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Abstract

We discuss inference after data exploration, with a particular focus on
inference after model or variable selection. We review three popular ap-
proaches to this problem: sample splitting, simultaneous inference, and
conditional selective inference. For each approach, we explain how it
works, and highlight its advantages and disadvantages. We also provide
an illustration of these post-selection inference approaches.



1. Introduction

The classical inferential theory of mathematical statistics is based on the philosophy that
all the models to fit, all the hypotheses to test, and all the parameters to do inference for
are fixed prior to seeing the data. This is not how statistics is practiced. The analyst often
explores the data to find the “right” model to fit to the data, the “right” hypothesis to test,
and so on. As Ronald Coase once said (Tullock 2001, page 205),

if you torture the data long enough, it will confess.

Once the data has been explored to find the hypothesis or model, the assumptions of a fixed
model and fixed hypothesis are no longer appropriate. Classical inference procedures may
no longer have the properties established by classical theory. This can invalidate inferences,
nullifying the claimed error rates or interpretations. Test statistics and estimators may
exhibit completely different distributions than what classical theory prescribes. There can
arise biases in estimation caused by data exploration. Procedures designed to control false
discovery rates may no longer achieve the desired error control. Power calculations which do
not account for data exploration should be viewed suspiciously. The selection of any aspect
of a model or hypothesis using the data introduces sampling variability into the model or
hypotheses, rendering random the specification process itself.

Many authors, e.g. Benjamini et al. (2009) and Gelman and Loken (2014), attribute
this failure of expected behavior of inferential processes as contributing to the failure of
scientific replicability, which is considered important by the American Statistical Association
(Kafadar 2021).

The potential problems for classical inference procedures arising from model selection
or data exploration procedures have long been acknowledged. For example, in the context
of variable selection, Hotelling (1940) warned against the “fallacies of selection among nu-
merous results of that one which appears most significant and treating it as if it were the
only one examined.” Breiman (1992) referred to this as the “quiet scandal in the statistical
community.”

Post-selection inference has a long and rich history, and the literature has grown beyond
what can reasonably be synthesized in our review. Our selection of topics and references
should not be misconstrued as a judgment about the relative merits of contributions. Rather
than embarking on a futile attempt at being comprehensive, we have chosen a subset of
topics that can be coherently presented and that we feel will be of greatest interest to
practitioners.

For the purposes of this review, we consider only the setting where the analyst gen-
uinely believes there is model uncertainty, and therefore uses the data to select a model to
be used for subsequent inference. There is an equally vast literature on inference for fixed,
high-dimensional parameters defined by a linear model containing the full set of observed
covariates. In that high-dimensional inference paradigm, what we call model selection is
alternatively viewed as dimension reduction or regularization, yielding a lower-dimensional
approximation to the original model in the sense of having fewer covariates, and hence a
lower-dimensional parameter. In this latter paradigm, post-regularization or post-dimension
reduction inference is sought for the full, often high-dimensional, parameter, based on a
lower-dimensional approximating model. Within this framework, one may consider either
inference for the original parameter, or inference for its appropriately defined representa-
tion in the lower-dimensional approximating model. Since the dimension reduction is not
considered as selecting a model and its corresponding parameters for subsequent inference,
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this framework represents an alternative view of what are the relevant inferential targets.
For more discussion of the differences, see the Appendix of Berk et al. (2013).

We consider frequentist post-selection inference in this review. The literature concerning
Bayesian post-selection inference is comparatively small and authors are not in agreement
about many fundamental issues that are essential to studying potential selection effects and
correcting for them. Some notable developments include Yekutieli (2012) and Rasines and
Young (2020); see the references therein. Selecting a single model for inference could even
be considered non-Bayesian according to some interpretations of Bayesian orthodoxy, in the
sense that the posterior distribution on the model space, as well as the posterior distributions
for all candidate model parameters, constitute a more complete representation of posterior
uncertainty than reporting the posterior only for a selected model.

We present post-selection inference as an example of the more general problem of pro-
viding Valid Inference after Data Exploration (VIDE). This includes inference after variable
selection using, e.g., correlation plots, lasso, or residual diagnostics (Moore and McCabe
1998, Pardoe 2008, Whittingham et al. 2006, Cole 2020). Other than variable selection,
data exploration can also include methods to choose a transformation for variables (Harri-
son and Rubinfeld 1978, Stine and Foster 2013, Weisberg 2005, Liquet and Riou 2013) or
cut-off points for discretizing variables (Liquet and Commenges 2001). These widely-used
data exploration methods are rarely accounted for when drawing statistical conclusions in
practice.

In Section 2, we formulate the post-selection inference problem. In Section 3, we discuss
three prominent solutions to VIDE in the literature: sample splitting, simultaneous, and
conditional selective inference. In the context of post-selection inference, we discuss their
advantages and disadvantages. Examples are presented for each approach. An on-line
supplement performs calculations utilizing R packages. In Section 4, we consider uniform
validity of these approaches and discuss the impossibility results of Leeb and Podtscher
(2006). Finally, in Section 5, we consider the implications for practical data analysis.

1.1. Notation

In this paper, we use the following notation. The set of real numbers is denoted by R
and the set of p-dimensional vectors of real numbers is denoted by R”. Convergence in
distribution of a sequence of random variables/vectors T, to T is denoted by T 4 7.
Convergence in probability of a sequence of random variables/vectors T), to T' is denoted
by Tp, E71. A sequence of random variables T, converging in probability to zero is also
written as T;, = op(1). We write a := b to define a to be a quantity taking the value of b.
Expectation and variance of a random variable/vector X are denoted by E[X] and Var(X).
For any function f: X — R, we denote the global minimizer of f by argmin_ . f(z). The
coordinate-wise inequality between two vectors a,b € R” is denoted by a < b, i.e., a; < b;
for all j =1,...,p with a;, b; representing the j-th coordinates of a, b.

2. Formulation of the problem

The common practice of data analysis may be described as follows: Start with a question
of interest, obtain a dataset, explore the data to find a suitable model or find the subset of
covariates or find the transformations for variables, then fit the model to draw inferences
or statistical conclusions. For example, in the context of fitting a linear regression with a
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treatment variable, the question of interest could be “is there a non-zero treatment effect?”
In the presence of confounders, one might select a subset of confounders to be used in the
final model, or one might select a transformation for the response/confounders. Then one
fits the model with the selected set of confounders and transformations.

A mathematical formulation in the case of linear regression could be as follows. Suppose
we have observations (X1,Y1), ..., (Xn,Yn) € R? x R; these need not be independent or
identically distributed.

1. For each M < {1,...,p} corresponding to indices of covariates, define the “target” of
estimation by
1 n
Bu = argmin — > E [(Yi - XIMW] , 1.
perIMI TV T
where X; v is the subvector of X; with indices M of covariates.
2. Based on the data, select a subset M < {1,...,p} of covariates using a method of the
analyst’s choice. The selection procedure could be formal (lasso, AIC, BIC, marginal
screening), informal (correlation plots, residual diagnostics), or even post-hoc (such

as changing the model because the conclusion is unexpected).
3. Calculate the estimator

Bﬁ := argmin 1 Z(Y’ — XTA9)2. 2.

- ,M
oerlMl VT

This estimator “targets” By (the evaluation of the map M — Sy at M = 1\71)
4. A VIDE approach to inference for 85 based on fg; is to construct a valid confidence
region Clg;, i.e., one that satisfies

liminf P (85 € Clg) > 1-a, 3.
for the selection method leading to M. In this context, the adjective “valid” means
both that the intended nominal error rate « of the procedure for constructing such
a confidence region is correct, which would require that the distribution used for the
probability calculation is correct asymptotically, and that this error rate is correct for
confidence regions C/]\Iﬁ constructed by this procedure for any Bg;.

The selected set of covariates M is random through the data and hence potentially changes
with the sample size n. For notational simplicity, we do not index M (and other selections
below) with the sample size n.

Selection of variables is only one of many outcomes of data exploration. As described
above, variable transformation can also be seen as an outcome. For each transformation
g : R — R, define the “target”

By = argmin % ZE{[g(Yl) —X;9]2}. 4.

Similarly, the estimator ﬁg is obtained as the minimizer of n=' })"'  [g(Y;) — X, 0]*. Based
on the data, the analyst chooses a transformation g € G from a class of transformations.
The class of Box-Cox transformations is one such example: {y — (y* —1)/A: A # 0}. The
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VIDE problem in this case is to construct a valid confidence region C/l\Ig for B3 in that it
satisfies
lim inf P (5§ e CI§) > 1-a, 5.

n—0o0
for the selection method leading to g € G.

The VIDE problems 3. and 5. represent the prototypical problems we will consider.
Extensions are possible to logistic, Poisson, and Cox regression models. An even more
general VIDE problem can be described as follows. Suppose Z1,...,Z, are observations
taking values in a set Z. Consider a universe Q of all possible selections and for every q € Q
define the estimator

~ 1 &
0, := argmin — 4(0,7;),

q Gge o' ;1 q(0, Z:)
for a loss function £4(-,-) and a “parameter” set ©, that might depend on ¢g. The data
analyst can now choose an element ¢ € Q and the inference is to be based on the estimator
0. The VIDE problem is to construct a confidence region CI; such that

liminf P (6; € Cl;) > 1-q, 6.
n—0o0

for the selection method leading to ¢ € Q. Here the “target” 05 is defined as the evaluation

of the map q — 04, at ¢ = g, given by

0q = argmin 1 Z E[¢4(0, Z,)]. 7.

e0, N7
Covariate selection and transformation selection can be seen as special cases.

e For covariate selection, take Z; = (X;,Y;), @ ={M: M c {1,...,p}}, for g =M€ Q,
0, = RM! and éq = BM-

e For covariate selection, one can also take Z; = (X;,Y;), @ ={M: M c {1,...,p}, M| <
k}. This represents selecting at most k covariates out of p covariates. See Berk et al.
(2013, Section 4.5) for more examples.

° Ijor trAansformation selection, take Q@ = {g: R—>R: ge G}, for g =g€ G, O, = RP, and
g = Bg-

In the formulation of the problem, we have not assumed any parametric model for the
data. The targets defined in 1., 4. and 7. can be called misspecification-robust targets.
They are well-defined even if no parametric model is correct for the data. Further, if the
parametric model is correct, then these targets match the usual parametric targets.

The targets in 1., 4. and 7. have different meanings for different values of M, g, and
g. More concretely, in the context of variable selection, S, and Sm, for M = {1,2} and
M. = {1, 3} have different meanings. For example, the first coordinate of Bm,, Bim,, is
the population partial correlation of the response and the first covariate X; when adjusted
for X5, while the first coordinate of Sm,, Bi-m,, is the partial correlation of S, is the
population partial correlation of the response and the first covariate X; when adjusted for
X3. In general, Bi1.m; # Pi1.m, and they may not even have the same sign. The same logic
goes through for g, as different transformations g.

The major hurdle to solving the VIDE problem is that the estimator 5@ with a data-
driven choice of § is random also through ¢. In most cases, for every fixed ¢, GAq behaves
“nicely”, i.e. it is asymptotically normal at a y/n-rate with mean zero and some finite
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variance depending on q. Because of data exploration, @3 in general does not have a normal
distribution and can be quite biased, even asymptotically.

Figure | shows the distribution of the ordinary least squares estimator under forward
stepwise selection in a Monte Carlo experiment. The simulation setting is as follows: the
covariate vector X = (X1, X2, X3) is multivariate Gaussian with mean zero and a non-
diagonal covariance matrix. The response Y is generated from a normal distribution with
mean 1 and variance 9, independently of X, so the population coefficients (except the
intercept) for linear regression of Y on any subset of covariates are zero. We select from
the three covariates by first running a forward stepwise regression. The final model M is
the one with the smallest C), criterion. Figure | shows the histogram of the estimated
coefficients of X; when fitting the estimated linear model for Y on Xg;. A density estimate
is also laid over the histogram. The histogram of the coefficient of X; is drawn only from
replications where M contains 1. A naive analyst who ignores the selection might use the
normal distribution as an approximation to the distribution of ,@1 when the selected model
contains Xj. Figure | shows that such an approximation can be very misleading. The
bimodal distributions shown in Figure 1 are expected because X is selected by the variable
selection strategy only when it has a reasonably large coefficient in absolute value. This is
depicted in Figure 1 with the histogram spread away from zero.
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Figure 1: Distribution of Bl under forward stepwise selection.

3. Approaches to post-selection inference

Approaches that attempt to provide solutions to VIDE can be characterized by the following
terms, to be explained below,

1. sample splitting,
2. simultaneous inference, and
3. conditional selective inference.

These approaches increasingly restrict the selection method. To illustrate them, we use the
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Boston housing data available in R package MASS. This data set was introduced in Harrison
and Rubinfeld (1978) to understand the impact of air pollution (measured as concentration
of nitrogen oxide (nox) on the median value (medv) of houses in different census tracts in
Boston. This effect is estimated when adjusting with other covariates including crime rate
(crim), proportion of land zoned for lots (zn), vicinity of Charles river (chas), number of
rooms (rm), proportion of non-retail business acres per town (indus), proportion of owner-
occupied units built prior to 1940 (age), weighted distances to five Boston employment
centres (dis), index of accessibility to radial highways (rad), full-value property-tax rate
per $10,000 (tax), pupil-teacher ratio by town (ptratio), proportion of African-Americans
(black), and % lower status of the population (Istat).

3.1. Sample splitting

A classical and possibly the oldest solution for VIDE problems is sample splitting; see Ri-
naldo et al. (2019) for a brief history. The basic idea is to split the sample into two parts:
training and test data. These could be of different sizes but are usually taken to be of
almost equal sizes. First, the training data is used to explore the data and select q. Once
the selection is made, one ignores the training data and computes the estimator 5@ based
on the test data with g from the training data. In this context, one division of the data
is made, one model is selected, and standard inferential techniques are applied once. This
procedure is different from other procedures, such as the jackknife and cross-validation, that
repeatedly split the sample. Because ¢ is independent of the test data when the sample
consists of independent observations, P(@g —0;eA|g=9q) = ]P’(éq — 04 € A) for all Borel
sets A, i.e. the usual asymptotics work on the test data as if no selection was performed. A
detailed presentation of sample splitting as a solution of VIDE was given in Zhang (2012,
Chapter 2). Sample splitting in light of increasing dimension is discussed in Rinaldo et al.
(2019).

3.1.1. Advantages. One major advantage of sample splitting in comparison to the other two
methods we discuss is the generality it allows on selection. There are no assumptions or
restrictions on the selection procedure provided it uses only the training data. If the training
and test data are approximately the same size, then the sample splitting confidence intervals
are at most /2 times wider than those ignoring the selection, provided \/ﬁ(éq — 04) has
a limiting distribution for every ¢ € Q. Hence, if sample splitting applies, it would be
recommended for reporting most statistically valid results.

3.1.2. Disadvantages. The two main disadvantages of sample splitting in comparison to the
other approaches we consider are:

e Sample splitting, in conjunction with some model selection procedure such as stepwise,
might select a set of variables violating the analyst’s “criterion” in the sense that a selected
model may exhibit parameter estimates that are inconsistent with known mechanisms
underlying the process generating the data. It is difficult to consistently apply sample
splitting in a way that avoids unacceptable models.

e Sample splitting is invalid for dependent data. It inherently assumes independence of
observations in the data. If the observations are dependent then sample splitting is invalid
and no such simple alternative yet exists. Dependent data can easily be accommodated in
the simultaneous inference method. Recently, Lunde (2019) proved that sample splitting
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guarantees can be extended to weakly dependent data. The subject, however, is not
mature enough to apply the results for a wide range of dependent data.

There are other more minor issues with sample splitting. The effect of split sizes is not
understood in many problems and there is no clear guidance for choosing the splits. The
randomness also causes trouble with interpretation, since with a change in the split sample
there can be a change in the selection and hence the target of estimation. This effect of
randomness is different from that of the randomness in bootstrap or subsampling, where
the randomness disappears with the number of replications diverging. The quantity being
estimated using test data changes with every split sample.

3.1.3. Application to the Boston housing example. We apply sample splitting, and other
VIDE approaches described below, to the Boston housing data. The dataset was randomly
split in half, with one subsample used for training and the other to be used for testing.
This particular split only chooses 10 covariates instead of the 11 selected based on the
full data. Table | contains incorrect p-values resulting from stepwise regression applied to
the training set, and p-values correctly calculated from the test set after model selection
using the training set. Most of the covariates in Table | are unitless, since some covariates

p Values
Variable | Uncorrected | Adjusted using sample splitting
nox 0.0%2687 0.0%9625
Istat 0.0%71311 0.0'32769
ptrati 0.01°2417 0.0%2440
dis 0.0%3477 0.0%1278
crim 0.071406 0.0°1738
rm 0.0%7633 0.0%4650
chas 0.0%4201 0.1622
black 0.01313 0.023910
rad 0.0%1958 0.033391
tax 0.0%1340 0.03522

Table 1: Uncorrected and Corrected p Values for Boston Data, Half Sample

represent a raw proportion (Istat, age), a dimensionless ratio (tax, ptratio), an indicator
variable (chas) or a dimensionless index (rad, black). Covariates with units are nox, in
parts per million, dis, presumably in miles, crim, in numbers of crimes per person, and rm,
in rooms. Units associated with these covariates below, then, are dollars times the inverse
of the covariate units, when present.

All covariates selected are significant at level 0.05. The difference in inference implied
in the two columns of Table | points to a drawback in model splitting, in that the model
selected by the training sample may not match that based on the full data. One should
not compare the p-values from sample splitting to those in the model selected from the
full data. The p-values from training data are in general much smaller than those in the
testing data, indicating spurious significance; the test data must be used for inference on
the selected model.
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3.2. Simultaneous inference approach to VIDE

The simultaneous inference approach, or the uniform inference approach, is proposed by
Berk et al. (2013) and extended by Bachoc et al. (2020). The basic idea is to express valid
post-selection inference as a simultaneous inference problem. Suppose {6, : ¢ € Q} are real-
valued parameters (or functionals) indexed by the elements of Q. Based on the data, the
analyst selects ¢ € Q and uses G’Aq as an estimator of 6. To form a confidence region for 6y,
the simultaneous inference approach constructs the set of confidence regions {(/Z‘\Iq :qe Q}

such that
lim nf P <ﬂg {9q E CIq}> >1-a, 8.
qe

which implies for any g € Q that
lim inf P (9@ = 615) >1-a, 9.

n— 00

because for any g€ Q,
P(@geé\lq)éﬂb(ﬂ{eqeé\lq}>. 10.
qeQ
This bound can be conservative because the coverage guarantee is given for all models but

is needed only for one selected model. Setting this aside for the moment, simultaneous
inference has several interesting features.

e Simultaneity implies valid confidence guarantees for arbitrary selection procedures g, i.e.,
it does not restrict the practitioner except for the requirement q € Q.

e Simultaneity implies infinite revisions of the selection. For example, one can perform an
initial selection, perform inference, and if this is not as expected, one can perform another
selection procedure on the data and proceed without any further correction.

e Simultaneity also guarantees validity if multiple models are reported. This is a common
occurrence in social sciences where the same question is investigated with several models
and a significant outcome in all of them is seen as strengthening the conclusion.

Getting back to the conservativeness of the simultaneous approach, one can always construct
a selection procedure q € Q such that 10. is an equality; see Theorem 3.1 of Kuchibhotla
et al. (2020). This implies that if valid inference is required for an arbitrary selection
procedure, then one must perform simultaneous inference.

We now consider simultaneous inference. A generic method for obtaining simultaneous
confidence sets is based on the assumption of uniform linear representation of the estimators
around the target. This means that for the estimators {GAq : ¢ € Q} based on observations
Zi,...,Zny, there exist functions {¢4(-) : ¢ € Q} such that

max

12 (6o 150 ) 2o, (L1
7€ O ‘IJn,q (9(1 9‘1 n Z;Wz (Zl)> OP (\/ﬁ) ) 11

where 37" E[1q(Z:)] = 0 and ¥, = n~ ' Y1 Var[t)y(Z;)] for all ¢ € Q. We call as-

sumption 11. the Uniform Asymptotic Linear Representation. Most widely-used
estimators satisfy 11. when Q is a singleton (Kuchibhotla 2018) and the functions q(-)
play the role of influence functions for 6, for each ¢ € Q. Assumption 11. implies that the

estimators §q are approximately averages of n random variables, with the approximation
errors disappearing uniformly over g € Q.
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There is a rich literature on uniform asymptotic linear representations and they have
been used in optimal M-estimation problems. See condition (2.3) of Theorem 2.1 in Arcones
(2005) and Sections 10.2, 10.3, and equation (10.25) of Dodge and Jurevckova (2000) for
examples where uniform asymptotic linear representations are obtained for a large class of
M-estimators indexed by a subset of R, an uncountably infinite index set. Their main goal is
to choose a tuning parameter that asymptotically leads to an estimator with the “smallest”
variance and to account for this randomness in proving that the resulting estimator has an
asymptotic normal distribution with the “smallest” variance.

Assumption 11 can be verified for a selection universe Q for a large class of M-estimation
problems, with mild conditions on the “complexity” Q; see Kuchibhotla et al. (2021)
and Kuchibhotla (2018, Sections 7.2, 7.3). Although these works deal specifically with
covariate selection, their results can be used with variable transformations or a combina-
tion of covariate selection and variable transformations.

For each g € Q, assumption 11. under (weak) independence of Zi,...,Z, and integra-
bility conditions such as the Lindeberg-Feller condition imply that n'/>¥, %28, — 0,) >
N(0,1), and if Q is finite with cardinality bounded by a constant independent of the sample
size n, then the vector

(nl/qu;}q/z(éq —0,): qe Q) 4 (G qeQ), 12.

for a Gaussian random vector (G4 : ¢ € Q) satisfying E[G4] = 0 and Var(G4) = 1 for all
g € Q. See, for example, Lemma 2.2 of Bachoc et al. (2020). Hence

max n1/2\11;,1q/2 (éq —04)

qeQ

< max |Gql. 13.
q€Q
Therefore, for a constant K = 0 such that P(maxeeq |Gq| < Ko) =1 — «,

lim P (max ’nl/Q\I/;}q/Q(éq - Oq)‘ < K'a> =1-a. 14.

n—0o0 qeQ

Equivalently, é\lq = [éq — Kan/¥nq/n, gq + Kar/Wn,q/n],q € Q, forms a simultaneous con-
fidence region, i.e., it satisfies 11.. Usually, ¥, 4 is unknown and has to be replaced by an
estimate \f/n,q which may be conservative (i.e., asymptotically larger than ¥, ). One only
requires 13. and not the joint distributional convergence 12. for the simultaneous coverage
guarantee 14.. This is important because the convergence result 13. can hold even if the
cardinality of Q is growing with the sample size or infinite; see Paulauskas and Rackauskas
(1989), Norvaisa and Paulauskas (1991), Chernozhukov et al. (2019, 2014), Kuchibhotla
et al. (2021), and Kuchibhotla and Rinaldo (2020). A practical way to estimate the con-
stant K, and the variances V¥, , is via a bootstrap, pseudocode for which is given in
Algorithm 1, whose validity for a selection universe Q of fixed cardinality follows from the
results of Bachoc et al. (2020). The validity of the bootstrap when Q grows with sample size
follows from Chernozhukov et al. (2014), Kuchibhotla et al. (2021, Section 4.1) and Belloni
et al. (2018). The inference procedure in Algorithm 1 depends on the max-t statistic

max |n'/2 0,228, — 6,)] . 15.
q€Q ’
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Algorithm 1: Bootstrap Procedure for Simultaneous Inference

Input: Data Zi,...,Z,, coverage probability 1 — «, and the universe of selection
Q.
Output: Simultaneous confidence intervals (/J\Iq, q € Q, satisfying
1 Fix B> 1. For b=1,...,B, generate a bootstrap sample Zf’b, ., ZFY from
ZiyeeoyLn.
2 Compute the bootstrap estimators éjb based on Z{"b, L Z¥forb=1,...,B and
the bootstrap estimate of ¥, 4 as U, 4 1= (B — 1) ZbB:l[\/ﬁ(ét’;b —0,)]>.
3 Compute the (1 — a) quantile K, of T*" := maxgeo [n/2W, 4> (5;“’ —0,)|, for
b=1,...,B.
4 Return the confidence intervals

. R gz gL
Cly = |8y~ Ra72 B+ Ko | ge @ 16.

One can compare the confidence intervals 16. to the unadjusted confidence intervals
S PR L PR
CIq = |:9q _ZQ/ZW7 eq +ZQ/ZW ) 17.

where z4/; is the (1 — a/2)-th quantile of the N(0,1) distribution. The simultaneous con-
fidence intervals 16. inflate the unadjusted confidence intervals 17. by Ka JZajz = 1. In
general, there is no simple expression for the ratio f(a/za/z, which depends on the cor-
relations of (G4 : ¢ € Q). In a simple setting, Figure 2 shows the coverage and width
comparison of the unadjusted confidence interval 17. and the simultaneous confidence in-
terval 16. in the simulation setting: for d = 1,...,100, we generate 500 observations from
(X:,Yi) ~ Nagy1(0, I441), the standard Gaussian distribution in R***. We select one covari-
ate 3 € {1,...,d} such that the absolute correlation between Y and X is maximized; this is
same as the first step of forward stepwise selection. For this selection, Q = {1,...,d}. We
compute confidence intervals based on the slope estimator in the linear regression of Y on
X;. Figure 2 shows that an increase in the number of covariates d leads to a deterioration in
the coverage of the unadjusted interval and hence requires more adjustment, as evidenced
by the growth of the ratio of widths.

The bootstrap procedure used in Algorithm | is the classical bootstrap of Efron (1979)
which can be replaced by the m-out-of-n bootstrap or wild/multiplier bootstrap (Mam-
men 1992). The validity guarantee for a growing selection universe Q follows from the
results of Chernozhukov et al. (2013, 2014, 2017) and Belloni et al. (2018); these works
contain validity results for both the classical bootstrap and multiplier bootstrap. If the
random variables Z1,...,Z, are dependent, then the classical bootstrap cannot capture
the dependence and for asymptotic validity one must use a version of block bootstrap; see,
for example, Zhang and Cheng (2014), and Zhang and Cheng (2018) for a description of
the bootstrap and validity results under dependence. In general, subsampling procedures
of Politis and Romano (1994) and Politis et al. (1999) provide asymptotic validity. When Q
has infinite cardinality (e.g., Box-Cox variable transformation for the response), it suffices
to take an increasingly dense grid of Q@ while computing T*° in step 3 of Algorithm 1. In
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Figure 2: Comparison of unadjusted and simultaneous inference when selecting one covari-
ate out of d. The comparison is based on 1000 replications for each dimension d. The right
panel shows the ratio of the width of simultaneous confidence interval 16. to that of the
unadjusted confidence interval 17., i.e., I?a/za/z.

step 2 of Algorithm 1, we use bootstrap replication to estimate the asymptotic variance;
this can be skipped if an estimate is otherwise available.

Max-t (in 15.) was one of the first aggregate statistics used for simultaneous inference.
Tukey (1949, 1953) used such a statistic for all pairwise differences in ANOVA; in this case,
Q is finite. Scheffé (1953) performed simultaneous inference for all contrasts in the ANOVA
model; in this case, Q is (uncountably) infinite. Both assume a correct parametric model
and approximate Gaussianity of the errors. One can use the bootstrap in Algorithm 1 to
avoid such restrictions. Both approaches are specific to inference on contrasts of model
parameters, and are not directly applicable to inference after model selection.

Any aggregate statistic such as the ¢2 or £, norms could be used instead of the maximum
over ¢ € Q; see Giessing and Fan (2020). Moreover, even with the maximum, there are
different possibilities. For example, one can take maxgeo fo[|n'/?¥,Y%(8, — 6,)]], for some
monotone functions f, : Ry — Ry; see Kuchibhotla (2020, Chapter 5). Such transformed
max-t statistics can be motivated from the idea of balanced confidence intervals (Beran
1988) and using them can lead to significant shortening of the intervals.

3.2.1. Advantages. The simultaneous inference approach has several advantages compared
to sample splitting, such as infinite revisions of selection and the ease of reporting inferences
from multiple models. Furthermore, it applies to dependent data via subsampling or block
bootstrap methods. Because the simultaneous approach allows for selection and inference
based on the same data, it can lead to better selection than that from sample splitting.
This leads to a trade-off between, respectively, selection and inference properties, when
comparing sample splitting and simultaneous approaches; see Rinaldo et al. (2019, Section
3). Finally, simultaneity allows valid inference even when ad hoc selection is done via
graphical diagnostics on the full data.
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3.2.2. Disadvantages. The simultaneous inference approach requires the specification of Q
before exploring the data, i.e., @ cannot depend on the data. This contrasts with sample
splitting, which places no restrictions on Q provided the selection depends only on the
first split. This restriction of simultaneous inference can prohibit its application when data
analysis involves sequential modeling, wherein later steps depend on earlier ones and hence
Q can expand without bound. If the selection method ¢ lies in a much smaller subset of Q
with high probability, then the simultaneous approach can lead to conservative confidence
intervals, thereby reducing the number of significant results. Finally, simultaneous inference
using Algorithm | requires computing the estimators éq for all ¢ € Q. In the context of linear
regression with covariate selection, there exists a computationally efficient simultaneous
inference procedure; see Kuchibhotla et al. (2020) for details.

3.2.3. Application to the Boston data set. As noted before, the methods of Tukey (1949,
1953) and Scheffé (1953) are appropriate for inference on contrasts. In the Boston housing
data, the variable rad is a categorical variable taking 9 different values. A priori knowledge
of the impact of rad is minimal; because convenience values of closeness to highways is
balanced against nuisances associated with highway proximity, one would not expect the
effect to be monotonic, let alone linear. In order to explore this effect, one might simulta-
neously bound all mean valuation differences for houses with differing accessibility to radial
highways. For simplicity, all values of rad above 5 are set to 5. There are 20, 24, 38, 110,
and 314 towns associated with values of this modified rad of 1 through 5, respectively.

Figure 3 shows the difference in sample means for each pair of values of rad. Simulta-
neous lower and upper confidence limits are also reported. Such intervals allow one to look
at all differences and pick the largest or smallest and make a valid statistical claim. For
example, 5-3 yields the most negative difference in sample means, and because the corre-
sponding confidence interval does not contain zero, we can (at level 0.05) conclude that the
median house price is different for census tracts with rad 5 and 3, even after taking selection
into account. These contrasts can also be tested using the method of Scheffé (1953) (also
displayed in Figure 3), but because this provides simultaneous inference over all contrasts
(not just pairwise differences) it tends to be less powerful for pairwise differences than the
method of Tukey (1949).

As mentioned before, Scheffé’s test is based on Gaussianity and homoscedasticity as-
sumptions, which might be invalid. Under these assumptions Scheffé’s test is less powerful
than the output of Algorithm | when covariate selection is performed, because Sheffé’s
method provides simultaneous inference on more contrasts than needed; see Berk et al.
(2013, Section 4.8) for a detailed discussion. Algorithm | may be used for covariate selec-
tion under a well-specified linear model. Table 2 shows the I?a values to be used in

Confidence Level | PoSI | Bonferroni | Scheffé
95% 3.591 4.904 4.729
99% 4.075 5.211 5.262

Table 2: Values of I?a for Various Adjustments for Simultaneous Inference
This algorithm requires only the covariate matrix, because of the Gaussian linear model
assumption. The PoSI constant shown above under the column PoSI is the smallest. Note

that the Scheffé constant is also shown in the final column. Without specifying other ar-
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Figure 3: Tukey and Scheffé 95% confidence intervals for median housing value difference

by redefined rad.

guments, the output of this algorithm provides adjustments for the universe of selection
Q={(,M): je M,Mc {1,...,p}}. Other arguments can be used to reduce the universe;

Groups Compared

reducing the universe reduces the computational complexity.

To go beyond the linear model assumptions and allow for potentially misspecification,
we can use the bootstrap idea in Algorithm 1, which gives a value Ko.95 = 4.624 corre-
sponding to 95% confidence. This approach may also be applied to the regression model

with covariates crim and chas to give results in Table 3.

Variable | Lower | Upper
Intercept | 21.619 | 25.609
crim -0.717 | -0.095
chas -3.864 | 15.020

Table 3: Confidence Intervals using the method of Berk et al. (2013).

Case studies involving covariate selection and also transformation selection can be found
in Cai (2020). Finally, max-t style corrections in other VIDE problems including optimal
cut-off detection and transformations are discussed in Liquet and Commenges (2001), Liquet
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and Riou (2013, 2019).

3.3. Conditional selective inference

The setting here is the same as in Section . Instead of considering the simultaneous
statement as in 8., selective inference constructs Cl; such that for all ¢ € Q,

limianP’(@qe(/J\Ig\&:@)lfa. 18.
n—oo

Kuffner and Young (2018) explain that conditioning on the selection event can be justified
through the Fisherian proposition of relevance. Conventionally, this is achieved by following
the conditionality principle, that relevance of the inference to the actual data under study
requires the hypothetical repeated sampling to be conditioned on certain features of the
observed data. In this case, relevance is achieved by conditioning on the subset of the
sample space yielding the particular selection outcome. The construction of C/l\L; proceeds
by approximating the conditional distribution of \/ﬁ(éq —04) given ¢ = q for any g € Q and
computing/estimating the conditional quantile. For simplicity, we restrict our discussion to
inference for a univariate target 6,. The conditional selective inference framework can be
understood using the following assumptions. Fix a ¢ € Q.

(A1) There exists a random vector D, , € R such that {§ = q} = {Dn, < 0}, with the
symbol < between two vectors representing coordinate-wise inequality. The integer
dp represents the dimension of D,, 4 and the subscript is used to distinguish this from
d, the dimension of covariates in our regression examples.

(A2) The selection event occurs with asymptotically non-zero probability, that is,

liminf P(D, 4 < 0) > 0. 19.

n—0o0

(A3) There exist a vector i, q € R%? and a covariance matrix €, such that

V(g — 0q) A Go.q ~ N(0,9,).
Dnq = ping Gp.q
(A4) There exists a consistent estimator Qq for Qg, i.e.,
~ o2 ﬁeD P w? QoD
Qe=1~7 A - Q4 = 1 . 20.
! [QDQ Qpp * | Qe Qpp

These assumptions are modeled after the selective inference framework of Markovic et al.
(2017) and McCloskey (2020). All the assumptions relate only to ¢ € Q individually.
Assumption . requires that the selection of a “model” ¢ can be written in terms of
a statistic Dy 4. The representation in terms of the negative orthant might seem very
restrictive, but any inequality of the form A4D;, , < @n,q can be written as AgD;, ; —@n,q <
0, so . applies to any “polyhedral” selection event. Condition 19. is equivalent to
insisting that the event {§ = ¢} occurs with a non-zero probability asymptotically. This
has been relaxed in some works, but a condition on how fast the selection probability can

converge to zero (Tian and Taylor 2017) is required to ensure that the denominator in the
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conditional probability 18. converges to its asymptotic counterpart; see 22. for an example.
The distributional assumption (A3). implicitly requires that the dimension of (§q, Dy ) is
fixed as the sample size n diverges to infinity. Assumption (A4). can be easily satisfied by
bootstrapping or subsampling the vector (\/ﬁ(éq —04),Dn.q — pin,q)-

Because fin,q in (A3). may depend on the sample size n, we need a “uniform” conver-
gence result in addition to (A3).. Assumption (A3). implies such a uniform convergence
result. If C is the set of all convex sets in R*T9P | then Theorem 4.2 of Rao (1962) proves
that (A3). implies

. ([ﬁ@ —6,)

Dyq — tin,q

Goq
eC) ]P’( a

Here the set C' must be a continuity set for [G4 , G}, ,]", as would be true if the covariance

sup
CeC

€C>—>0, n — o0. 21.

D,q

matrix €2, were positive definite.
Before describing the selective confidence interval, let us provide two simple selection
methods to which the framework applies.

3.3.1. Inference on Winners. The following example is discussed in Sampson and Sill
(2005), Sill and Sampson (2009), and Andrews et al. (2019). Suppose Xi,...,X, are
independent and identically distributed random vectors in R? with mean u. Consider the
selection of a coordinate among j = 1,...,d with the largest mean. In this case, the universe
Qis {1,...,d} and the event § = g can be written as

(G=q) = {ej)’(n <elXn,  j= 1,...,d} = {4,X, <0},

where X,, = n 'Y | X; and A, € R™D*? is a matrix with rows {e] —e] : j # q}.
Hence, assumption (A1). is satisfied with D,, ;, = v/nA,X,. Note that P(D,,, < 0) =
Plvn(AgXn — Aqu) < —/nAqu]. Define & = Var(y/nX,). If A;SA] is non-singular, then
by the Berry—Esseen bound for all rectangles in Chernozhukov et al. (2020), we get that

QX,q(d)
\/ﬁ b

for a constant €x q(d) depending on the distribution of X, ¢, and also the dimension d.
Hence, inequality 19. holds if P[N (0, A;XA] ) < —\/nAgpu] stays away from zero as n — o0.
This cannot hold if —Agu < 0 and |Aqufz = O(1) as n — oo. Assumption (A3). is
readily satisfied using the central limit theorem. Here ¥4, is the ¢-th diagonal element of

P(Dn,g € Snyq) — P(N(0, AgXA,) < —/nAgu)| < 22.

3. Assumption (A4). also holds by replacing ¥ in 4 by the sample covariance matrix of
X1, Xn.

3.3.2. Lasso selection. This example was discussed in Lee et al. (2016) and Tibshirani et al.
(2018), among others. The lasso selection procedure of Tibshirani (1996) selects a subset
of covariates via the optimization problem:

Alasso e 3 1 S T 2
B ;= argmin El;(Yz = Xi B)” + MBI,

BERP

based on regression data (X;,Y;) € RP x R, 4 = 1,...,n. The lasso estimator ﬁlas“ has
some coefficients that are exactly zero, so the covariates selected are M = {j : §; # 0}. For
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a data-independent A\, we consider the selection as selecting covariates and also the signs
of the lasso coefficients, which are included for easier expression for the selection event.
Thus ¢ = (1\71, 3), where § is the vector of signs of BL‘"‘S“ and ég is the ordinary least squares
linear regression estimator BM defined in 2.. The analysis of Lee et al. (2016, Theorem
4.3), Markovic et al. (2017, Section 3), and McCloskey (2020, Section 5) shows that the
event {§ = ¢} = {M = M, § = s} can be written as {A¢Dy, 4 < Gn,q} = {AgDy g — Gn,q < 0},
where

—diag(sm) 0 , (X Xm) TN (XY Y)
A 3 D A
; 0 I | n,q n*1/2XIM(Ip—XM(X&XM)ilx&)Y 7
0 — Iy
and

—nY2diag(sy) (X X)) Lsum
amq = An71/2(1p_|M| — XIMXM(XI\F/IXM)ilsM)
An71/2(1p_|M| + XjMXM (X;\r/IXM)ilsM)

Hence, (A1). holds with Dy g = AgD;, , — Gn,q. It is easy to find an,q such that @n,q —
an,q converges in probability to zero (McCloskey 2020, Section 5). Assumptions (A3).
and (A4). follow readily from moment assumptions and bootstrap/subsampling results.
Assumption (A2) can be verified using the distributional convergence result. Once again,
this assumption may fail.

Lee et al. (2016) consider the problem under a homoscedastic Gaussian model for the
response vector Y and fixed covariates. The analyses in Markovic et al. (2017, Section 3)
and McCloskey (2020) allow random covariates and do not require Gaussianity of Y.

Several other covariate selection strategies can be covered under assumptions (A1).—
(A4).; see Markovic et al. (2017) and Tibshirani et al. (2018, Lemma 3). These works
cover methods such as the cross-validated lasso, forward stepwise regression, least angle
regression (LAR), Akaike’s information criterion, and the randomized lasso.

3.3.3. Conditional selective inference methodology. Under assumptions (A1).—(A4)., a
confidence interval satisfying the asymptotic conditional coverage condition 18. can be ob-
tained following Algorithm 2. Under assumptions (A1).—(A4)., the confidence interval
returned by Algorithm 2. has asymptotic coverage 1 — a; see Tian and Taylor (2017),
Markovic et al. (2017). The proof is based on an asymptotic version of a “polyhedral
lemma” (Lee et al. 2016). Proposition 1 of McCloskey (2020) (with v = 0) provides an
alternative coverage guarantee without requiring assumption (A2)..

Variations of the conditional selective inference method appear in the literature. The
vanilla version described in Examples 3.3.1 and 3.3.2 that considers selection on the whole
data without randomization can lead to much wider confidence intervals than the sample
splitting and simultaneous approaches. Kivaranovic and Leeb (2018) proved that the vanilla
version may yield confidence intervals with infinite width, prompting several modifications
that either consider selection based on a part of the data or by explicitly adding random-
ization to D, 4 in selection. This is called data carving (Fithian et al. 2014, Tian and
Taylor 2018) and is related to adaptive data analysis in machine learning and computer
science. Data carving can be regarded as a combination of sample splitting and vanilla
selective inference. Model selection in data carving differs from that in the vanilla version.
Kivaranovic and Leeb (2020) prove that, in contrast to the vanilla version, randomized se-
lective inference yields confidence intervals with bounded expected length. Andrews et al.
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Algorithm 2: Conditional Selective Inference under Polyhedral Selection

Input: Estimator éq, consistent estimator Qq, coverage probability 1 — a.

—~cond
Output: Conditional confidence intervals CI,  satisfying
1 Define I'y = Qpe /&2 and Np,q = Dyg — v/nl'g0,.

2 Define
- —Nn,q,j . —N, o
V= max #, V+ = min #
iTq <0 Tg i:Tq ;>0 g

Here N, q,; and f‘q,j refer to the j-th coordinate of N, 4 and f‘q.
3 Set F(; 1,0, L,U) to be the cumulative distribution function of a normal
distribution with mean p, variance o conditional on belonging to [£,U].

4 Define qua and U, ., respectively, as solutions (in ) to the equations
F(Vnbin/nby,05,V7 V") = 5, (Vb vy, &7,V V) =1- 2.

—~.cond ~ ~
return the confidence interval CI,  := [Lqa,Ugal-

(2019) and McCloskey (2020) combine simultaneous and selective inference; their approach
conditions on the event that 6, lies in a simultaneous confidence interval as well as on the
event {g = ¢q}. This additional conditioning implies that the combined confidence interval
will be smaller than the simultaneous confidence interval; see McCloskey (2020) for more
details. Finally, there is an approach to conditional selective inference from the Bayesian
perspective (Panigrahi et al. 2016). Also, there exist selective inference approaches that
can account for convex selection methods (Tian et al. 2016).

3.3.4. Advantages. Conditional selective inference allows for selection based on the whole
data, similarly to simultaneous inference and in contrast to sample splitting. It is also
computationally more similar to sample splitting than to simultaneous inference. With a
good choice of the selective inference method, the resulting selective confidence intervals can
vary between the naive unadjusted confidence intervals and the sample splitting confidence
intervals; see Figure 4 of Fithian et al. (2014). If the selection event {¢ = ¢} holds with
probability close to one (asymptotically), then there is no need to adjust the naive confidence
interval 17.. Unlike both sample splitting and simultaneous inference, the selective inference
approach accounts for the specific selection methodology employed by the practitioner.

3.3.5. Disadvantages. The selective inference approach relies heavily on the specific selec-
tion methodology used prior to inference. This limits its applicability in practice, and ex-
plains why the existence of a general theory of conditional selective inference, which applies
beyond the specialized settings where it has been studied, is open. This can be understood
from assumption .. Although . holds for several covariate selection methods, it
does not accommodate variable transformation and other exploration methods involving
graphical tools. Applying the conditional approach to a new selection method requires new
theoretical analysis to ensure validity of assumptions; Algorithm | and sample splitting can
be employed for any selection method and selection universe Q. Also, as mentioned before,
the vanilla version of the method can yield much wider confidence intervals than sample
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splitting and simultaneous inference.

3.3.6. Selective Inference Applied to the Boston Housing Data. When the data follow a
Gaussian distribution, then the resulting procedure provides tests with the correct type I
error in finite samples; otherwise the guarantees are asymptotic. We begin with an appli-
cation to stepwise regression. This procedure sequentially adds variables, with the next
variable in each case chosen to maximize the increase in the regression sum of squares. This
is equivalent to using AIC to select the next variable, but in this case stopping only after
examining a certain number of larger models to avoid premature stopping. The p-values and
confidence intervals adjusted for stepwise selection are given in Table 4. The forward step-

Effect | Adjusted p value | Lower Bound | Upper Bound
Istat 0.33550 -0.05246 0.053042
ptratio 0.24041 -0.04493 0.042796
crim 0.34545 -0.03413 0.025595
rm 0.32349 -0.24014 0.380779
dis 0.65175 -0.05189 0.301466
nox 0.09967 -4.78435 0.460184
black 0.62735 -Inf 0.007394
rad 0.44520 -0.03969 0.017964
tax 0.04415 -0.00113 -0.000023
chas 0.00387 0.16362 Inf
zZn 0.25555 -0.00164 0.002741
indus 0.29829 -0.00957 0.020518
age 0.54697 -0.00418 0.002789

Table 4: Selective Inference applied to the Boston Housing Data. Units are given in the
text following Table

wise implementation in this package selected all covariates instead of 10 variables obtained
via the step function.

Table 4 shows confidence intervals for linear parameters that are wider than the naive
intervals, to correctly allow for the effect of selection.

Selection bias associated with overfitting, as is a well-known problem when selecting
variables using AIC, can adversely affect post-selection uncertainty assessments, yielding
post-selection predictive and confidence intervals which tend to undercover if selection is
not accounted for; see Hong et al. (2018).

One might also consider application of the Lasso. First, apply cross-validation to mini-
mize squared error. Tibshirani et al. (2019) recommend applying the Lasso to centered and
scaled covariates. Results are in Table

4. Honesty and uniform validity

In all the methods discussed in Section 3, we have discussed pointwise (asymptotic) validity,
i.e., validity of coverage is required and provided for a given probability distribution of the
data that is fixed as the sample size changes. In the context of data exploration, such
pointwise asymptotics are known to be misleading, as discussed by Leeb and Potscher
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Order Entered | Variable | Adjusted p value | Lower Bound | Upper Bound
1 crim 2.49e-11 -0.012091 -0.006957
2 zn 2.72e-01 -0.000901 0.001283
3 age 1.40e-03 0.000578 0.002370
4 rad 5.28e-05 0.009575 0.020953
5 tax 3.19e-05 -0.000995 -0.000443
6 ptratio 0.00e+00 -0.050948 -0.031245
7 black 2.84e-04 0.000181 0.000605
8 Istat 1.35e-60 -0.040679 -0.034145

Table 5: Lasso applied to the Boston Housing Data

(2005). The requirement of honesty or uniform validity for conditional and unconditional
post-selection inference (respectively) can be described as

liminf inf P (eae 61@) >1-a and liminf inf ]P’(H@E Cl; | §= q) >1-a. 23.
n— pep®n n—w pepn

Here P®" is a subset of all probability distributions for a sample of n observations, often
satisfying certain moment conditions and P € P®" represents the true distribution of the
data. For all the methods described in Section 3, uniform validity holds under regularity
conditions on P®". For sample splitting and the simultaneous approach, uniform validity
(first part of 23.) follows from Berry—Esseen bounds, e.g. 22. (Belloni et al. 2018, Rinaldo
et al. 2019, Bachoc et al. 2020, Kuchibhotla et al. 2021). For the selective inference approach,
uniform validity (second part of 23.) was proved in Tibshirani et al. (2018), Andrews et al.
(2019), and McCloskey (2020).

The impossibility results of Leeb and Pétscher (2006, 2008) seem to be at odds with
uniform validity of the simultaneous and selective approaches. Before we explain the dis-
crepancy, we describe these impossibility results. Let (X,Y) € R? x R satisfy the lin-
ear model Y = X "8y + € for £ ~ N(0,1), and let M be a subse‘i of covariates cho-
sen using the data. We have the least squares estimator Bﬁ e RM from 2.. Define
Bﬁ € R? as the augmentation of Bﬁ with zeroes for components corresponding to non-
selected covariates. In Leeb and Potscher (2006, 2008), the authors consider estimating
G(t | M) = P(vnA(Bg — fo) <t | M = M) and G(t) = P(vnA(Bg — o) < t), respectively,
for a given non-random A € R**? and t € R®. Their results imply that no estimator of
G(t | 1\7[) and G(t) can be consistent uniformly over all By satisfying |80 — 8*[2 < Cn™Y/?
(for any fixed 8* € R%); note that the data generating distributions in this case are indexed
by Bo. As shown in Leeb and Potscher (2006, Section 2.2), it is possible to construct esti-
mators that are consistent for each By € R? (fixed as n — o), but the impossibility refers
to uniform consistency over all By (in a shrinking neighborhood). With this understand-
ing of the impossibility results, the discrepancy with uniform validity of simultaneous and
selective inference can be explained rather easily. The target we use for VIDE differs for
different selected models. For instance, in linear regression, our target is defined as fg;,
which is By in 1. evaluated at M = M. If My = {1,2} and My = {1,3}, then the first
coordinate of [31\7[1 can be different from that of /5’1\7[2. They are both coefficients of covariate
X1 but in two different models, as described in Berk et al. (2013). In contrast, the target
in Leeb and Pétscher (2006, 2008) is the coefficient vector By in a well-specified full model.
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This difference in targets is also described in Bachoc et al. (2019), where the VIDE target
0; is called a non-standard target. This difference is the main cause of impossibility results.
Furthermore, the results of Leeb and Pétscher (2006, 2008) only refer to the estimator Bﬁ
in the selected model. It is possible to define other estimators for the full model parameter
Bo that use a model selection procedure (such as lasso) while also providing uniformly valid
inference; see Belloni et al. (2015, 2016) and Chernozhukov et al. (2015).

These considerations of uniformity are important. Procedures that provide only approx-
imate pointwise error control potentially break down in contexts involving more complex
universes of models, and may fail to hold at more difficult parameter values for a fixed
model. More difficult here refers to parameter settings where model selection procedures
lead to high variability in selection; for example, in a linear regression model with true
parameter values around 1/4/n. See Leeb and Pétscher (2005) for a detailed discussion on
uniform validity in the context of model selection.

5. What are the implications for statistical practice?

Our current understanding of the scope of the problems caused by selection on subsequent
inferences is limited. It is easy to understand why using the data for both selection and
inference may invalidate subsequent inference methods which pretend that no selection took
place, and many papers contain simple simulation experiments to illustrate that naive in-
ference after selection can be misleading or incorrect; see, e.g., Freedman (1983), Freedman
(2009, Chapter 5), and Austin et al. (2006). However, there has been little effort to demon-
strate that failing to account for selection can have negative effects in high-stakes decisions.
As a community, statisticians need to provide more practical guidance about when it is truly
important to account for selection, and when it is likely to make little difference. With all
three approaches we presented, there are significant challenges to implementation even in
relatively simple linear regression problems with popular variable selection procedures. Re-
searchers in this area have a virtually endless horizon of open problems, as all existing data
exploration techniques could be studied again within the post-selection framework, from
the perspective of inference, prediction, classification, or other statistical decisions. The
mathematical frameworks of both simultaneous and conditional selective inference prohibit
their employment in practice, because practical data analysis often tends to be dynamic,
with future exploration methods dictated by past explorations of the same data. See, for
example, the analysis of the realtor data in Pardoe (2008), or Gelman et al. (2020). Neither
the selection universe nor the method of selection is decided before analyzing the data;
the data dictate both. Sample splitting is the only general practical solution allowing such
dynamic data analysis, but it requires splitting the data only once at the beginning, and
only applies to independent data; a general solution for time series or other dependent data
is yet to emerge.

If one wants to employ the simultaneous inference techniques discussed in Section
in data analysis, then decisions about either the universe or method of selection must be
made in advance. This is much like writing a protocol and sticking to it. Even if the
protocol is complicated, a selection universe can be created and the simultaneous inference
approach applies. This yields better model selection (because more data is used) than
sample splitting and also provides valid inference.
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