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Abstract

We consider a general online network design problem
where a sequence of N requests arrive over time, each of
which needs to use a subset of the available resources E.
The cost incurred by a resource e ∈ E is some function
fe of its total load `e. The objective is to minimize the
total cost

∑
e∈E fe(`e). We focus on cost functions that

exhibit (dis)economies of scale, which are of the form
fe(x) = σe + ξe · xαe if x > 0 (and zero if x = 0), where
the exponent αe ≥ 1.

Our main result is a deterministic online algorithm

with tight competitive ratio Θ(1 + maxe∈E (σe/ξe)
1/αe)

when αe is constant. This framework is applicable to
many network design problems, including multicom-
modity routing, Steiner tree/forest connectivity and set-
connectivity. Even in special cases such as multicom-
modity routing in undirected graphs with edge-costs,
this is the first online algorithm to handle non-uniform
resource cost and with a competitive ratio independent
of the network size and number of requests. Our online
competitive ratio also matches the previous-best offline
approximation ratio. Our approach is based on the on-
line primal-dual method for convex programs.

1 Introduction

Network design problems (involving selecting a sub-
graph with certain connectivity properties) are of signif-
icant practical and theoretical interest. A classic setting
in network design is as follows. There are several re-
quests that need to be routed through a network, where
each resource e has a non-decreasing cost-function fe
that determines the cost fe(`e) incurred at e as a func-
tion of its load `e. The objective is to minimize the
overall cost

∑
e fe(`e).

Traditional network design models involve concave
cost-functions. These are cost functions that exhibit
“economies of scale”, i.e., a larger load results in a
smaller cost-per-unit-load. This is the setting in buy-at-
bulk network design, that has been studied extensively
in approximation and online algorithms [8, 19, 16]. The
most basic problems in this setting are Steiner tree and
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forest [1, 27].
Recent applications in energy-efficient scheduling

and routing have motivated the study of cost-functions
with “diseconomies of scale” [5, 32]. Here, larger load
results in a larger cost-per-unit-load. These functions
capture the energy consumption of network resources
that are speed scalable and adjust their speed in propor-
tion to their load. The energy consumed at speed/load
x grows super-linearly as xα where the exponent α > 1.
For most technologies, exponent α lies between 1 and 3
[5, 36].

As discussed in [5], a more accurate model for
energy consumption involves a start-up cost in addition
to the super-linear xα term. This leads to the cost
function:

(1.1) fe(x) =

{
0 if x = 0
σe + ξe · xαe if x > 0

,

where the parameters σe, ξe ≥ 0 and αe ≥ 1 depend
on the particular device (resource). The first term
σe represents the cost incurred in simply keeping the
device powered-on but idle and the second term ξe ·xαe
represents the cost incurred due to speed-scaling. These
cost functions exhibit both economies and diseconomies
of scale. Indeed, they appear concave for small values
of the load x and convex for large values of the load.
So these functions are said to exhibit (dis)economies
of scale. A major challenge in designing algorithms
for such cost-functions is that one needs the balance
two opposing goals (1) aggregating demands in the
concave regime and (2) separating demands in the
convex regime. Prior work [6, 7, 31] has mainly focused
on the special case of uniform (or related) cost functions
where the αes and σe

ξe
s are uniform across all resources

e.
Recently, [22] studied a large class of generalized

network design problems under cost functions of the
form (1.1), which included routing requests, Steiner
tree/forest connectivity and set-connectivity in undi-
rected and directed graphs. The main result in [22] was
a unified approximation framework that provided an

O

(
1 + maxe

(
σe
ξe

)1/αe
)

approximation algorithm as-

suming only a “minimum cost oracle” that can satisfy
a single request at minimum cost.
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In this paper, we consider the same class of gener-
alized network design (GND) problems as [22], but in
the online setting. Here, requests arrive over time and
each request needs to be (irrevocably) assigned to some
resources immediately upon arrival. Our main result is
a deterministic online algorithm with competitive ratio

O

(
1 + maxe

(
σe
ξe

)1/αe
)

, which even matches the best

approximation ratio known for GND. We also show that
no deterministic online algorithm can do better (up to
a constant factor).

1.1 Problem Definition In the generalized network
design (GND) problem, we have a set E of resources
and N requests that use these resources. Each request
i ∈ [N ] is associated with:

• a collection Pi ⊆ 2E of “replies” where an algo-
rithm needs to choose some pi ∈ Pi in order to
satisfy request i. The reply collections may be spec-
ified implicitly.

• a weight vector wi ∈ RE≥1 where request i induces
a load of wi,e on each resource e that it uses. Note
that the weights on different resources may be un-
related. (The requirement that weights/demands
of requests are at least one is common to all prior
work.)

Each resource e ∈ E is associated with an individual
cost function fe : R→ R of the form (1.1). We will refer
to such functions as (D)oS functions. We emphasize
that the parameters σe, ξe and αe may be different
across resources. So we can handle networks with
heterogenous resources (for example, routers running on
different technologies).

A solution is just a choice of reply pi ∈ Pi for each
request i ∈ [N ]. Then, the load on each resource e ∈ E
is `e =

∑
i:e∈pi wi,e. The objective is to minimize the

total cost
∑
e∈E fe(`e).

In the online setting, the requests i ∈ [N ] arrive over
time, and the algorithm should choose a reply pi ∈ Pi
for each request i immediately upon arrival (which can-
not be changed later). As usual, we use competitive
analysis to measure the performance of an online al-
gorithm, which is relative to the offline optimum that
knows the entire request sequence upfront.

We use m := |E| to denote the number of resources.
For each resource e ∈ E, define qe := (σe/ξe)

1/αe . Note
that qe is the value of load x at which the two terms
σe and ξe · xαe in the (D)oS cost function fe(x) become
equal. Let q := maxe∈E qe. Also, let α := maxe∈E αe
denote the maximum exponent in the (D)oS functions.

Min-cost Oracle We will assume that the reply-
collections Pi are such that one can find an approxi-

mately min-cost reply efficiently. Formally, we assume
that there is a τ -approximation algorithm for the prob-
lem minp∈Pi

∑
e∈p de for any request i ∈ [N ] and any

scalars {de ≥ 0}e∈E . If computational complexity is
not a consideration (which is sometimes the case with
online algorithms) then this assumption is satisfied triv-
ially with τ = 1.

Example 1 (multicommodity routing). The re-
sources E are edges in some directed graph G = (V,E).
Each request i ∈ [N ] consists of a source si ∈ V , des-
tination ti ∈ V and demand di ≥ 1. For each i ∈ [N ],
the reply-collection Pi consists of all si − ti paths in G,
and the weights wi,e = di for all e ∈ E. The resulting
GND instance corresponds to selecting an si− ti routing
path carrying di units of flow (for each request i), so as
to minimize the total energy cost of the routing. The
min-cost oracle in this case corresponds to the shortest
path problem in directed graphs, which admits an exact
algorithm: so τ = 1.

Example 2 (set connectivity and set-strong-
connectivity). The resources E are edges in some
undirected (resp. directed) graph G = (V,E). Each
request i ∈ [N ] consists of a subset Ti ⊆ V of
nodes and demand di ≥ 1. The reply-collection Pi
consists of all edge-subsets that induce a connected
(resp. strongly connected) subgraph containing Ti. The
weights wi,e = di for all e ∈ E. The resulting GND in-
stance corresponds to selecting an overlay network for
each terminal-set Ti that can support di units of flow.
The min-cost oracle for the undirected case corresponds
to the Steiner tree problem: so we have τ = 1.39 [14].
In the directed case, the oracle is the strongly connected
Steiner subgraph problem, for which we have (i) τ = kε

for any constant ε > 0 in polynomial time [17] or (ii)

τ = O( log2 k
log log k ) in quasi-polynomial time [28, 26]. Here

k = maxi |Ti| is the maximum number of terminals in
any request.

1.2 Our Results and Techniques Our main result
is the following:

Theorem 1.1. There is a polynomial time O(qτ +
(eατ)α)-competitive deterministic online algorithm for
GND assuming a τ -approximation algorithm for the
min-cost oracle.

Above, e ≈ 2.718 is the base of the natural logarithm.
The running time of this algorithm is O(Nm+N ·Φ(m))
where Φ(m) is the time taken by the min-cost oracle.
Note that when τ = 1, we obtain a competitive ratio of
O(q + (eα)α).

To the best of our knowledge, previous online al-
gorithms for GND were restricted to the case of multi-
commodity routing in undirected graphs with uniform
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edge-cost functions [7]. Our result provides a unified
framework to address various types of requests (includ-
ing Steiner and set-connectivity) in both undirected and
directed graphs. Moreover, this is the first compet-
itive ratio (even in the previously-studied setting [7])
that does not grow with the network size or the num-
ber of requests. Finally, our result also applies to non-
uniform cost functions: in this setting, no online al-
gorithm was known even for single-commodity routing
with edge costs.

As noted earlier, our competitive ratio matches
the Oα(qτ + τα) approximation algorithm for GND
obtained in [22].1 Even when used in the offline
setting, our algorithm has several advantages. First,
the dependence on α in the approximation ratio is
better: we obtain a factor of (eα)α = eα(1+lnα) whereas

the previous algorithm had a 3α
2

factor [23]. Second,
our algorithm is deterministic whereas the previous
algorithm was randomized. Third, our running time is
better. Fourth, our algorithm itself is very simple and
(arguably) simpler to analyze.

To prove Theorem 1.1, we first show that any
(D)oS function fe(x) of the form (1.1) can be well-
approximated by a weighted sum of power functions of
form he(x) = ηe · x + ξe · xαe . This reduction loses a
factor of 2(σe/ξe)

1/αe in the objective. This allows us
to then focus on the GND problem under (non-uniform)
power cost functions, which is a convex objective.

For GND under power cost functions, if we were
only interested in an offline approximation algorithm,
we could use the approach in [32] that was based
on a convex relaxation and rounding to obtain an
Aα-approximation algorithm for GND (assuming τ =
1). Here, Aα ≈ ( α

ln(1+α) )α is the fractional Bell

number. This approach however does not work in the
online setting. Instead, we use a more direct approach
motivated by work on online load balancing with `p-
norms [9]. For each request i, our algorithm basically
selects the reply in Pi that results in the smallest
increase in the objective. (The actual algorithm involves
tracking a modified objective function.) We analyze
our algorithm using the online primal-dual method for
convex programs. The idea is to (1) write a convex
relaxation for GND and its dual, and (2) upper bound
the (integral) primal objective by some factor ρ times
the dual objective. By weak duality, we then obtain a
competitive ratio of ρ.

There have been a number of recent papers using
the online primal-dual approach for convex programs
(see §1.3 for more details). The work closest to ours

1The Oα notation treats α as constant and suppresses factors
that depend on α.

is [29], where an O(α)α-competitive algorithm was
obtained for the special case of GND with uniform
α power cost functions and multicommodity routing
requests. Our approach is more general as it can handle
a much wider class of requests and non-uniform αe
powers. From a technical perspective, while our primal
convex program is the natural extension of that in
[29] (for multicommodity routing), we use a different
(re)formulation of the dual program and also set dual
variables differently. Our dual formulation is easier to
reason about, and hence allows for a clean analysis even
in more general settings.

Implementing the above approach directly leads to
an O(q(eατ)α)-competitive algorithm for GND using a
τ -approximate min-cost oracle. To obtain the more
refined guarantee in Theorem 1.1, we improve both
steps above. In the reduction from (D)oS functions
fe(x) to power functions he(x), we show that the factor
qe loss only affects the linear term in he(x). Then, in
the online algorithm for GND under power functions, we
show that the greedy objective can be further modified
to ensure a stronger O(τ) competitive ratio for the linear
terms, while the non-linear terms incur an O((eατ)α)
competitive ratio.

We also provide a nearly matching lower bound for
online GND:

Theorem 1.2. Every deterministic online algorithm
for GND has competitive ratio Ω (q + (1.44α)α).

As usual with online lower bounds, this is information-
theoretic and independent of computational require-
ments. So this nearly matches the O(q + (eα)α) com-
petitive ratio from Theorem 1.1 when τ = 1. The lower
bound instance involves single-commodity routing re-
quests in directed graphs. The Ω(q) part of the lower
bound relies on a construction similar to the online di-
rected Steiner tree lower bound [24]. The Ω((1.44α)α)
part of the lower bound follows from the correspond-
ing result for online load balancing with αth power of
loads [15].

Finally, we can also extend our main result to a
larger class of functions called real exponent polynomials
(REP) that were studied in [22]. These have the form

(1.2) f̄e(x) =

{
0 if x = 0
σe +

∑q
j=1 ξe,j · xαe,j if x > 0

,

where the parameters σe, ξe,1, · · · ξe,q ≥ 0 and the
exponents αe,j ≥ 1.

Theorem 1.3. There is a polynomial time O(Qτ +
(eατ)α)-competitive deterministic online algorithm for
GND under REP cost functions assuming a τ -
approximation algorithm for the min-cost oracle. Here
Q = maxe∈E minj∈[q](σe/ξe,j)

1/αe,j .
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The idea here is to reduce any GND problem with REP
costs into another instance with (D)oS cost functions of
form (1.1) but with more resources.

1.3 Related Work Most of the prior work in net-
work design under (D)oS cost functions has focused on
multicommodity routing requests with uniform weights
(i.e., wi,e = di for all resources e and requests i). [5]
were the first to study this model and obtained an
O(q · logα−1D)-approximation algorithm where D =
maxNi=1 di is the maximum weight. When σe = 0 for
all resources e (in which case the objective is a weighted
sum of power functions), [32] obtained an improved Aα-
approximation algorithm. These results apply to undi-
rected as well as directed graphs.

Further results are known for multicommodity rout-
ing in undirected graphs in the special case of uniform
cost functions, where fe(x) = ce · f(x) for a com-
mon (D)oS function f(x). When costs are incurred

on edges, [6] obtained a poly-logarithmic O(logO(α)N)-
approximation algorithm, and [7] later improved the
approximation ratio to O(logαN). When costs are
incurred on nodes (which is harder than the edge-

version), [31] obtained an O(logO(α)N)-approximation
algorithm. All these results rely crucially on the unifor-
mity of the cost function. In particular, they use the
fact that it is best to aggregate q = (σ/ξ)1/α units of
demand, after which the aggregated demands can be
routed in a “well separated” manner. It is unclear if
these techniques can be used for non-uniform costs as
the “aggregate demand” quantity for different resources
is different (it is qe = (σe/ξe)

1/αe for each resource e).
Furthermore, these results relied on cut-sparsification
and small flow-cut gaps, which do not extend to di-
rected graphs. In fact, the directed Steiner forest prob-
lem (which is a special case of GND) is hard to approx-

imate better than Ω(2log1−εN ) for any constant ε > 0
[21]. We note that the parameter q ≈ N for GND in-
stances corresponding to Steiner forest: so we cannot
expect an approximation ratio much better than poly(q)
for GND. In fact, any o(

√
q)-approximation algorithm

for GND would improve on the best approximation ratio
known for directed Steiner forest [18, 25].

As mentioned earlier, [22] considered the much
wider class of GND problems, and obtained an O(q)-
approximation algorithm. As discussed in [22], their
result extends prior work involving (D)oS cost functions
in several ways: unrelated weights, non-uniform cost
functions, strongly polynomial runtime etc. Our result
inherits all these advantages even in the online setting.
The technique in [22] was based on the “smoothness”
toolbox from [35]. Our approach (discussed above)
is completely different, and leads to a much simpler

algorithm.
In the online setting, [7] obtained an Õ(log3α+1N)-

competitive randomized algorithm for multicommodity
routing in undirected graphs with uniform cost func-
tions on edges and uniform weights. This ratio is incom-
parable to the O(q + (eα)α) deterministic online ratio
that we obtain (even in more general settings). When
σe = 0 for all resources e and all αe are uniform, O(α)α-
competitive online algorithms were known for load bal-
ancing [9] and multicommodity routing [29]. Our algo-
rithm can be seen as a natural extension of these results
to the setting of GND. [9] used a potential-function anal-
ysis that appears hard to extend to non-uniform αes. As
discussed in §1.2, though our approach as well as [29]
are based on the online primal-dual method, there are
important differences as well.

The online primal-dual method (see the survey [13])
is a very general technique that has led to several strong
results in online algorithms. Typically, this approach
is applied with covering/packing linear-program relax-
ations, e.g. [3, 2, 12]. However, a number of recent
papers, e.g. [29, 4, 20, 10, 33, 30], have extended this
to the setting of covering programs with convex objec-
tives. Our result adds to this line of work. Although our
fractional relaxation is a “convex covering program” as
studied in [10], we cannot use the general-purpose algo-
rithm presented there because the number of variables
in our relaxation for GND is exponential: the compet-
itive ratio in [10] is logarithmic in the number of vari-
ables. We note however that our idea of setting dual
variables based on the gradient of the primal objective
(at the final solution) was partly motivated from [10].

1.4 Paper Outline We start with the reduction
from (D)oS cost functions to weighted power functions
in §2. In §3 we provide a fractional online algorithm
for the natural convex relaxation of GND under power
cost functions. Then, in §4 we extend this to an integral
online algorithm. §5 puts things together and finishes
the proofs of Theorems 1.1 and 1.3. Finally, §6 provides
the online lower bounds (Theorem 1.2).

2 Reducing (D)oS Functions to Weighted
Power Functions

We first make the simple but useful observation that any
cost-function fe of the form (1.1) can be approximated
by a convex power function, at the loss of a multiplica-
tive factor 2qe, where qe := (σe/ξe)

1/αe . To this end,
define for each e ∈ E, a new function

(2.3) he(x) := ξeq
αe−1
e · x+ ξe · xαe , for all x ≥ 0.

Lemma 2.1. For each e ∈ E and x ∈ {0} ∪ R≥1, we
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have

1

2
· he(x) ≤ fe(x) ≤ max{qe, 1} · ξeqαe−1

e · x+ ξe · xαe

≤ max{qe, 1} · he(x).

Proof. At x = 0 the inequalities trivially hold. So we
assume x ≥ 1 in the rest of the proof. For the first
inequality, we divide it into two cases. If x < qe, then

he(x) = ξeq
αe−1
e · x+ ξe · xαe ≤ ξeqαee + ξe · xαe

= σe + ξe · xαe = fe(x)

If x ≥ qe, then

he(x) = ξeq
αe−1
e · x+ ξe · xαe

≤ 2ξex
αe ≤ 2(ξex

αe + σe) = 2fe(x)

For the second inequality, we have

max{1, qe} · ξeqαe−1
e · x+ ξe · xαe ≥ ξeqαee · x+ ξe · xαe

= σex+ ξe · xαe ≥ σe + ξe · xαe = fe(x),

where the second inequality uses x ≥ 1.

Recall that q := maxe∈E qe. By Lemma 2.1, at the
loss of factor 2 max{q, 1}, it essentially suffices to solve
the GND problem under power cost functions, where
each resource e ∈ E has a cost function of the form
ge(x) = ce · xαe . To be precise, there is also a linear
term in the cost-function for each e: see §5 for details.
In the next two sections, we provide online algorithms
for GND under weighted power functions.

3 Fractional Online Algorithm

We consider the following convex program relaxation for
GND, denoted (P ).

min
∑
e∈E

ce ·

 N∑
i=1

wi,e
∑

p∈Pi:e∈p
xi,p

αe

s.t.
∑
p∈Pi

xi,p ≥ 1, ∀i ∈ [N ](3.4)

x ≥ 0.

Note that all constraints are of “covering type” and the
objective is convex. However, there are an exponential
number of variables as the replies Pi are implicitly
specified. We will solve this program approximately
using the online primal-dual method. We provide a
continuous time online algorithm, that is easier to
describe and analyze (Theorem 3.1). In [34], we explain
how to obtain a polynomial time implementation at a
small loss in the competitive ratio.

Let E1 = {e ∈ E : αe = 1}. The dual of convex
program (P ) is below, denoted (D).

max
N∑
i=1

yi −
∑

e∈E\E1

ceαe
βe
· zβee

s.t.
∑
e∈p

wi,eceαe · ze ≥ yi, ∀p ∈ Pi, ∀i ∈ [N ]

(3.5)

ze ≤ 1, ∀e ∈ E1(3.6)

y, z ≥ 0.

Above, for each e ∈ E\E1, value βe > 1 is the conjugate
of αe, i.e. 1

αe
+ 1

βe
= 1. Note that there are no terms in

the dual objective corresponding to e ∈ E1. We derive
this dual in the full version [34]. It turns out that strong
duality holds for this primal-dual pair. However, we will
only use weak duality, which is proved below.

Lemma 3.1. For any primal x ∈ (P ) and dual (y, z) ∈
(D) solutions,

∑
e∈E

ce ·

 N∑
i=1

wi,e
∑

p∈Pi:e∈p
xi,p

αe

≥
N∑
i=1

yi −
∑

e∈E\E1

ceαe
βe
· zβee .

Proof. For easier notation, let `e :=
∑
i

∑
p∈Pi:e∈p wi,e ·

xi,p be the fractional load on each e ∈ E. For each
e ∈ E1, let βe =∞: note that 1

βe
zβee = 0 as ze ≤ 1. We

will show that∑
i

yi ≤
∑
e∈E

αece ·
(

1

αe
· `αee +

1

βe
· zβee

)
,

which would prove the lemma. Indeed, we have:

∑
i

yi ≤
∑
i

∑
p∈Pi

xi,p

 · yi(3.7)

≤
∑
i

∑
p∈Pi

xi,p ·

(∑
e∈p

wi,eceαe · ze

)
(3.8)

=
∑
e

ceαe · ze

∑
i

∑
p∈Pi:e∈p

wi,e · xi,p

(3.9)

=
∑
e

ceαe · ze · `e(3.10)

≤
∑
e∈E1

ce · `e +
∑

e∈E\E1

ceαe · ze · `e(3.11)

≤
∑
e

ceαe

(
1

αe
· `αee +

1

βe
· zβee

)
.(3.12)
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Above, the inequality in (3.7) is by constraint (3.4) and
non-negativity, and the inequality in (3.8) is by con-
straint (3.5). The equality in (3.9) is by interchang-
ing summation. The inequality in (3.11) is by con-
straint (3.6) and the last inequality in (3.12) is by
Young’s inequality, which says A ·B ≤ 1

α · A
α + 1

β ·B
β

for any A,B ≥ 0 and α, β > 1 with 1
α + 1

β = 1. This
completes the proof.

Fractional online algorithm for (P ) Upon ar-
rival of request i, for each continuous time t ∈ [0, 1], do
the following:

1. Choose reply p∗ ∈ Pi using the min-cost oracle
under costs de = αece · `αe−1

e · wi,e for each e ∈ E,
where `e =

∑
i

∑
p∈Pi:e∈p wi,e · xi,p is the current

fractional load on e.

2. Raise primal variable xi,p∗ at rate one, i.e.
∂
∂txi,p∗ = 1.

Theorem 3.1. The fractional online algorithm has
competitive ratio at most αα where α = maxe∈E αe.

Proof. The proof is by dual fitting: we will provide a
feasible dual solution (y, z) and show that the online
primal solution x̄ has objective at most αα times the
dual objective. Combined with Lemma 3.1, this would
imply the theorem.

Let ¯̀
e =

∑
i

∑
p∈Pi:e∈p wi,e · x̄i,p be the final load

on each e ∈ E. Let δ ∈ (0, 1] be some parameter, and
define the dual solution:

ze = δ · ¯̀αe−1
e , ∀e ∈ E.

yi = min
p∈Pi

∑
e∈p

wi,eceαe · ze, ∀i ∈ [N ].

Note that dual-constraint (3.6) is satisfied as ze = δ ≤ 1
for all e ∈ E1. Moreover, (3.5) is satisfied by definition
of y. So (y, z) is a feasible dual solution. For each
request i, let qi ∈ Pi denote the reply that achieves the
minimum cost in the definition of yi above.

We now relate the primal objective P̄ =
∑
e ce · ¯̀αee

with the dual objective D, by showing:

(3.13) D ≥
(
δ − (α− 1) · δ

α
α−1
)
· P̄

Consider the algorithm when some request i arrives. For
each time t ∈ [0, 1], if p∗ ∈ Pi is the current reply and
{`e}e∈E denotes the current loads, then by the primal

update:

∂

∂t
P̄ =

∑
e∈p∗

ceαe

 N∑
i=1

wi,e
∑

p∈Pi:e∈p
xi,p

αe−1

with wi,e =
∑
e∈p∗

wi,eceαe · `αe−1
e ≤

∑
e∈qi

wi,eceαe · `αe−1
e

≤
∑
e∈qi

wi,eceαe · ¯̀αe−1
e =

1

δ
· yi.

Above, the first inequality is by the choice of the
current reply p∗ at time t, the second inequality is by
monotonicity of the primal solution x over time, and
the last equality is by the choice of the dual value yi.
It follows that the increase in P̄ due to request i is at
most yi

δ . Adding over all i,

P̄ ≤ 1

δ

N∑
i=1

yi.

Now, consider the contribution of the z-variables to the
dual objective:∑

e∈E\E1

ceαe
βe
· zβee =

∑
e∈E\E1

δβe
ceαe
βe

(
¯̀αe−1
e

)βe
=

∑
e∈E\E1

δβece(αe − 1)¯̀αe
e

≤ δ
α
α−1 (α− 1)

∑
e∈E\E1

ce ¯̀αe
e .

The equalities use the fact that 1
βe

= 1 − 1
αe

. The

inequality above uses that δ ≤ 1 and βe = 1 + 1
αe−1 ≥

1 + 1
α−1 for all e. Finally, the right-hand-side above is

at most δ
α
α−1 (α − 1) · P̄ . Therefore, the dual objective

is:

D =
N∑
i=1

yi−
∑

e∈E\E1

ceαe
βe
· zβee ≥ δ · P̄ − δ

α
α−1 (α− 1) · P̄ ,

which proves (3.13). Finally, choosing δ = 1/αα−1, we
obtain P̄ ≤ αα ·D.

In the full version [34], we show how this algorithm
can be implemented in polynomial time (with a small
loss in the competitive ratio).

4 Integer Online Algorithm

We now provide an integral online algorithm for GND.
It is well-known (see e.g. [5]) that the convex relaxation
(P ) used in §3 has a polynomially large integrality
gap even for single-commodity routing on undirected
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graphs. To get around this, we use an idea from [11]
for load balancing, by adding additional linear terms
corresponding to the αthe power of loads from individual
requests. Let ρ ≥ 1 be a parameter to be set later.
Upon the arrival of request i, we do the following:

• Choose reply pi ∈ Pi using the min-cost oracle
under the costs
(4.14)

ψe = αece·`αe−1
e ·wi,e +

ρ

eα
·ceαewαei,e , for each e ∈ E,

where `e :=
∑
j<i:e∈pj wj,e is the current load on

e.

Theorem 4.1. The online GND algorithm has compet-
itive ratio at most 2(eα)α where α = maxe∈E αe.

We prove this result in the rest of this section. Let Ae
denote the final load on each resource e ∈ E. The online
algorithm’s objective is then A :=

∑
e ce ·Aαee .

We will use a different (stronger) convex relaxation
for GND and relate A to the new relaxation. The
new relaxation has the same constraints in (P ) but the
objective is now:

(4.15)
∑
e∈E

ce ·

 N∑
i=1

wi,e
∑

p∈Pi:e∈p
xi,p

αe

+

∑
e∈E

ceαe
eα
·
N∑
i=1

wαei,e
∑

p∈Pi:e∈p
xi,p

Lemma 4.1. The optimal value of the new convex pro-
gram with objective (4.15) is at most (1 + αe−α) ·OPT,
where OPT is the optimal value of the (integral) GND
instance.

Proof. Consider an optimal solution to GND with ob-
jective OPT. We set a corresponding solution for (P )
by setting xi,p to 1 if p is the reply used to satisfy re-
quest i and 0 otherwise. Using the fact that each xi,p is
either 0 or 1, we have for each e,

N∑
i=1

wαei,e
∑

p∈Pi:e∈p
xi,p ≤

 N∑
i=1

wi,e
∑

p∈Pi:e∈p
xi,p

αe

So, the objective of the new relaxation is at most

(1 +
α

eα
)
∑
e∈E

ce

( N∑
i=1

wi,e
∑
p∈Pi:
e∈p

xi,p

)αe
= (1 +

α

eα
)OPT,

which proves the lemma.

To make notation simpler, for the analysis we imagine
adding dummy resources E′ = {e′ : e ∈ E} correspond-
ing to the second term in the new objective. We set
αe′ := 1, ce′ := 1 and wi,e′ := ceαe

eα wαei,e for all i ∈ [N ]
and e ∈ E. Moreover, we extend each reply p ∈ Pi so
that it contains both copies e, e′ of each resource e ∈ p.
The new reply collections are referred to as {P ′i}Ni=1.
The dual of the new convex program, denoted (D′), is
given below.

max
N∑
i=1

yi −
∑

e∈E\E1

ceαe
βe
· zβee

s.t.
∑
e∈p

wi,eceαe · ze ≥ yi, ∀p ∈ P ′i, ∀i ∈ [N ]

(4.16)

ze ≤ 1, ∀e ∈ E1 ∪ E′(4.17)

y, z ≥ 0.

Above, E1 = {e ∈ E : αe = 1}. Note that all the
dummy resources E′ have the exponent αe = 1: so they
do not appear in the second term of the dual objective.

Define the dual solution:

ze :=
1

ρ
·Aαe−1

e , ∀e ∈ E.

ze′ := 1, ∀e′ ∈ E′.

yi := min
p′∈P′i

∑
e∈p′

wi,eceαe · ze

= min
p∈Pi

∑
e∈p

(
wi,eceαe · ze +

ceαe
eα

wαei,e

)
, ∀i ∈ [N ].

The second equality above (for yi) follows from the
definitions of the new reply-collection P ′i and weights
wi,e′ , and the setting ze′ = 1 for e′ ∈ E′. Note that
dual-constraint (4.17) is satisfied as ze = δ ≤ 1 for all
e ∈ E1 and ze′ = 1 for all e′ ∈ E′. Moreover, (4.16) is
satisfied by definition of y. So (y, z) is a feasible dual
solution. For each request i, let qi ∈ Pi denote the reply
that achieves the minimum cost in the definition of yi
above. We now relate A with the dual objective D.

Consider the algorithm when some request i arrives.
Let `e denote the load on each e ∈ E before request i
is assigned. Recall that pi ∈ Pi is the selected reply.
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Then, the increase in the algorithm’s objective, (∆A)i

=
∑
e∈pi

ce ((`e + wi,e)
αe − `αee )

≤
∑
e∈pi

ceαe(`e + wi,e)
αe−1wi,e(4.18)

≤
∑
e∈pi

ceαewi,e
(
e · `αe−1

e + ααe−1
e · wαe−1

i,e

)
(4.19)

= e ·
∑
e∈pi

(
ceαewi,e`

αe−1
e +

1

e
ceα

αe
e wαei,e

)
≤ e ·

∑
e∈pi

(
ceαewi,e`

αe−1
e +

ρ

eα
· ceαewαei,e

)
(4.20)

≤ e ·
∑
e∈qi

(
ceαewi,e`

αe−1
e +

ρ

eα
· ceαewαei,e

)
(4.21)

= eρ ·
∑
e∈qi

(
1

ρ
· ceαewi,e`αe−1

e +
ceαe
eα

wαei,e

)
≤ eρ ·

∑
e∈qi

(
1

ρ
· ceαewi,eAαe−1

e +
ceαe
eα

wαei,e

)
(4.22)

= eρ ·
∑
e∈qi

(
wi,eceαe · ze +

ceαe
eα

wαei,e

)
(4.23)

= eρ · yi.(4.24)

The inequality in (4.18) uses convexity of the xαe

function. The inequality in (4.19) uses the inequality
(X + Y )α−1 ≤ e · Xα−1 + αα−1 · Y α−1 for α ≥ 1 and
X,Y ≥ 0, which follows from Lemma 4.1 in [9] (by
setting c = e). The inequality in (4.20) uses ρ ≥ (eα)α−1

which we will ensure. The inequality in (4.21) uses the
choice of pi under the costs (4.14). The inequality in
(4.22) uses the fact that loads are monotonically non-
decreasing. The equalities in (4.23) and (4.24) use the
definition of reply qi and choice of dual variables yi and
ze. Adding over all i,

A ≤ eρ ·
N∑
i=1

yi.

Now, consider the contribution of the z-variables to the
dual objective:∑

e∈E\E1

ceαe
βe
· zβee =

∑
e∈E\E1

ρ−βe
ceαe
βe

(
Aαe−1
e

)βe
=

∑
e∈E\E1

ρ−βece(αe − 1)Aαee

≤ ρ−
α
α−1 (α− 1)

∑
e∈E\E1

ceA
αe
e

which follows the same way as for the fractional online

algorithm. Therefore, the dual objective is:

D =
N∑
i=1

yi −
∑

e∈E\E1

ceαe
βe
· zβee

≥
(

1

eρ
− ρ−

α
α−1 (α− 1)

)
·A.

Finally, choosing ρ = (eα)α−1, we obtain A ≤ (eα)α ·
D. Combined with the observation that D ≤ (1 +
αe−α)OPT (by Lemma 4.1), we obtain Theorem 4.1.

4.1 Using Approximate Min-Cost Replies Here
we consider the situation where an exact min-cost reply
cannot be computed efficiently. This is indeed the case
in some applications. We extend our online algorithm so
that it also works with approximately min-cost replies.
Moreover, we obtain a stronger guarantee for the linear
terms in the objective, which will be used in proving
our main result (see §5). Recall that E1 ⊆ E denotes
the resources with exponent αe = 1. We obtain the
following result, which is proved in the full version [34].

Theorem 4.2. Assume that there is a τ -approximation
algorithm for the min-cost oracle in GND. Then,
there is a polynomial time 2(eατ)α-competitive online
algorithm for GND. In fact, if L and H denote the costs
incurred by the algorithm on resources in E1 and E \E1

respectively, then L ≤ 2τ ·OPT and H ≤ 2(eατ)α ·OPT.

5 Application to GND with (D)oS Costs

We now complete the proof of our main result (Theo-
rem 1.1). Given an instance I of GND with (D)oS costs
as in (1.1), we use Lemma 2.1 to define a new instance
J of GND with power cost functions, as follows. For
each original resource e ∈ E, we have two copies e1 and
ea. Let E1 := {e1 : e ∈ E} and Ea := {ea : e ∈ E}:
so the resources in J are E′ = E1 ∪ Ea. Define scalars
ce1 := ξeq

αe−1
e and cea := ξe for all e ∈ E. Also, define

exponents αe1 := 1 and αea := αe for all e ∈ E. The
weighted power functions in instance J are gr(x) :=
cr · xαr for all resources r ∈ E′. The reply-collections
are extended so that for each reply p ∈ Pi in I, there
is a corresponding reply in J that contains both copies
of resources e ∈ p. For each e ∈ E, note that function
he(x) used in Lemma 2.1 is he(x) = ge1(x) + gea(x).
Using the first inequality in Lemma 2.1, the optimal
value of instance J is OPTJ ≤ 2 · OPTI . Now, using
Theorem 4.2 on instance J , we obtain:

L =
∑
r∈E1

crAr ≤ 2τ · OPTJ and

H =
∑
r∈Ea

crA
αr
r ≤ 2(eτα)α · OPTJ ,
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where {Ar}r∈E′ denote the final loads in the algorithm.
For each e ∈ E, note that Ae1 = Aea ; we use Ae to
denote this load. As every weight is at least one, we
have each Ae ∈ {0} ∪ R≥1. The objective value in the
original instance I is

∑
e∈E

fe(Ae) ≤
∑
e∈E

(
max{qe, 1} · ξeqαe−1

e ·Ae + ξe ·Aαee
)(5.25)

=
∑
e∈E

(max{qe, 1} · ce1 ·Ae + cea ·Aαee )(5.26)

≤ max{q, 1} · L+H(5.27)

≤ 2 (max{q, 1}τ + (eτα)α) · OPTJ(5.28)

≤ 4 (max{q, 1}τ + (eτα)α) · OPTI .(5.29)

Inequality (5.25) is by Lemma 2.1 (2nd inequality) and
Ae ∈ {0}∪R≥1. The equality in (5.26) is by definition of
the scalars cr and the inequality in (5.27) is by definition
of L and H. In (5.28), the inequality is by the above
bounds on L and H, and the inequality in (5.29) uses
OPTJ ≤ 2 · OPTI .

Remark: The requirement that every weight is at
least one is crucial in obtaining our result. As noted
earlier, this requirement also appears in all prior work,
e.g. [5, 6, 7, 32, 22]. In fact, any r(q) competitive ratio
for GND under arbitrary weights (possibly less than one)
leads to an O(1)-competitive online algorithm, which
is not possible even for the simplest setting of single-
commodity flow in edge-weighted undirected graphs. To
see this, consider a new instance of GND with weights
w′i,e = wi,e/q and parameters σ′e = σe/q

α and ξ′e = ξe.
Note that the new GND instance is equivalent to the old
one (the objective value of each solution is scaled down
by qα). Moreover, the new value q′ = 1, which means
that we have an r(q′) = O(1) competitive algorithm.

REP cost functions We now consider the GND
problem under more general costs of the form (1.2) and
prove Theorem 1.3. The main idea is to replace each
resource e ∈ E with q copies e1, · · · eq each with (D)oS
cost function of the usual form (1.1). Then, we will
directly apply Theorem 1.1.

For each e ∈ E, (by renumbering if needed) let(
σe
ξe,1

)1/αe,1

=
q

min
j=1

(
σe
ξe,j

)1/αe,j

.

The new GND instance has resources Ē := {ej : j ∈
[q], e ∈ E}. For each e ∈ E, set αej := αe,j , ξej := ξe,j ,
and

σej :=

{
σe if j = 1
0 if j = 2, · · · q

Let fej (x) denote the (D)oS cost function for each
ej ∈ Ē. Clearly, f̄e(x) =

∑q
j=1 fej (x) for all x ≥ 0

and e ∈ E. Moreover,

q := max
f∈Ē

(
σf
ξf

)1/αf

= max
e∈E

min
j∈[q]

(
σe
ξe,j

)1/αe,j

= Q.

Recall the definition of Q in Theorem 1.3. For each
request i, the new reply-collection is

P̄i := {∪e∈p{e1, · · · eq} : p ∈ Pi},

i.e., each new reply corresponds to selecting all copies
of the resources in some original reply p. Assuming a τ -
approximation algorithm for the min-cost oracle under
Pi, it is easy to obtain a τ -approximation algorithm
for the new min-cost oracle under P̄i. Indeed, given
costs d : Ē → R+ we define costs d′ : E → R+ as
d′e :=

∑q
j=1 dej for each e ∈ E and apply the oracle for

Pi.
Using Theorem 1.1 on the new GND instance, we

obtain an O(qτ+(eατ)α) = O(Qτ+(eατ)α) competitive
online algorithm under REP cost functions. This
proves Theorem 1.3. The runtime of this algorithm is
O(Nmq +NΦ(mq)) where Φ(·) denotes the time taken
by the min-cost oracle.

6 Lower Bounds

We now show that our competitive ratio is tight up to
a constant factor and prove Theorem 1.2.

We consider the single commodity routing problem
(SSR) in directed graphs, which is a special case of GND.
We are given a directed graph (V,E) with weight ce ≥ 0
associated with each edge e ∈ E. There is a common
source s ∈ V and each online request i corresponds to
routing unit flow from s to a sink node ti ∈ V . The edge
cost function of each edge is fe(x) = ce · f(x) where

f(x) =

{
0 if x = 0
σ + xα if x > 0

.

Note that q = σ1/α. The min-cost reply oracle corre-
sponds to shortest path: so we also have a polynomial
time exact oracle in this case. We provide two different
instances of SSR that show lower bounds of (i) Ω(q) for
every choice of α ≥ 1 and σ ≥ 0, and (ii) Ω((1.44α)α)
even when q = 0.

The Ω((1.44α)α) lower bound follows from the
restricted-assignment scheduling problem with `p-norm
of loads [15]. Recall, in that problem there are m ma-
chines and N jobs arrive over time. Each job i specifies
a subset Mi of machines and needs to be assigned to one
of them. The objective is to minimize the sum of pth

powers of the machine loads. This corresponds to the
directed graph on nodes {s} ∪ {ue}me=1 ∪ {vi}Ni=1 where
s is the source, u-nodes correspond to machines and v-
nodes correspond to jobs. There is an edge from s to
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each ue with weight 1. For each job i ∈ [N ] and ma-
chine e ∈ Mi, there is an edge from ue to vi of weight
zero. We also set α = p and σ = 0. The resulting SSR
instance is clearly equivalent to the scheduling problem.

The Ω(q) lower bound uses a construction similar
to the lower bound for online directed Steiner tree [24].
Fix any value of σ > 0 and α ≥ 1 (which also fixes q).
We will show an Ω(q) lower bound for SSR instances
with this value of σ and α. The graph G consists of a
complete binary tree B of depth q rooted at node t with
all edges directed towards t, and source s with edges to
all nodes of the tree. Let S denote all the edges out of
s. All edges of the binary tree have weight zero and all
edges in S have weight one. The input sequence consists
of q requests as follows. At any point in the algorithm,
let A denote all edges that carry flow at least one: so
the current cost is at least |A ∩ S| · σ. The first sink
t1 = t. For i = 2, · · · q, sink ti is chosen to be the child
of ti−1 in B such that A does not contain an s− ti path.
It is clear that |A ∩ S| ≥ q at the end of this request
sequence. So the online cost is at least qσ. Note that
the sinks t1, · · · tq lie on a single directed path in the tree
B: so an offline solution can just select the edges (s, tq)
followed by (ti, ti−1) for i = q, · · · 2. The cost of this
solution is at most σ+ qα = 2σ as it uses only one edge
in S (which carries flow of q). Thus, the competitive
ratio is at least q/2.
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