Gaussian mixture distribution, as
follows: (1) The number of clusters is randomly chosen in [8 : 15];
(2) Each cluster center is randomly chosen in [—50, 50]4 (perfor-
mance is dominated by k but not exact data values), subject to a
minimum-separation distance between pairs; (3) Cluster standard
deviation is randomly chosen in [0.5, 4]; and (4) Outliers are selected
uniformly at random in the same interval and assigned randomly to
clusters to emulate 3 noise percentage scenarios: low 0.1%, medium
1%, and high 5%. We randomly split each dataset into two halves
which form the private inputs of the parties. We set the number of
target clusters to £ = 5; as our protocol incurs costs linear in the
number of iterations (n — #), this choice comprises a worst-case
setting, as in practice more than 5 target clusters are desired.

We adapted our protocols to support floating point numbers.
Here, due to the simplicity of the involved operations, we can
rely on fixed-precision floating point numbers and it suffices to
multiply floating point values by a constant K (e.g. K = 2%° for IEEE

1.0 o 1.0
0.8 / 0.8
.
> 06 >
% W g 0.6 /\\—M
H 5 9,
8 o
S 04
< —4— CURE g 04 —4— CURE
PCure2 PCure2
02 —e— PCuret 02 —e— PCuret
—&— PCure0 —&— PCure0
0.0 0.0
200 400 600 800 1000 200 400 600 800 1000
Samples Samples
1.0 1.0
o8] / 0.8
206 3 06
e~ | &
H H
3 3
S 04 S04
< —&— CURE < —4— CURE
PCure2 PCure2
0.2 ~e— PCurel 0.2 ~&— PCurel
—4— PCured —— PCure0
0.0 0.0
200 400 600 800 1000 200 400 600 800 1000
Samples Samples
10 1.0

o
o

4

/\I/‘_F:::.‘H

Accuracy
o
b

Accuracy

—4— CURE
PCure2 PCure2
0.2 —e— PCurel 0.2 —e— PCuret
—#— PCure0 —#— PCure0
0.0 0.0
200 400 600 800 1000 200 400 600 800 1000
Samples Samples

Figure 7: Accuracy of CURE, PCurex: p = 1 (left), p = 5 (right),
#outliers = 0.1% (top), 1% (middle), 5% (bottom).

754 doubles). During PHC.Setup, we can achieve higher precision.
After each party decrypts the blinded values (line 22 and line 29),
they can re-scale by dividing the constant K without affecting
precision. During Cluster, as we only merge the points based on
the comparisons between the distances, multiplying by a constant
does not affect the results.

Finally, we use the ABY C++ framework [28], 128-bit AES for
GC, 1024-bits Pailler, and set k = 40. We use libpaillier [3] for
Paillier encryption. We run our experiments on a 24-core machine,
running Scientific Linux with 128GB memory on 2.9GHz Intel Xeon.
Protocol PHC. We first report results on the performance of our
PHC protocol from Section 4. Figure 6a shows the computational
cost for synthetic datasets of various sizes and dimensions, aver-
aged over single and complete linkages. First, consistently with our
analysis in Section 5, dimensions have minimal impact, since PHC’s
performance relates primarily to computing inter-cluster distances
that is minimally affected by d. As expected its cubic asymptotic
complexity, the overhead increases steeply with dataset size n.

Protocol OPT. Figure 6b shows the computational costs on syn-
thetic datasets for our optimized single-linkage variant OPT (with
configurations identical to those for PHC). In line with our analysis
in Section 5, OPT significantly improves performance, reducing
running time by an order of magnitude. E.g., for datasets of 2000
20-dimensional points, the running time is approximately 230 secs,
an 8x speedup compared to PHC. The difference in our above ex-
ample,is explained by the following observations: (1) although OPT
improves performance during clustering by a linear factor, it adds
costs during setup; and (2) the involved constants of the quadratic
costs are higher for running time in setup phase, and vice versa in
clustering phase. As shown in Figure 6d, OPT significantly improves
performance over PHC, also when tested over our real datasets.

PCure2
—#— PCurel

100

Running Time (sec)

00 500 600 760 800 %0 1000
Samples

Figure 8: End-to-end computation of PCurel, PCure2.

Protocols PCurex. Figure 7 shows the accuracy of our CURE-
variant protocols PCure0, PCure1, PCure2 from Section 6, and the
non-private CURE algorithm on synthetic datasets of 1M records
for 102-10% samples, partition parameters p = 1 and p = 5, and for
low (0.1%), medium (1%), and high (5%) outliers-to-data percentages.
Clearly, PCure0, where parties run CURE on their own samples,
without any interaction besides announcing representatives for indi-
vidually computed clusters, exhibits very poor accuracy. e.g., 44.4%
loss for 1M records. For p = 1, PCure1 and PCure2 achieve similar
accuracy, which approaches that of CURE for large enough samples:
At 300 samples or higher, the gap is within 3%. For higher values of
p,eg., p =5, PCurel and PCure2 exhibit a difference in accuracy:
E.g., at 200 samples the accuracy for PCure1 is lower by 39.54%
than PCure2; but at 500 samples or more, they are within 3.18%.
Moreover, experimenting with all combinations of p = 1,3,5
partitions and R = 1, 3, 5,7, 10 representatives shows that the accu-
racies of PCure2 and PCure1 are very close to CURE at s = 1000
samples (or more). The largest observed difference between PCure1
and CURE is 3.57%, and between PCure2 and CURE is 2.7%. For
p = 1and R = 1 either difference is less than 1% at 1000 samples (or
more). Thus, our choice of p = 1 and R = 1 to protect data privacy,
as argued in Section 6, does not impact the protocol’s accuracy.
We also compare end-to-end computation for PCurel and
PCure2 (with OPT), n = 10%, d = 10, 1% outliers, no sample
partitioning (p = 1), & = 5 target clusters, and ¢ = 3 for A-
Clustering. Figure 8 shows their good performance for sample sizes
s € [400 : 1000]. For 10° samples, PCure2 runs in 104sec, while
PCure1 runs in 35sec — 3X faster, but with similar accuracy 97.09%.

Network Latency Impact. Although our experiments show the
efficiency of our schemes, if executed over WAN this would be
affected by network latency and data transmission. To estimate this
impact, we considered two AWS machines in us-east and us-west
and measured their latency to 50 — 60ms. Taking PCure2 with 400
samples and ¢; = 5 as our use case, a single clustering round with
four roundtrips (assuming distance update is done with a single gar-
bled circuit) would take approximately 200-240ms. Regarding data
transmission of the two garbled circuits for finding the minimum
distance and updating the cluster distances, using the circuits for ad-
dition/subtraction, comparison, and min-index-selection from [65]
for 100, 64-bit values, we estimate their size as roughly 10MB (not
including the OT data which is dominated by the circuits). Under
the mild assumption of a 100Mbps connection, transmission would
take ~100ms for a total of < 350ms. In subsequent rounds, the
circuits become progressively smaller but the number of roundtrips
remains the same; conservatively multiplying by 395 rounds, we

have approximately 128sec of total communication time. For com-
parison, in Figure 8, for the same setting computation takes ~55sec.

Hence, communication indeed becomes a bottleneck for our
schemes when run over WAN, but not to the point where they are
entirely impractical. Furthermore, our goal when implementing our
schemes was not to minimize end-to-end latency but computation,
so there is plenty of room for optimizations. E.g., our protocols can
be run in “round batches” merging k clusters with one interaction
(by larger circuits) which would decrease RTTs by a factor of k.
Finally, dedicated cloud technologies, such as AWS VPC [4], can
offer private connections drastically reducing communication time.

8 RELATED WORK

Secure machine learning. There exists a rapidly growing line of
works that propose secure protocols for a variety of ML tasks. This
includes constructions for private classification models in the super-
vised learning setting (such as decision trees [70], SVM classifica-
tion [108], linear regression [31, 32, 94], logistic regression [38] and
neural networks [12, 85, 93]), as well as federated learning tasks [15].
Another focus has been on proposing MPC-based protocols that are
provably secure under a well-defined real/ideal definition, similar
to ours (e.g., [9, 16, 20, 22, 40, 42, 43,51, 61, 67, 72, 77, 81, 90, 92]), for
numerous tasks with a focus on neural networks and deep learning.

The above works can be split into two categories: those that
focus on private model training and those that focus on private
inference/classification. In our unsupervised setting, our protocol
protects the privacy of the parties’ data during the clustering phase.

Deployed techniques. In terms of techniques, most works use
(some variant of) homomorphic encryption (e.g., [41, 86]). More
advanced ML tasks often require hybrid techniques, e.g., combin-
ing the above with garbled circuits (e.g., [92]) or other MPC tech-
niques [75, 90]. Our construction adopts such “mixed” techniques
for the problem of hierarchical clustering. More recently, solutions
have been proposed based on trusted hardware (such as Intel SGX),
e.g., [21, 82, 105]. This avoids the need for “heavy” cryptography,
however, it weakens the threat model as it requires trusting the hard-
ware vendor. Finally, a different approach seeks privacy via data
perturbation [5, 23, 24, 83, 97, 99], by adding statistical noise to hide
data values, e.g., differential privacy [33]. Such techniques are or-
thogonal to the cryptographic methods that we apply here but they
can potentially be combined (e.g., as in [87]). Using noise to hide
whether a specific point has been included in a given cluster would
be complement very nicely our cluster-information-reduction ap-
proach, potentially leading to more robust security treatment.

Privacy-preserving clustering. Many previous works proposed
private solutions for different clustering tasks with the majority fo-
cusing on the popular, but conceptually simpler, k-means problem
(e.g., [18, 30, 35, 58—-60, 64, 76, 89, 107]) and other partitioning-based
clustering methods (e.g., [62, 116]). Fewer other works consider pri-
vate density-based [17, 25, 115] or distribution-based [48] clustering.
An in-depth literature survey and comparative analysis of private
clustering schemes can be found in the recent work of [49].
Focusing on private hierarchical clustering, no previous work
offers a formal security definition, relying instead on ad-hoc anal-
ysis [27, 55-57, 96]. Moreover some schemes leak information to
the participants that can clearly be harfmul—and is much more

than what our protocol reveals—e.g., [95, 106] reveal all distances
across parties’ records. One notable exception is the scheme of Su et
al. [102] which, however, is designed specifically for the case of doc-
ument clustering. Here, we proposed a security formulation within
the widely studied read/ideal paradigm of MPC that characterizes
precisely what information is revealed to the collaborating parties.
Besides making it easier to compare our solution with potential
future ones that follow our formulation, this is, to the best of our
knowledge the only private hierarchical clustering scheme with
formal proofs of security. Finally, it is an interesting problem to
combine optimizations for “plaintext” clustering (e.g.,[26, 78, 84])
with privacy-preserving techniques to improve efficiency.

Secure approximate computation. The interplay between cryp-
tography and efficient approximation [37] has already been studied
for pattern matching in genomic data [10, 109], k-means [101], and
logistic regression [103, 111]. To the best of our knowledge, ours
is the first work to compose secure cryptographic protocols with
efficient approximation algorithms for hierarchical clustering.

Leakage in machine learning. The significant impact of informa-
tion leakage in collaborative, distributed, or federated learning has
been the topic of a long line of research (e.g., see [6, 66, 71, 97]). Vari-
ous practical attacks have been demonstrated that infer information
about the training data or the ML model and its hyper-parameters,
(e.g., [39, 54, 98]). This is even more important in collaborative
learning where parties could otherwise benefit from sharing data
but such leakage may stop them (e.g., [74, 112, 118, 119]). Hence,
it is crucial for our protocol to formally characterize what is the
shared information for the two parties.

9 CONCLUSION

We propose the first formal security definition for private hierarchi-
cal clustering and design a protocol for single and complete linkage,
as well as an optimized version. We also combine this with approx-
imate clustering to increase scalability. We hope this work moti-
vates further research in privacy-preserving unsupervised learning,
including secure protocols for other linkage types (e.g., Ward), al-
ternative approximation frameworks (e.g., BIRCH [117]), different
tasks (e.g., mixture models, association rules or graph learning),
or schemes for more than two parties to benefit from larger-scale
collaborations. Specific to our definition of privacy, we believe it
would be helpful to experimentally and empirically evaluate the
impact (even our significantly redacted) dendrogram leakage can
have, e.g., by demonstrating possible leakage-abuse attacks.

ACKNOWLEDGMENTS

The authors would like to thank the members of the AWS Crypto
team for their useful comments and inputs, the anonymous re-
viewers for their valuable feedback, and Anrin Chakraborti for
shepherding this paper. Dimitrios Papadopoulos was supported by
the Hong Kong Research Grants Council (RGC) under grant ECS-
26208318. Alina Oprea and Nikos Triandopoulos were supported by
the National Science Foundation (NSF) under grants CNS-171763
and CNS-1718782.

REFERENCES

(1]

[11

(12]

(13

[14

[15

(18]

(19]

IS
S

[21

[22

[23

[24

[25]

2017. The Intelligent Trial: AT Comes To Clinical Trials. Clinical Informatics
News. http://www.clinicalinformaticsnews.com/2017/09/29/the-intelligent-
trial-ai-comes-to- clinical-trials.aspx.

2019. The UCI Machine Learning Data Repository. http://archive.ics.uci.edu/
ml/index.php.

2019. UTexas Paillier Library. http://acsc.cs.utexas.edu/libpaillier.

2021. AWS VPC. https://aws.amazon.com/vpc.

Martin Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In
ACM SIGSAC CCS 2016. 308-318.

Mohammad Al-Rubaie and]J. Morris Chang. 2019. Privacy-Preserving Machine
Learning: Threats and Solutions. IEEE Secur. Priv. 17, 2 (2019), 49-58. https:
//doi.org/10.1109/MSEC.2018.2888775
AlienVault. 2020. Open Threat Exchange.
otx.alienvault.com/.

Cyber Threat Alliance. 2020. Available at http://cyberthreatalliance.org/.
Yoshinori Aono, Takuya Hayashi, Le Trieu Phong, and Lihua Wang. 2016. Scal-
able and Secure Logistic Regression via Homomorphic Encryption. In ACM
CODASPY 2016. 142-144.

Gilad Asharov, Shai Halevi, Yehuda Lindell, and Tal Rabin. 2018. Privacy-
Preserving Search of Similar Patients in Genomic Data. PoPETs 2018, 4 (2018),
104-124. https://doi.org/10.1515/popets-2018-0034

Foteini Baldimtsi, Dimitrios Papadopoulos, Stavros Papadopoulos, Alessandra
Scafuro, and Nikos Triandopoulos. 2017. Server-Aided Secure Computation
with Off-line Parties. In ESORICS 2017. 103-123.

Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and
Thomas Schneider. 2011. Privacy-Preserving ECG Classification With Branching
Programs and Neural Networks. IEEE Trans. Information Forensics and Security
6,2 (2011), 452-468. https://doi.org/10.1109/TIFS.2011.2108650

Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher
Kruegel, and Engin Kirda. 2009. Scalable, Behavior-Based Malware Clustering..
In Proceedings of the 16th Symposium on Network and Distributed System Security
(NDSS).

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Foundations
of garbled circuits. In ACM CCS 2012. 784-796. https://doi.org/10.1145/
2382196.2382279

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.
Practical Secure Aggregation for Privacy-Preserving Machine Learning (CCS
’17). ACM, 1175-1191. https://doi.org/10.1145/3133956.3133982

Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015. Ma-
chine Learning Classification over Encrypted Data. In NDSS 2015.

Beyza Bozdemir, Sébastien Canard, Orhan Ermis, Helen Méllering, Melek Onen,
and Thomas Schneider. 2021. Privacy-preserving Density-based Clustering. In
ASIA CCS °21: ACM Asia Conference on Computer and Communications Security,
Virtual Event, Hong Kong, June 7-11, 2021. ACM, 658-671. https://doi.org/
10.1145/3433210.3453104

Paul Bunn and Rafail Ostrovsky. 2007. Secure two-party k-means clustering.
In Proceedings of the 2007 ACM Conference on Computer and Communications
Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007. 486—497.
https://doi.org/10.1145/1315245.1315306

Qiang Cao, Xiaowei Yang, Jieqi Yu, and Christopher Palow. 2014. Uncovering
Large Groups of Active Malicious Accounts in Online Social Networks. In Pro-
ceedings of the 21st ACM Conference on Computer and Communications Security
(ccs).

Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,
and Emmanuel Prouff. 2017. Privacy-Preserving Classification on Deep Neural
Network. Cryptology ePrint Archive, Report 2017/035.

Javad Ghareh Chamani and Dimitrios Papadopoulos. 2020. Mitigating Leakage
in Federated Learning with Trusted Hardware. CoRR abs/2011.04948 (2020).
arXiv:2011.04948 https://arxiv.org/abs/2011.04948

Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. [n.d.]. EzPC: Programmable and Efficient Secure Two-Party Computa-
tion for Machine Learning. In IEEE European Symposium on Security and Privacy,
EuroS&P 2019. 496-511. https://doi.org/10.1109/EuroSP.2019.00043

Melissa Chase, Ran Gilad-Bachrach, Kim Laine, Kristin E. Lauter, and Peter
Rindal. 2017. Private Collaborative Neural Network Learning. IACR Cryptology
ePrint Archive 2017 (2017), 762. http://eprint.iacr.org/2017/762

Kamalika Chaudhuri and Claire Monteleoni. 2008. Privacy-preserving logistic
regression. In Advances in Neural Information Processing Systems 21, 2008. 289—
296.

Jung Hee Cheon, Duhyeong Kim, and Jai Hyun Park. 2019. Towards a Practical
Cluster Analysis over Encrypted Data. In Selected Areas in Cryptography - SAC
2019 - 26th International Conference, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 11959). Springer, 227-249. https://doi.org/10.1007/978-3-
030-38471-5_10

Available at https:/

[26]

[27

[28]

[29

[30

[31

[32

[33

[34

[35

[36

[37]

[38

[39

[40

[41

[42

[43

[44]

[45]

[46]

[47

[48]

[49

[50]

Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire
Mathieu. [n.d.]. Hierarchical Clustering: Objective Functions and Algorithms.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, Artur Czumaj (Ed.). 378-397. https://doi.org/10.1137/
1.9781611975031.26

Ipsa De and Animesh Tripathy. 2014. A Secure Two Party Hierarchical Clustering
Approach for Vertically Partitioned Data Set with Accuracy Measure. In Recent
Advances in Intelligent Informatics. Springer International Publishing, 153-162.
D. Demmler, T. Schneider, and M. Zohner. 2015. ABY - A framework for efficient
mixed-protocol secure two-party computation. In Proc. n 22nd Annual Network
and Distributed System Security Symposium (NDSS).

Ben Dickson. 2016. How threat intelligence sharing can help deal with cyberse-
curity challenges. Available at https://techcrunch.com/2016/05/15/how-threat-
intelligence-sharing-can-help-deal-with-cybersecurity- challenges/.

Mahir Can Doganay, Thomas Brochmann Pedersen, Yiicel Saygin, Erkay Savas,
and Albert Levi. 2008. Distributed privacy preserving k-means clustering with
additive secret sharing. In PAIS 2008. 3-11.

Wenliang Du and Mikhail J. Atallah. 2001. Privacy-Preserving Cooperative
Scientific Computations. In 14th IEEE Computer Security Foundations Workshop
(CSFW-14 2001). 273-294.

Wenliang Du, Yunghsiang S. Han, and Shigang Chen. 2004. Privacy-Preserving
Multivariate Statistical Analysis: Linear Regression and Classification. In Pro-
ceedings of the Fourth SIAM International Conference on Data Mining. 222-233.
Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. 2006.
Calibrating Noise to Sensitivity in Private Data Analysis. In TCC 2006. 265-284.
Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein. 1998.
Cluster analysis and display of genome-wide expression patterns. 95 (1998),
14863-14868. Issue 25.

Zekeriya Erkin, Thijs Veugen, Tomas Toft, and Reginald L. Lagendijk. 2013.
Privacy-preserving distributed clustering. EURASIP J. Information Security 2013
(2013), 4. https://doi.org/10.1186/1687-417X-2013-4

Facebook. 2018. Threat Exchange. Available at https://developers.facebook.com/
products/threat-exchange.

Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J. Strauss,
and Rebecca N. Wright. 2006. Secure multiparty computation of approxima-
tions. ACM Trans. Algorithms 2, 3 (2006), 435-472. https://doi.org/10.1145/
1159892.1159900

Stephen E. Fienberg, William J. Fulp, Aleksandra B. Slavkovic, and Tracey A.
Wrobel. 2006. "Secure" Log-Linear and Logistic Regression Analysis of Dis-
tributed Databases. In Privacy in Statistical Databases. 277-290.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model Inversion At-
tacks That Exploit Confidence Information and Basic Countermeasures (CCS ’15).
ACM, New York, NY, USA, 1322-1333. https://doi.org/10.1145/2810103.2813677
Adria Gascon, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Do-
erner, Samee Zahur, and David Evans. 2017. Privacy-Preserving Distributed
Linear Regression on High-Dimensional Data. PoPETs 2017, 4 (2017), 345-364.
https://doi.org/10.1515/popets-2017-0053

Craig Gentry. 2009. A Fully Homomorphic Encryption Scheme. Ph.D. Dissertation.
Stanford, CA, USA. Advisor(s) Boneh, Dan. AAI3382729.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In Proc. 33rd International Conference
on Machine Learning (ICML).

Ran Gilad-Bachrach, Kim Laine, Kristin E. Lauter, Peter Rindal, and Mike Rosulek.
[n.d.]. Secure Data Exchange: A Marketplace in the Cloud. In Proceedings
of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop,
CCSW@CCS 2019. 117-128. https://doi.org/10.1145/3338466.3358924

M. Girvan and M. E. J. Newman. 2002. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences 99, 12 (11
June 2002), 7821-7826. https://doi.org/10.1073/pnas.122653799

Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any
Mental Game or A Completeness Theorem for Protocols with Honest Majority.
In ACM STOC 1987. 218-229. https://doi.org/10.1145/28395.28420

Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. 2008. BotMiner:
Clustering Analysis of Network Traffic for Protocol and Structure-independent
Botnet Detection. In Proceedings of the 17th USENIX Security Symposium.
Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. 2001. Cure: An Efficient
Clustering Algorithm for Large Databases. Inf. Syst. 26, 1 (2001), 35-58. https:
//doi.org/10.1016/S0306-4379(01) 00008-4

Mona Hamidi, Mina Sheikhalishahi, and Fabio Martinelli. 2018. Privacy Pre-
serving Expectation Maximization (EM) Clustering Construction. In DCAI 2018
(Advances in Intelligent Systems and Computing, Vol. 800). Springer, 255-263.
https://doi.org/10.1007/978-3-319-94649-8_31

Aditya Hegde, Helen Mollering, Thomas Schneider, and Hossein Yalame. 2021.
SoK: Efficient Privacy-preserving Clustering. Proc. Priv. Enhancing Technol. 2021,
4 (2021), 225-248. https://doi.org/10.2478/popets-2021-0068

W. Henecka, S. Kogl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. 1999. Tasty:
Tool for automating secure two-party computations. In Proc. ACM Conference
on Computer and Communications Security (CCS).

http://www.clinicalinformaticsnews.com/2017/09/29/the-intelligent-trial-ai-comes-to-clinical-trials.aspx
http://www.clinicalinformaticsnews.com/2017/09/29/the-intelligent-trial-ai-comes-to-clinical-trials.aspx
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://acsc.cs.utexas.edu/libpaillier
https://aws.amazon.com/vpc
https://doi.org/10.1109/MSEC.2018.2888775
https://doi.org/10.1109/MSEC.2018.2888775
https://otx.alienvault.com/
https://otx.alienvault.com/
http://cyberthreatalliance.org/
https://doi.org/10.1515/popets-2018-0034
https://doi.org/10.1109/TIFS.2011.2108650
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3433210.3453104
https://doi.org/10.1145/3433210.3453104
https://doi.org/10.1145/1315245.1315306
https://arxiv.org/abs/2011.04948
https://arxiv.org/abs/2011.04948
https://doi.org/10.1109/EuroSP.2019.00043
http://eprint.iacr.org/2017/762
https://doi.org/10.1007/978-3-030-38471-5_10
https://doi.org/10.1007/978-3-030-38471-5_10
https://doi.org/10.1137/1.9781611975031.26
https://doi.org/10.1137/1.9781611975031.26
https://techcrunch.com/2016/05/15/how-threat-intelligence-sharing-can-help-deal-with-cybersecurity-challenges/
https://techcrunch.com/2016/05/15/how-threat-intelligence-sharing-can-help-deal-with-cybersecurity-challenges/
https://doi.org/10.1186/1687-417X-2013-4
https://developers.facebook.com/products/threat-exchange
https://developers.facebook.com/products/threat-exchange
https://doi.org/10.1145/1159892.1159900
https://doi.org/10.1145/1159892.1159900
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1515/popets-2017-0053
https://doi.org/10.1145/3338466.3358924
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1145/28395.28420
https://doi.org/10.1016/S0306-4379(01)00008-4
https://doi.org/10.1016/S0306-4379(01)00008-4
https://doi.org/10.1007/978-3-319-94649-8_31
https://doi.org/10.2478/popets-2021-0068

(51]

(52]

(53]

o
=

[55

[56

[57

o
&,

(59

[60

[61

o
&,

[63

(64

(65

[66

[67

(68

[69

[70

3
=

[72]

Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. [n.d.]. Deep Neural
Networks Classification over Encrypted Data. In Proceedings of the Ninth ACM
Conference on Data and Application Security and Privacy, CODASPY 2019. 97-108.
https://doi.org/10.1145/3292006.3300044

Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Catherine Jones. 2017.
Privacy-preserving Machine Learning in Cloud. In Proceedings of the 9th Cloud
Computing Security Workshop, CCSW@CCS 2017, Dallas, TX, USA, November 3,
2017, Bhavani M. Thuraisingham, Ghassan Karame, and Angelos Stavrou (Eds.).
ACM, 39-43.

Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Rebecca N. Wright.
2018. Privacy-preserving Machine Learning as a Service. Proc. Priv. Enhancing
Technol. 2018, 3 (2018), 123-142.

Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz. 2017. Deep Models
Under the GAN: Information Leakage from Collaborative Deep Learning. In
ACM CCS 2017. 603-618.

Ali Inan, Selim Volkan Kaya, Yiicel Saygin, Erkay Savas, Aycca Azgin Hintoglu,
and Albert Levi. 2007. Privacy preserving clustering on horizontally parti-
tioned data. Data Knowl. Eng. 63, 3 (2007), 646-666. https://doi.org/10.1016/
j.datak.2007.03.015

Geetha Jagannathan, Krishnan Pillaipakkamnatt, and Rebecca N. Wright. 2006.
A New Privacy-Preserving Distributed k-Clustering Algorithm. In Proceedings
of the Sixth SIAM International Conference on Data Mining, April 20-22, 2006,
Bethesda, MD, USA. SIAM, 494-498. https://doi.org/10.1137/1.9781611972764.47
Geetha Jagannathan, Krishnan Pillaipakkamnatt, Rebecca N. Wright, and Daryl
Umano. 2010. Communication-Efficient Privacy-Preserving Clustering. Trans.
Data Privacy 3, 1 (2010), 1-25. http://www.tdp.cat/issues/abs.a028a09.php
Geetha Jagannathan and Rebecca N. Wright. 2005. Privacy-preserving dis-
tributed k-means clustering over arbitrarily partitioned data. In ACM SIGKDD
2005. 593-599. https://doi.org/10.1145/1081870.1081942

Angela Jaschke and Frederik Armknecht. 2018. Unsupervised Machine Learning
on Encrypted Data. In Selected Areas in Cryptography - SAC 2018m Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 11349). Springer, 453-478.
https://doi.org/10.1007/978-3-030-10970-7_21

Somesh Jha, Luis Kruger, and Patrick McDaniel. 2005. Privacy Preserving Clus-
tering. In Proceedings of the 10th European Symposium on Research in Computer
Security (ESORICS).

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. [n.d.].
GAZELLE: A Low Latency Framework for Secure Neural Network Inference.
In 27th USENIX Security Symposium, USENIX Security 2018. 1651-1669. https:
//www.usenix.org/conference/usenixsecurity 18/presentation/juvekar

Hannah Keller, Helen Méllering, Thomas Schneider, and Hossein Yalame. 2021.
Balancing Quality and Efficiency in Private Clustering with Affinity Propagation.
In Proceedings of the 18th International Conference on Security and Cryptography,
SECRYPT 2021, July 6-8, 2021. SCITEPRESS, 173-184. https://doi.org/10.5220/
0010547801730184

Florian Kerschbaum, Thomas Schneider, and Axel Schropfer. 2014. Automatic
Protocol Selection in Secure Two-Party Computations. In ACNS 2014. 566—-584.
Hyeong-Jin Kim and Jae-Woo Chang. 2018. A Privacy-Preserving k-Means
Clustering Algorithm Using Secure Comparison Protocol and Density-Based
Center Point Selection. In 11th IEEE International Conference on Cloud Comput-
ing, CLOUD 2018. IEEE Computer Society, 928-931. https://doi.org/10.1109/
CLOUD.2018.00138

Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. 2009. Im-
proved Garbled Circuit Building Blocks and Applications to Auctions and Com-
puting Minima. In CANS 2009. 1-20.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
Learning: Challenges, Methods, and Future Directions. IEEE Signal Process. Mag.
37, 3 (2020), 50-60. https://doi.org/10.1109/MSP.2020.2975749

Yi Li, Yitao Duan, and Wei Xu. 2018. PrivPy: Enabling Scalable and General
Privacy-Preserving Computation. CoRR abs/1801.10117 (2018). arXiv:1801.10117
http://arxiv.org/abs/1801.10117

Minlei Liao, Yunfeng Li, Farid Kianifard, Engels Obi, and Stephen Arcona. 2016.
Cluster analysis and its application to healthcare claims data: a study of end-
stage renal disease patients who initiated hemodialysis. BMC Nephrology 17
(2016). Issue 25.

Yehuda Lindell and Benny Pinkas. 2009. A Proof of Security of Yao’s Protocol for
Two-Party Computation. J. Cryptology 22, 2 (2009), 161-188. https://doi.org/
10.1007/s00145-008-9036-8

Y. Lindhell and B. Pinkas. 2000. Privacy Preserving Data Mining. In Proc. Ad-
vances in Cryptology - CRYPTO. Springer-Verlag.

Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai
Lin. 2021. When Machine Learning Meets Privacy: A Survey and Outlook. ACM
Comput. Surv. 54, 2, Article 31 (March 2021), 36 pages. https://doi.org/10.1145/
3436755

Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Network
Predictions via MiniONN Transformations. In ACM SIGSAC CCS. 619-631. https:
//doi.org/10.1145/3133956.3134056

[73]

[74

[75

[76

[77

[78

[79]

[80

[81

[82

[83

[84

[85

[86

[87

(88

[89

[90

[o1

[92

[93]

[94

[95

[96

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. 2008. In-
troduction to information retrieval. Cambridge University Press.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
[n.d.]. Exploiting Unintended Feature Leakage in Collaborative Learning. In
2019 IEEE Symposium on Security and Privacy, SP 2019. 691-706. https://doi.org/
10.1109/SP.2019.00029

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. [n.d.]. Delphi: A Cryptographic Inference Service for Neural
Networks. In 29th USENIX Security Symposium, USENIX Security 2020. 2505-2522.
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
Payman Mohassel, Mike Rosulek, and Ni Trieu. 2020. Practical Privacy-
Preserving K-means Clustering. Proc. Priv. Enhancing Technol. 2020, 4 (2020),
414-433. https://doi.org/10.2478/popets-2020-0080

Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable
Privacy-Preserving Machine Learning. In IEEE Security and Privacy 2017. 19-38.
https://doi.org/10.1109/SP.2017.12

Fionn Murtagh and Pedro Contreras. 2017. Algorithms for hierarchical cluster-
ing: an overview, II. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 7, 6 (2017).
https://doi.org/10.1002/widm.1219

Terry Nelms, Roberto Perdisci, and Mustaque Ahamad. 2013. ExecScent: Mining
for New Domains in Live Networks with Adaptive Control Protocol Templates.
In Proceedings o the 22nd USENIX Security Symposium.

Sophia R. Newcomer, John F. Steiner, , and Elizabeth A. Bayliss. 2011. Identifying
Subgroups of Complex Patients With Cluster Analysis. American Journal of
Managed Care 17 (2011), 324-332. Issue 8.

Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh,
and Nina Taft. 2013. Privacy-Preserving Ridge Regression on Hundreds of
Millions of Records. In Proc. IEEE Symposium on Security and Privacy (S & P).
IEEE.

Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa. [n.d.]. Oblivious Multi-Party
Machine Learning on Trusted Processors. In 25th USENIX Security Symposium,
USENIX Security 16. 619-636.

Stanley R. M. Oliveira and Osmar R. Zaiane. 2003. Privacy Preserving Cluster-
ing by Data Transformation. In XVIII Simpésio Brasileiro de Bancos de Dados,
Anais/Proceedings. 304-318.

Clark F. Olson. 1995. Parallel Algorithms for Hierarchical Clustering. Parallel
Comput. 21, 8 (1995), 1313-1325. https://doi.org/10.1016/0167-8191(95)00017-1
Claudio Orlandi, Alessandro Piva, and Mauro Barni. 2007. Oblivious Neural
Network Computing via Homomorphic Encryption. EURASIP . Information
Security 2007 (2007). https://doi.org/10.1155/2007/37343

P. Paillier. 1999. Public-key cryptosystems based on composite degree residuosity
classes. In Proc. Advances in Cryptology - EUROCRYPT. Springer-Verlag.
Martin Pettai and Peeter Laud. 2015. Combining Differential Privacy and Secure
Multiparty Computation. In Proceedings of the 31st Annual Computer Security
Applications Conference, Los Angeles, CA, USA, December 7-11, 2015. ACM, 421-
430.

Michael O. Rabin. 1981. How to exchange secrets by oblivious transfer. Technical
Report TR-81, Aiken Computation Laboratory, Harvard University.

Fang-Yu Rao, Bharath K. Samanthula, Elisa Bertino, Xun Yi, and Dongxi Liu.
2015. Privacy-Preserving and Outsourced Multi-user K-Means Clustering. In
IEEE Conference on Collaboration and Internet Computing, CIC 2015, Hangzhou,
China, October 27-30, 2015. IEEE Computer Society, 80-89. https://doi.org/
10.1109/CIC.2015.20

M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,
Thomas Schneider, and Farinaz Koushanfar. [n.d.]. Chameleon: A Hybrid Secure
Computation Framework for Machine Learning Applications. In AsiaCCS 2018.
707-721. https://doi.org/10.1145/3196494.3196522

R L Rivest, L Adleman, and M L Dertouzos. 1978. On Data Banks and Privacy
Homomorphisms. Foundations of Secure Computation, Academia Press (1978),
169-179.

Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepse-
cure: scalable provably-secure deep learning. In DAC 2018. ACM, 2:1-2:6.
https://doi.org/10.1145/3195970.3196023

Ahmad-Reza Sadeghi and Thomas Schneider. 2008. Generalized Universal
Circuits for Secure Evaluation of Private Functions with Application to Data
Classification. In ICISC 2008. 336-353. https://doi.org/10.1007/978-3-642-00730-
9.21

Ashish P. Sanil, Alan F. Karr, Xiaodong Lin, and Jerome P. Reiter. 2004. Privacy
preserving regression modelling via distributed computation. In ACM SIGKDD
2004. 677-682.

Mina Sheikhalishahi, Mona Hamidi, and Fabio Martinelli. [n.d.]. Privacy Pre-
serving Collaborative Agglomerative Hierarchical Clustering Construction. In
Information Systems Security and Privacy - 4th International Conference, ICISSP
2018, Vol. 977. 261-280. https://doi.org/10.1007/978-3-030-25109-3_14

Mina Sheikhalishahi and Fabio Martinelli. 2017. Privacy preserving clustering
over horizontal and vertical partitioned data. In IEEE ISCC 2017. 1237-1244.
https://doi.org/10.1109/ISCC.2017.8024694

https://doi.org/10.1145/3292006.3300044
https://doi.org/10.1016/j.datak.2007.03.015
https://doi.org/10.1016/j.datak.2007.03.015
https://doi.org/10.1137/1.9781611972764.47
http://www.tdp.cat/issues/abs.a028a09.php
https://doi.org/10.1145/1081870.1081942
https://doi.org/10.1007/978-3-030-10970-7_21
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://doi.org/10.5220/0010547801730184
https://doi.org/10.5220/0010547801730184
https://doi.org/10.1109/CLOUD.2018.00138
https://doi.org/10.1109/CLOUD.2018.00138
https://doi.org/10.1109/MSP.2020.2975749
https://arxiv.org/abs/1801.10117
http://arxiv.org/abs/1801.10117
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1145/3436755
https://doi.org/10.1145/3436755
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1109/SP.2019.00029
https://doi.org/10.1109/SP.2019.00029
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://doi.org/10.2478/popets-2020-0080
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1002/widm.1219
https://doi.org/10.1016/0167-8191(95)00017-I
https://doi.org/10.1155/2007/37343
https://doi.org/10.1109/CIC.2015.20
https://doi.org/10.1109/CIC.2015.20
https://doi.org/10.1145/3196494.3196522
https://doi.org/10.1145/3195970.3196023
https://doi.org/10.1007/978-3-642-00730-9_21
https://doi.org/10.1007/978-3-642-00730-9_21
https://doi.org/10.1007/978-3-030-25109-3_14
https://doi.org/10.1109/ISCC.2017.8024694

[97

[98

[99

[100

[101

[102

[103

[104

[105

[106

[107

[108

[109

[110

[111

[112

[113

[114

[115

[116

[117

[118

[119

]

]

Reza Shokri and Vitaly Shmatikov. 2015. Privacy-Preserving Deep Learning. In
ACM SIGSAC CCS 2015. 1310-1321.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.
Membership Inference Attacks Against Machine Learning Models. In 2017 IEEE
Symposium on Security and Privacy. 3-18.

Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. 2013. Stochastic
gradient descent with differentially private updates. In IEEE Global Conference
on Signal and Information Processing 2013. 245-248. https://doi.org/10.1109/
GlobalSIP.2013.6736861

Ion Stoica, Dawn Song, Raluca Ada Popa, David A. Patterson, Michael W.
Mahoney, Randy H. Katz, Anthony D. Joseph, Michael I. Jordan, Joseph M.
Hellerstein, Joseph E. Gonzalez, Ken Goldberg, Ali Ghodsi, David Culler, and
Pieter Abbeel. 2017. A Berkeley View of Systems Challenges for AL CoRR
abs/1712.05855 (2017). arXiv:1712.05855 http://arxiv.org/abs/1712.05855
Chunhua Su, Feng Bao, Jianying Zhou, Tsuyoshi Takagi, and Kouichi Sakurai.
2007. Privacy-Preserving Two-Party K-Means Clustering via Secure Approxi-
mation. In AINA 2007. 385-391.

Chunhua Su, Jianying Zhou, Feng Bao, Tsuyoshi Takagi, and Kouichi Sakurai.
2014. Collaborative agglomerative document clustering with limited information
disclosure. Security and Communication Networks 7, 6 (2014), 964-978. https:
//doi.org/10.1002/sec.811

Toshiyuki Takada, Hiroyuki Hanada, Yoshiji Yamada, Jun Sakuma, and Ichiro
Takeuchi. 2016. Secure Approximation Guarantee for Cryptographically Pri-
vate Empirical Risk Minimization. In ACML 2016. 126-141. http://jmlr.org/
proceedings/papers/v63/takada48.html

Harry Chandra Tanuwidjaja, Rakyong Choi, Seunggeun Baek, and Kwangjo
Kim. 2020. Privacy-Preserving Deep Learning on Machine Learning as a Service
- a Comprehensive Survey. IEEE Access 8 (2020), 167425-167447.

Florian Trameér and Dan Boneh. [n.d.]. Slalom: Fast, Verifiable and Private
Execution of Neural Networks in Trusted Hardware. In 7th International Confer-
ence on Learning Representations, ICLR 2019. https://openreview.net/forum?id=
rJVorjCcKQ

A. Tripathy and I. De. 2013. Privacy Preserving Two-Party Hierarchical Clus-
tering Over Vertically Partitioned Dataset. Journal of Software Engineering and
Applications 06 (2013), 26-31.

Jaideep Vaidya and Chris Clifton. 2003. Privacy-preserving k-means clustering
over vertically partitioned data. In ACM SIGKDD 2003. 206-215.

Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. 2008. Privacy-preserving SVM
classification. Knowl. Inf. Syst. 14, 2 (2008), 161-178. https://doi.org/10.1007/
$10115-007-0073-7

Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang, and
Diyue Bu. 2015. Efficient Genome-Wide, Privacy-Preserving Similar Patient
Query Based on Private Edit Distance (CCS '15). ACM, 492-503. https://doi.org/
10.1145/2810103.2813725

M.R. Weir, EW. Maibach, G.L. Bakris, H.R. Black, P. Chawla, F.H. Messerli,].M.
Neutel, and M.A. Weber. 2000. Implications of a health lifestyle and medication
analysis for improving hypertension control. Archives of Internal Medicine 160
(2000), 481-490. Issue 4.

Wei Xie, Yang Wang, Steven M. Boker, and Donald E. Brown. 2016. PrivLogit: Effi-
cient Privacy-preserving Logistic Regression by Tailoring Numerical Optimizers.
CoRR abs/1611.01170 (2016). arXiv:1611.01170 http://arxiv.org/abs/1611.01170
Hongyang Yan, Li Hu, Xiaoyu Xiang, Zheli Liu, and Xu Yuan. 2021. PPCL:
Privacy-preserving collaborative learning for mitigating indirect information
leakage. Inf. Sci. 548 (2021), 423-437. https://doi.org/10.1016/j.ins.2020.09.064
Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended
Abstract). In 23rd Annual Symposium on Foundations of Computer Science, 1982.
160-164. https://doi.org/10.1109/SFCS.1982.38

Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended
Abstract). In 27th Annual Symposium on Foundations of Computer Science, 1986.
162-167. https://doi.org/10.1109/SFCS.1986.25

Samee Zahur and David Evans. 2013. Circuit Structures for Improving Efficiency
of Security and Privacy Tools. In 2013 IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, May 19-22, 2013. IEEE Computer Society, 493-507.
https://doi.org/10.1109/SP.2013.40

Qingchen Zhang, Laurence T. Yang, Zhikui Chen, and Peng Li. 2017. PPHOPCM:
Privacy-preserving High-order Possibilistic c-Means Algorithm for Big Data
Clustering with Cloud Computing. IEEE Transactions on Big Data (2017), 1-1.
https://doi.org/10.1109/TBDATA.2017.2701816

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. 1996. BIRCH: An Efficient
Data Clustering Method for Very Large Databases. In ACM SIGMOD 1996. 103—
114.

Lingchen Zhao, Qian Wang, Qin Zou, Yan Zhang, and Yanjiao Chen. 2020.
Privacy-Preserving Collaborative Deep Learning With Unreliable Participants.
IEEE Trans. Inf. Forensics Secur. 15 (2020), 1486-1500. https://doi.org/10.1109/
TIFS.2019.2939713

Qi Zhao, Chuan Zhao, Shujie Cui, Shan Jing, and Zhenxiang Chen. 2020. Pri-
vateDL PrivateDL : Privacy-preserving collaborative deep learning against
leakage from gradient sharing. Int. J. Intell. Syst. 35, 8 (2020), 1262-1279.

https://doi.org/10.1002/int.22241

[120] Jan Henrik Ziegeldorf, Jens Hiller, Martin Henze, Hanno Wirtz, and Klaus
Webhrle. [n.d.]. Bandwidth-Optimized Secure Two-Party Computation of Minima.
In CANS 2015. 197-213.

A GARBLED CIRCUITS

Garbled circuits (GC) [113, 114] provide a general framework for
securely realizing two-party computation of any functionality. The
framework has been thoroughly studied in the literature (e.g., see
formal treatments of the topic [14, 69]) and we here overview the
specific procedures involved in it.

In our running example, parties P; and P, wish to evaluate a
specific function f over their respective inputs x1, x2 and engage
in an interactive 2-phase protocol, where one party plays the role
of the garbler and the other the role of the evaluator. Without loss
of generality, P; is the garbler and P; is the evaluator, and their
interaction proceeds as follows.

Inphase I, P1 expresses f as a Boolean circuit Cy, i.e., as a directed
acyclic graph of Boolean AND and OR gates, and then sends a
“garbled,” i.e., encrypted, version of Cf to Py.

In our example, Cy corresponds to a circuit of two AND gates
A, B and an OR gate C, shown in Figure 9: Inputs x1, x are 11 and
01, and output f(x1, x2) is 1, computed by feeding to the OR gate
the two bitwise ANDs of the inputs.

To garble Cy, Py first maps (the two possible bits 0, 1 of) each
wire X in C ' to two random values w2, w)l((from a large domain,
e.g., {0,1}128), called the garbled values of X.

Specifically, Py maps the output wires of gates A, B, and C to ran-
dom garbled values {w?, w;‘}, {wg, wllg} and respectively {wg, Wé},
and also maps the two input wires of gate A (respectively, gate
B) to random garbled values {w?l, wh}, {wgl, wzll} (respectively,
{w(l)z, W}z 1, {wgz, W;z})’ where mnemonically the i-th input bit of
party Pj corresponds to the ij-wire, i, j € {1,2}.

Next, P1 sends to P, the garbled truth table of every Boolean
gate in Cy, which is the permuted encrypted truth table of the gate,
where row in the truth table is appropriately encrypted using the
garbled values of its three associated wires. We only specify the
garbled truth table of the AND gate A, as other gates can be handled
similarly. The row (1,1) — 1 in the truth table of A dictates that the

le for

w

We w- we w-

/\/—\/\/—\

Figure 9: Garbled circuit Cy of a specific function f that com-
putes the OR over the pairwise ANDs of the 2-bit inputs.

https://doi.org/10.1109/GlobalSIP.2013.6736861
https://doi.org/10.1109/GlobalSIP.2013.6736861
https://arxiv.org/abs/1712.05855
http://arxiv.org/abs/1712.05855
https://doi.org/10.1002/sec.811
https://doi.org/10.1002/sec.811
http://jmlr.org/proceedings/papers/v63/takada48.html
http://jmlr.org/proceedings/papers/v63/takada48.html
https://openreview.net/forum?id=rJVorjCcKQ
https://openreview.net/forum?id=rJVorjCcKQ
https://doi.org/10.1007/s10115-007-0073-7
https://doi.org/10.1007/s10115-007-0073-7
https://doi.org/10.1145/2810103.2813725
https://doi.org/10.1145/2810103.2813725
https://arxiv.org/abs/1611.01170
http://arxiv.org/abs/1611.01170
https://doi.org/10.1016/j.ins.2020.09.064
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SP.2013.40
https://doi.org/10.1109/TBDATA.2017.2701816
https://doi.org/10.1109/TIFS.2019.2939713
https://doi.org/10.1109/TIFS.2019.2939713
https://doi.org/10.1002/int.22241

output is 1 when inputis 1, 1 or, using garbled values, that the output
is WA when input is wlll, w%l. Accordingly, using a semantically-
secure symmetric encryption scheme Ej(-) (e.g., 128-bit AES), P4
can express this condition as ciphertext E wl, (E wh, (w}4)), where the

1 - . : . 1 1
output w, 1s successively encrypted using the inputs Wi Wy S

encryption keys. P; produces a similar ciphetext for each other row
in the truth table of A and sends them to Py, permuted to hide the
order of the rows. Observe that one can retrieve W}L‘ if and only if
they possess both w%l, wél, and that if one possesses only W111’ wzll,
all other entries of the garbled truth table of A (besides wfll) are
indistinguishable from random, due to the semantic security of the
encryption scheme Ej (-).

Finally, to allow P; to retrieve the final output f(x1, x2), Py also
sends the garbled values wg, wé of the output wire together with
their corresponding mapping to 0 and 1. Note that P; is no privy
to any other mappings between wires’ garbled values and their
possible bit values.

In phase II, P; evaluates the entire circuit Cy over the received
garbled truth tables of the gates in it, by evaluating gates one by
one in the ordering hierarchy induced by (the DAG structure of)
Cr. Indeed, if P, knows the w value of each input wire of a gate
and its garbled truth table, P, can easily discover its output value,
by attempting to decrypt all rows in the table and accepting only
the one that returns a correct output value. For example, if P, has

W111’ wgl, P, can try to decrypt every value in the garbled truth

table of A, until P, finds the correct value w}‘.4

To initiate this circuit-evaluation process, P, needs to learn the
garbled values of each of the input wires in C r which is achieved as
follows: (1) Py sends to P, the w values w%l, W%z corresponding to
the input wires of Pq in the clear (note that since these are random
values, P, cannot map them to 0 or 1, thus P1’s input is protected);
(2) Py privately query from Py the w values wgl, W,%z corresponding
to the input wires of Py, that is, without Py learning which garbled
values were queried, via a two-party secure computation protocol
called 1-out-of-2 oblivious transfer (OT) [88]. At a very high level,
and focusing on a single input bit, OT allows P, to retrieve from
P1 exactly one value in pair (wgl, w%l) without Pq learning which
value was retrieved. After running the OT protocol for every input
bit, P, can evaluate Cf, as above, to finally compute and send back
to Pq the correct output f(x1,x2) = 1, deduced by the final garbled
value wé of the output wire.

B SECURE min-SELECTION PROTOCOLS

Here, we overview the design of GC-based protocols ArgMin and
MaxDist/MinDist for secure selection of min/max values, or their
index/location, over secret-shared data. These protocols have been
defined in Sections 4 and 5 and comprise integral components of
our solutions. We provide the exact two circuits over which we can
directly apply the garbled-circuits framework (see Appendix A) to
get GC-protocols ArgMin and MinDist, noting that the circuit in
support of MaxDist is similar to the case of MinDist.

“For this, we need to assume that the encryption scheme allows detection of well-formed decryp-
tions, i.e., it is possible to deduce whether the retrieved plaintext has a correct format. This can be
easily achieved using a blockcipher and padding with a sufficient number of 0’s, in which case well-

formed decryptions will have a long suffix of 0’s and decryptions under the wrong key will have a
suffix of random bits. This property is referred to as verifiable range in [69].

Recall that data consists of A-bit values and is secret shared
among the two parties as k-bit random blinding terms, k > A, and
Kk + 1-bit blinded values, each resulted by adding a random blinding
term to an ordinary data value.

Our circuits use as building blocks the following gates, efficient
implementations of which are well studied [65]:

e ADD/SUB that adds/subtracts k + 1-bit integers;

e MIN/MAX that selects the min/max of two A-bit integers,
using a one-bit output to encode which input value is the
min/max value (e.g., on input 3,5 MIN outputs 0 to indicate
the first value is smaller);

o a multiplexer gate MUX; that on input two i-bit inputs and a
selector bit s, outputs the first or the second one, depending
on the value of s; and finally

e hard-coded in the circuit constant gates CON;, 1 < i < n,
that always output the (log n)-bit fixed value i (e.g., CON3
outputs the binary representation of 3).

Figure 10: The circuit for protocol ArgMin.

Figure 10 shows the circuit of protocol ArgMin for selecting
the index of the minimum value in an array of n different values.
On input n k + 1-bit values vy, ...,v, and n k-bit blinding terms
r1,...,In, the circuit first uses n SUB gates to compute (the secret)
valuesvj—ri, i = 1,...,n, and then selects the index of the minimum
such value in n — 1 successive comparisons as follows. In the ith
comparison, a MIN gate compares the currently minimum value
m; of index loc; (initially, m; = v1 —ry, locy = 1) to value vj41 —riy1
of index i + 1, and its output bit is fed, as the selector bit, to two
multiplexer gates MUX;:

e 1 = log n: once for selecting among two (log n)-bit indices
loc; and i+1, the latter conveniently encoded as the output of
constant gate CONj; (such hard-coded indices significantly
facilitate their propagation in the circuit, compared to the
alternative of handling indexes as input and carrying them
over throughout the circuit); and

e ;1 = A: once for selecting among two A-bit values m; and
Vi+1 — Ti+1,

overall propagating the updated minimum value m;;; = min{a, b}
and its index loc;41 to the next (i + 1)th comparison. The final
output (see arrow wire) corresponds to the output of the (n — 1)th
index-selection multiplexer gate.

Figure 11 shows the circuit for protocol MinDist for selecting and
re-blinding the minimum value among two secret-shared values.
On input two k + 1-bit blinded values u, v and three k-bit blinding
terms rq, rz, r’, the circuit first computes u —ry, v —rz using two SUB
gates, then computes the minimum of these two values using a MIN
gate, and its output bit is fed, as the selector bit, to a multiplexer
gate MUX, for selecting the minimum among two A-bit values
u —rq and v — rp, which is becomes the final output (see arrow wire)

Figure 11: The circuit for protocol MinDist.

after it is blinded by adding the input blinding term r’ through a
ADD gate. (The circuit for protocol MaxDist is the same with a
MAX gate replacing the MIN gate.)

C PROOF OF THEOREM 5.1

We begin by recalling that, under the assumption that the oblivious
transfer protocol used is secure, there exists simulator Simor that
can simulate the views of each of the parties P1, P; during a single
oblivious transfer execution when given as input the corresponding
party’s input (and output, in case it is non-empty) and randomness.

The core idea behind our proof is that, since all values seen by the
two parties during the protocol execution (apart from the indexes of
the merged clusters at each clustering round) are “blinded” by large
random factors, these values can be perfectly simulated, as needed
in our proof, by randomly selected values. For example, assuming all
values pj, g; are 32-bits and the chosen random values are 100-bits,
it follows that the sum of the two is statistically indistinguishable
from a 100-bit value chosen uniformly at random. In particular,
this allows the simulator to effectively run the protocol with the
adversary by simply choosing simulated values for the other party
which he chooses himsellf at random (in the above example these
would be random 32-bit values).

We handle the two cases of party corruption separately.
Corruption of P;. The view of P, during the protocol execution
consists of:

(1) Encrypted matrices B, R and encrypted arrays L, S.

(2) For each clustering round ¢, messages received during the
oblivious transfer execution for ArgMin, denoted by OT; and
the min/max index ay.

(3) During each clustering round ¢, for each execution of
MinDist/MaxDist for index k, messages received during
the corresponding oblivious transfer execution, denoted by
OTy ., corresponding garbled circuit GCy ., and output value
Uy k-

(4) Encrypted cluster representative values E, ..., Ey,.

The simulator Simp,, on input the random tape R, points
q1. - - -» qny» outputs (rep1 /|1l 1l - - .. repe, /e | e,) o1, - - - gy,
computes the view of P, as follows.

e (Ciphertext computation) Using random tape Ry, the sim-
ulator runs the key generation algorithm for P; to receive
sk’, pk’. He then chooses values p1, . .., pp, uniformly at ran-
dom from {0, 1}<. These will act as the “simulated” values
for player P;. He then runs protocol PHC honestly using
the values p; as input for Py (and the actual values g; of P),
with the following modifications.

e (Oblivious transfer simulation for OTy) For £ = 1,...,¢
let W be the set of garbled input values computed by P for
the garbled circuit that evaluates MinDist/MaxDist at clus-
tering round ¢. Since we are in the semi-honest setting, the
corrupted P, computes these values uniformly at random.
Therefore, the simulator can also compute them using Rs.
Then, fori = 1,..., ¢, the simulator includes in the view (in-

stead of OTy) the output OT; produced by simulator Sim (()2%

on input W;.% Note that P; does not receive any output from
this oblivious transfer execution, thus Simg% only works
given the input.

e (Oblivious transfer simulation for Argmin) For each
clustering round ¢, the simulator includes in the view, the
index ay.

e (Garbled circuit simulation for GC ;) Next, the simula-
tor needs to compute the garbled circuits GCy .. The simu-
lator uses the corresponding values from R (as computed
so far) and a “new” blinding factor p; ;. for Py’ inputs and
computes a garbled circuit for evaluating ArgMin honestly.
The simulator also includes in the view of P, the garbled
inputs for the corresponding elements from R.

e (Oblivious transfer simulation for OT; ;) Let y, s be the
input of P; for the circuit GCy (i.e., the execution of ArgMin
for index k during clustering round ¢). Since we are in the
semi-honest case, the corrupted P, will provide as input
the values that have been established from the interaction
with Py (using the points p) up to that point, therefore
yg k. can be computed by the simulator. In order to compute
the parts of the view that correspond to each of OT; the
simulator includes in the view the output of SimpT on input
yp k and the corresponding choice from each pair of garbled
inputs he chose in the previous step (as dictated by the bit
representation of y,), which we denote as OT[’ k

e (Encrypted representatives computation)’ For ¢ =
1,..., ¢, the simulator computes rep, = [repe/|Je| - |Jill
and E; = [rep,], where encryption is under (the previously
computed) pk.

We now argue that the view produced by our simulator is indis-
tinguishable from the view of P, when interacting with P; running
PHC. This is done via the following sequence of hybrids.

Hybrid 0. This is the view viewﬂ;Hc, i.e., the view of P, when

2
interacting with Py running PHC for points p;.
Hybrid 1. This is the same as Hybrid 0, but the output of GC; in
view genc is replaced by ay. This is indistinguishable from Hybrid
P2

0 due to the correctness of the garbling scheme. Since we are in the
semi-honest setting, both parties follow the protocol, therefore the
outputs they evaluate are always ay.

Hybrid 2. This is the same as Hybrid 1, but values in B, L are
computed using values p;. This is statistically indistinguishable
from Hybrid 1 (i.e., even unbounded algorithms can only distinguish

between the two with probability O(2") since in view zerc, each of
)
the values in B, L are computed as the sum of a random value from

{0, 1}* and a distance between two clusters.

5 And corresponding randomness derived from Ry.

Hybrid 3. This is the same as Hybrid 2, but all values in R, S are re-
placed with encryptions of zero’s. This is indistinguishable from Hy-
brid 2 due to the semantic security of Paillier’s encryption scheme.
Hybrid 4. This is the same as Hybrid 3, but each of OT; is replaced
by OT,, computed as described above. This is indistinguishable
from Hybrid 3 due to the security of the oblivious transfer protocol.
Hybrid 5. This is the same as Hybrid 4, but the garbled inputs
given to P, for GCp are chosen based on the values that have
been computed using values p;. Since garbled inputs are chosen
uniformly at random (irrespectively of the actual input values), this
follows the same distribution as Hybrid 3.
Hybrid 6. This is the same as Hybrid 5, but each of OT; is re-
placed by output of OT,; computed as described above. This is
indistinguishable from Hybrid 5 due to the security of the oblivious
transfer protocol.
Hybrid 7. This is the same as Hybrid 6, but each value E; sens to
P, is computed as [[rep;/|Ji| - |Ji|1] using public key pk’. This is
indistinguishable from Hybrid 6 since we are in the semi-honest
setting and both parties follow the protocol therefore the outputs
they evaluate are always rep;/|Ji|.

Note that Hybrid 7 corresponds to the view produced by our sim-
ulator and Hybrid 0 to the view that P; receives while interacting
with Py during ¢ which concludes this part of the proof.

Corruption of Pi. The case where Py is corrupted is somewhat
simpler as he does not receive any outputs from the circuits GCp .
The view of Py during the protocol execution consists of:

(1) Encrypted tables D, R and encrypted arrays H, L, S.

(2) For each clustering round ¢, a garbled circuit GCy for evalu-
ating ArgMin, messages received during the corresponding
oblivious transfer execution denoted by OTp.

(3) During each clustering round ¢, for each execution of
MinDist/MaxDist for index k, messages received during the
corresponding oblivious transfer execution denoted by OTj ..

The simulator Simp,, on input the random tape Rj, points

P1, ... pnysoutputs (repr /| J1l, |1l - ... repe, /e, Ve s a1, .. o agy s
computes the view of Py as follows.

o (Ciphertext computation) Using random tape Ry, the sim-
ulator runs the key generation algorithm for Py to receive
sk, pk and computes a pair sk’, pk’ for himself. He computes
D, H, L consisting of encryptions of zeros under pk’. More-
over, he computes R,S consisting of encryption of values
chosen uniformly at random from {0, 1}* and encrypted
under pk.

e (Garbled circuit simulation for GC;) Next the simula-
tor needs to provide garbled circuits for the evaluation of
ArgMin for each clustering round ¢. For this, the simulator
creates a “rigged” garbled circuit GC; that always outputs ay,
irrespectively of the inputs. This is achieved by forcing all
intermediate gates to always return the same garbled output
and by setting the output translation temple to always to de-
code to the bit-representation of @, (this process is explained
formally in [69]).

o (Oblivious transfer simulation for ArgMin) Let Wt,(l) ,

W[(Z) be the sets of pairs of input garbled values that the sim-
ulator choses while creating GC; as described above (where

the former corresponds to the input of Py and the latter to
the input of P3). The simulator includes in the view a random

choice from each pair in W@ Moreover, he replaces the
messages in the view that correspond to the execution of
OTy k., by the output of Simg% on input (y, Wt,(l)), where yp
is the bit description of the input of Py for GC, (which can
be computed with the simulator since he has access to p;,
Ry).

e (Oblivious transfer simulation for MinDist/MaxDist)
For each GCyj let Wy be the set of garbled input val-
ues computed by P for the garbled circuit that evaluates
MinDist/MaxDist at clustering round ¢ and cluster k. Since
we are in the semi-honest setting, the corrupted P1 computes
these values uniformly at random. Therefore, the simulator
can also compute them using random tape R;. Then, for each
£, k the simulator includes in the view (instead of OTy ;) the
output OT[: « produced by simulator Sim(ol% on input W j
(and corresponding randomness derived from R;). Note that
P1 does not receive any output from this oblivious transfer
execution, thus Simgl). only works given the input.

We now argue that the view produced by our simulator is indis-
tinguishable from the view of P1 when interacting with P, running
PHC. This is done via the following sequence of hybrids.

Hybrid 0. This is the view viewﬂ;:qc, i.e., the view of P; when

interacting with P, running ngc for points g;.
Hybrid 1. This is the same as Hybrid 0, but all values in D, H', L
are replaced with encryptions of zero’s. This is indistinguishable
from Hybrid 1 due to the semantic security of Paillier’s encryption
scheme.
Hybrid 2. This is the same as Hybrid 1, but values in R, S are
computed as encryptions of values chosen uniformly at random
from {0, 1}* under key pk. This is statistically indistinguishable
from Hybrid 1 for the same reasons as for the case of P, above.
Hybrid 3. This is the same as Hybrid 2, but each of GCy is replaced
by GC;, computed as described above (including the values from
W(2)) This is indistinguishable from Hybrid 2 due to the security of
encryption scheme used for the garbling scheme (this is formally
described in [69]).
Hybrid 4. This is the same as Hybrid 3, but each of OT; is replaced
by OT/, computed as described above. This is indistinguishable
from Hybrid 3 due to the security of the oblivious transfer protocol.
Hybrid 5. This is the same as Hybrid 4, but each of OT; ;. is replaced
by OT[: « computed as described above. This is again indistinguish-
able from Hybrid 5 due to the security of the oblivious transfer
protocol.

Note that Hybrid 5 corresponds to the view produced by our sim-
ulator and Hybrid 0 to the view that P, receives while interacting
with Py during PHC which concludes this part of the proof.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Formal Problem Specification
	4 Main Construction
	5 Protocol Analysis
	6 Scalability via approximation
	7 Experimental evaluation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Garbled circuits
	B Secure min-selection protocols
	C Proof of Theorem 5.1

