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Polaron spectral properties in doped ZnO and SrTiO3 from first principles
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We reveal polaron signatures in the spectral function of n-doped SrTiO3 and ZnO through first-principles
interacting Green’s function calculations. In SrTiO3 we observe a clear replica band at 94 meV below the
conduction band, which shows that the observed replica in recent angle-resolved photoemission spectroscopy
experiment is an intrinsic feature from electron-phonon coupling in SrTiO3. In contrast, we observe an elongated
tail in the spectral function for ZnO but no well-separated replicas. By increasing the electron doping level,
we identify kinks in the spectral function at phonon frequencies and a decreasing intensity of the tail structure.
We find that the curvature of the conduction band bottom vanishes due to additional electron-phonon scattering
channels enabled by increased occupied states at high-enough doping levels, beyond which the spectral function
becomes a stronger quasiparticle one with a single peak structure. We further compare the spectral function
computed from the Migdal-Dyson approach and the cumulant method, and show that the cumulant method can
correctly reproduce the polaronic features observed in experiments.
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I. INTRODUCTION

Doped transition metal oxides such as SrTiO3 (STO)
and ZnO display two-dimensional electron gas (2DEG) be-
haviors on their surface [1–5] with a host of functional
properties, such as tunable metal-to-insulator transitions [6,7],
magnetism [8], and superconductivity [9,10]. The charge
carriers dynamics in these systems is indicative of sig-
nificant polaronic effects [11] and can be studied with
angle-resolved photoemission spectroscopy (ARPES). Strong
electron-phonon interaction at the origin of polaron forma-
tion in these materials is a ubiquitous feature of oxygen-rich
and ionic compounds [12–14], and has been attributed to the
enhancement of two-dimensional superconductivity in FeSe
sheets on STO surfaces [15].

Recent ARPES measurements in doped STO [2,16], ZnO
[17], and TiO2 [18] reveal satellite bands located at distinctive
phonon frequencies below the conduction band. The polaronic
tail observed in these spectra is usually fitted with several
multiphonon replica bands located at integer multiples of the
longitudinal optical (LO) phonon frequencies. This interpre-
tation is supported, on the one hand, by model calculations
[16–18]. On the other hand, a first-principles description of
quasiparticle spectral functions including electron-phonon in-
teraction has been achieved with the cumulant expansion
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formalism [12,19–26]. This method was shown to accurately
reproduce the position and intensity of multiphonon replica
bands observed in TiO2 [27]. When interpreting ARPES sig-
nals, however, the physics of the bulk may be concealed by
surface effects and impurities.

In this work, we investigate polaronic signatures in bulk
doped STO and ZnO from first principles using the cumulant
expansion formalism. We find that in STO, the polaronic tail
in ARPES is visible for the one-phonon process, but quickly
dies off for multiphonon processes. In ZnO, the theoretical
ARPES spectra do not feature a long polaronic tail. Rather, as
the polaron forms with increased doping, the conduction band
becomes increasingly flatten, with increased effective mass.

II. METHOD

A. Spectral function

The spectral function of the electrons, which relates
closely to the observed ARPES signal, is given by Ank(ω) =
1
π
|ImGnk(ω)|, where G is the Green’s function of the elec-

trons dressed by the electron-phonon interaction. In the Dyson
equation approach, these interactions are contained in the self-
energy (�nk), and the Green’s function is given by

Gnk(ω) = 1

ω − εnk − �nk(ω) + iη
. (1)

The main peaks of the spectral function correspond to the
quasiparticle energies Enk = εnk + �nk(Enk ), where εnk are
the bare electronic eigenvalues (i.e., without considering the
electron-phonon interaction).

The Migdal approximation [28] consists of computing the
self-energy to the lowest order in the phonon interaction.

2643-1564/2020/2(4)/043296(7) 043296-1 Published by the American Physical Society

https://orcid.org/0000-0003-1481-7110
https://orcid.org/0000-0003-0622-0170
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.043296&domain=pdf&date_stamp=2020-12-01
https://doi.org/10.1103/PhysRevResearch.2.043296
https://creativecommons.org/licenses/by/4.0/


ANTONIUS, CHAN, AND LOUIE PHYSICAL REVIEW RESEARCH 2, 043296 (2020)

Using the Migdal self-energy to obtain the Green’s function
from Eq. (1) is known as the Migdal-Dyson formalism. This
approach suffers from two important shortcomings. First, it
produces only a single statellite peak in the spectral function
since the self-energy at the lowest order lacks multiphonon
processes. Second, the satellite peak appears at one phonon
frequency away from the bare electronic eigenvalue (εnk),
while the main quasiparticle peak energy (Enk) is also shifted
away from the bare energy position in the opposite direction.
This results in a separation between the quasiparticle peak and
the satellite that is larger than one phonon frequency while,
on physical grounds, this separation should be exactly one
phonon frequency.

The description of the spectral function can be improved
using the retarded cumulant expansion formalism. In this
approach, the Green’s function is expanded in terms of a
cumulant function CR(t ) as

GR
nk(t ) = −iθ (t )e−iε0nkt eCR

nk (t ). (2)

The cumulant function is found by imposing that, at the lowest
order in phonon interaction, GR agrees with the related G
obtained from the Migdal-Dyson theory, giving

CR
nk(t ) = ieiEnkt

∫
dω

2π
e−iωt G0,R

nk (ω)2�R
nk(ω). (3)

The superscript R indicates that the retarded versions of the
Green’s function and self-energy is used, treating particles
and holes on equal footing [24]. In practice, the self-energy
is separated for convenience into a dynamical and a static
part, the first being complex and frequency-dependent, and
the second being real and frequency-independent [12]. In the
above equation,�R(ω) only refers to the dynamical part of the
self-energy, while the contribution of the static part is included
in Eq. (2) by setting ε0nk = Enk + �static

nk . Using the spectral
representation of �R(ω) yields the final form of the cumulant
function [12]

CR
nk(t ) = 1

π

∫ ∞

−∞
dω

∣∣Im�R
nk(ω + Enk )

∣∣
ω2

(e−iωt + iωt − 1).

(4)

The first term of Eq. (4) produces multiple satellite peaks in
the spectral function, while the second and the third terms
correspond to the quasiparticle energy shift and a renormal-
ization constant, respectively. Here, we use the quasiparticle
energy Enk as a starting point for the cumulant expansion, as
we found that it is necessary to properly describe the mass
enhancement of the bands.

B. Computational details

We perform density functional theory (DFT) calculations
with the ABINIT first-principles simulation package [29], and
use the Perdew-Burke-Ernzerhof (PBE) pseudopotential from
the PSEUDODOJO database [30]. The wave functions of STO
and ZnO are described with plane-wave energy cutoffs of 70
and 50 Ha, respectively, and the ground-state densities are ob-
tained with 8 × 8 × 8 and 6 × 6 × 6 wave vectors (k-points)
meshes, respectively. The phonon frequencies and phonon
coupling potential are computed with density functional per-

turbation theory (DFPT), starting with a coarse sampling of
phonon wave vectors (q-points) of 8 × 8 × 8.

In the case of STO, the computation of the electron-
phonon interaction is complicated by the presence of soft
phonon modes at the corners of the Brillouin zone, which
are responsible for a phase transition below 105 K [31–33].
Above this temperature, the cubic phase is stabilized by
quantum fluctuations of the atomic positions, but the Born-
Oppenheimer energy surface of the atoms remains largely
anharmonic. To account for this anharmonicity, we use the
temperature-dependent effective potential (TDEP) method,
which describes the stabilized phonon frequencies at finite
temperatures. We generate random atomic configurations in
a 2 × 2 × 2 cubic cell of STO at 300 K by performing 20 000
molecular dynamics steps with a 2-fs time inverval, and sam-
ple 40 configurations out of the last 5000 steps. The effective
force constants are then fitted with the ALAMODE code [34] to
produce the finite-temperature phonon frequencies and polar-
ization vectors.

C. Interpolation of the phonon coupling potential

The long-ranged nature of the electron-phonon coupling
in polar materials means that the coupling strength diverges
as 1/q for the LO phonon branches, which are characterized
by large Born effective charges. As a result, the LO modes
make up the dominant contribution to the electron’s electron-
phonon coupling self-energy (�ep) [35]. We compute �ep

using adaptative q-point grids, defined by a coarse mesh and
a fine mesh. The phonon coupling potential is interpolated
onto the fine q-mesh through its real-space representation,
a technique that does not require the computation of Wan-
nier functions, which is detailed in Refs. [29,36] and we
summarize as follows. The long-ranged part of the phonon
coupling potential is analytic for every phonon wave vector
q, once the Born effective charges have been computed from
DFPT [36]. This long-ranged part is substracted from the
phonon coupling potential to yield the short-ranged part of
the potential. The short-ranged part of the phonon coupling
potential is then Fourier-transformed from the coarse q-point
mesh to a real-space mesh of lattice vectors of the same size
as the coarse q-point mesh [37]. Assuming the short-ranged
potential is zero beyond this mesh of lattice vectors, it can be
Fourier-transformed back onto the fine q-point mesh, and the
analytic long-ranged part is added to recover the full potential
on the fine q-point mesh.

We use a fine q-point mesh of 48 × 48 × 48 to compute
�ep, and further refine our BZ sampling of the contribution of
the q-space near q = 0 (� cell), to a 196 × 196 × 196 q-point
mesh. This sampling allows one to resolve phonon scattering
processes near the Fermi surface for all doping levels consid-
ered, which ensures the convergence of the self-energy (see
the Appendix).

D. Doping

The doping is introduced in the computation of the
self-energy by adjusting the Fermi level in the rigid-band
approximation. We account for the extra dielectric screening
contributed by the additional charge carrier density using a
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FIG. 1. Spectral function of doped SrTiO3 along the �-M di-
rection computed with the Migdal-Dyson theory (left) and the
cumulant expansion method (right). The doping density is n=1.6 ×
1019 electrons/cm3. The color scale is the normalized spectral func-
tion in units of states/unit cell/meV.

model Lindhard dielectric function. This dielectric function
is computed from the band structure, and further screens the
electron-phonon coupling matrix elements. This model has
been introduced by Verdi et al. [27], who used it to show that
in TiO2, the spectral function exhibits polaronic features at
low doping, and transition into a Fermi-liquid behavior as the
dopant concentration increases.

III. RESULTS

A. SrTiO3

We fist compute the self-energy of undoped STO at zero
temperature. The real part of the self-energy yields a value of
−290 meV for the zero-point renormalization (reduction) of
the band gap, which is in good agreement with the experimen-
tal value of −336 meV obtained from temperature-dependent
absorption measurements [38]. Figure 1 shows the spectral
functions of the conduction band of n-doped STO, computed
with the Migdal-Dyson formalism and the cumulant expan-
sion. The doping is simulated by setting the Fermi level at
26 meV above the bare conduction band minimum (CBM),
which corresponds to a charge carrier concentration of 1.6 ×
1019 cm−3. However, the energy renormalization of the bands
brings the final polaronic CBM 10meV below the Fermi level.
This renormalization corresponds to an enhancement of the
conduction band effective mass from its bare DFT value of
0.88 me to a renormalized value of 1.7 me, corresponding to a
mass enhancement factor of λ = 0.9.

We see in Fig. 1 that the spectral function computed from
both formalisms features a replica band. This satellite band
emerges from the coupling of the conduction band to the
dominant long-wavelength LO phonon modes, and signals the
polaron formation. In the Migdal-Dyson formalism, it takes
the form of a single sharp satellite peak, located at 115 meV

FIG. 2. Comparison of the calculated spectral function with
ARPES measurements of the conduction band of SrTiO3 at �. Blue
line: The spectral function from cumulant expansion method, open
circle: Experiment data from Ref. [2]. The peak position of the
calculated spectral function is shifted to align with the experiment
data. The background intensity is subtracted from the experimental
data. The doping level is n=1.6 × 1019 cm−3.

below the conduction band minimum. In the cumulant expan-
sion formalism, the satellite peak is broader, and situated at
94 meV below the CBM. This separation corresponds to the
computed zone-center LO phonon frequency of 94.5 meV,
which is the highest phonon branch of STO. The cumulant
expansion formalism thus restores the physically expected
separation of the satellite peak from the conduction band,
which is overestimated in the Migdal-Dyson theory as dis-
cussed earlier. The cumulant result is consistent with ARPES
studies in which replica bands are observed at the LO phonon
frequency.

In Fig. 2, we compare the cumulant spectral function at �

with the experimental ARPES spectrum from Ref. [2]. Our
calculation nicely reproduces the “peak-dip-hump” feature,
and the position of the secondary peak also agrees well with
the experiment. This suggests that the observed replica band
can be understood as a bulk property of STO. In addition to
the main quasiparticle peak and the satellite, we observe an-
other weaker peak between those two. We attribute this small
peak to another LO phonon mode at 55 meV in STO, which
also has a strong electron-phonon coupling. The relative
strength of peaks does not agree perfectly with experiments.
In our calculation, the ratio of the secondary peak intensity
to the main peak is about 1/7, while in the experiment, it
is about 1/2. There are several factors which can contribute
to this discrepancy. First, the extrinsic effects in the photo-
emission experiment is not considered in our calculations. It
has been shown that the extrinsic effects generally increases
the strength of the replica bands and suppresses the main peak
intensity [22]. Second, the photo-emission experiment is a
surface sensitive technique. The reduction of screening effects
on the surface could further enhance the satellite intensity.
Having established that the cumulant expansion formalism
can reproduce the spectral functions and polaronic features
observed experimentally in STO, we turn our attention to the
case of zinc oxide.
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FIG. 3. Evolution of the spectral function of ZnO as a function of doping. The doping concentration is given by the indicated Fermi-level
energy relative to the conduction band minimum shown in each panel.

B. ZnO

ARPES measurements on the surface of hydrogen-doped
ZnO identified polaronic features in the spectra of the
conduction band states, with a large tail extending over
400 meV [17]. To see whether these features arise in the bulk
conduction band of ZnO, we compute the spectral function for
several doping levels.

For undoped ZnO, we obtain a zero-point renormaliza-
tion of the band gap of −157 meV, in excellent agreement
with the experimental values obtained from mass derivatives
(−164 meV) and from temperature-dependent absorption
measurements (−156 meV) [39]. Again, the agreement
of the computed zero-point band-gap renormalization with
experiments gives us confidence in the accuracy of the
electron-phonon coupling strength computed from DFPT.
Figure 3 shows the evolution of the spectral function of
the first conduction band of ZnO as a function of electron
doping. The most important contributions to the self-energy
come from the LO phonon branches with frequencies around
65 meV, which possess strong polar interactions, as well as
from two TO modes with frequencies around 45 meV. The
satellite bands associated with this coupling do not appear as
distinct replicas, but rather as an elongated tail in the spectral
function, which is nonetheless characteristic of a polaron. At
dopings with Fermi level 50 meV above the conduction band
minimum, kinks begin to appear in the bands, located one
phonon frequency below the Fermi level. As the doping is fur-
ther increased to 100 meV, these kinks lead to a flattening of
the bottom of the conduction band. This process is enabled by
the creation of a new scattering channel when the Fermi level
relative to the bottom of the conduction band becomes larger
than the LO phonon frequency. At this level of doping, holes at
the bottom of the conduction band may interact strongly with
other states below the Fermi level and of energy difference
equal to the LO phonon frequency, thus enabling scattering
events. At the same time, as the doping level increases, the
extra carrier density becomes more effective at screening the
phonon coupling potential. Without the metallic screening of
the extra carriers, the electron-phonon coupling strengths of

the polar modes have a characteristic 1/q dependence on the
wave vector. However, the free carriers are especially effective
at screening the macroscopic electric field induced by polar
phonons, and the small-q divergence of the coupling strength
is strongly attenuated. These two effects—the opening of
new scattering channels and the long-wavelength screening—
result in the flattening of the bottom of the conduction band at
100 meV doping and above.

A similar behavior has been identified in Fröhlich model
calculations for strong coupling parameters, and signals
the localization of the polaron [40]. Indeed, the qualitative
change in the band dispersion and phonon-induced (pola-
ronic) features as a function of doping can be interpreted
as a transformation from a small-to-large polaron process.
As doping increases, screening weakens the electron-phonon
coupling and the system goes into the increasingly larger
polaron regime.

Figure 4 shows the mass enhancement parameter λ of ZnO
at different doping levels. It is obtained by fitting a quadratic
dispersion to the renormalized band with an effective mass

FIG. 4. Mass enhancement parameter λ of ZnO as a function of
doping measured as the Fermi level relative to the conduction band
minimum.
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m∗ = mb(1 + λ), where mb = 0.22 is the bare effective mass
from our DFT calculation. The effective mass reaches a max-
imum at doping near 50 meV since this doping level enables
the scattering channel of the phonon branch with frequencies
around 45 meV. At higher doping levels, these scattering
channels are offset by the dielectric screening of the added
charge carriers, which reduces the electron-phonon coupling
strength and the mass renormalization.

IV. CONCLUSION

In summary, we studied from first principles the electron-
phonon interactions in doped STO and ZnO that leads to
the formation of polarons, and computed their corresponding
spectral functions with the cumulant expansion formalism.
In STO, the electron-phonon interaction leads to a large
mass enhancement (λ = 0.9) and the formation of a distinct
satellite band associated with the polaron. The spectral func-
tion matches well the ARPES measurements on doped STO
surfaces. However, the satellite peaks associated with multi-
phonon processes decay more rapidly than the ARPES signal,
suggesting that surface effects and extrinsic effects would be
needed to fully explain the measurements.

In ZnO, we do not find a distinct satellite band. Rather,
the polaron manifests as kinks in the band dispersion, and a
flattening of the bottom of the conduction band. As the doping
level increases, the mass enhancement factors evolves in a
nontrivial way. On the one hand, the opening of new scattering
channels at doping resulting in a Fermi level higher than the
phonon frequencies tend to increases the effective mass. On
the other hand, the added charge carriers tend to screen the
long-ranged electron-phonon coupling strength, thus reducing
the mass renormalization of the bands. Overall, the effect of
electron-phonon interaction in bulk ZnO cannot explain the
large tail observed in ARPES measurements [17], which leads
us to conclude that important surface effects may contribute to
the experimental signals.
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FIG. 5. Computed phonon band structure of STO (top) and ZnO
(bottom).
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FIG. 6. Convergence of the self-energy with respect to the num-
ber of q-points (Nq) for the conduction band minimum of undoped
STO (left) and undoped ZnO (right).
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APPENDIX

Figure 5 shows the phonon band structures of STO and
ZnO. For STO, we employ the TDEP method to stabilize
the anharmonic phonon modes, as described in the method
section. Our calculations agree well with previous work in
Refs. [32,41]. The overall phonon dispersion of ZnO also
agree with previous inelastic neutron scattering data [42,43]
and DFT calculation [44] although our calculated LO phonon

frequency 64 meV is slightly smaller than the reported exper-
iment value 71 meV.

Figure 6 shows the convergence of the self-energy for
the CBM of undoped STO and undoped ZnO. For ZnO, we
compare the values from interpolated results with those from
direct calculations. The difference between the interpolated
result and noninterpolated one is less than 5 meV. With large
q grid density, the self-energy converges linearly with the
inverse of the number of q-points in one dimension.
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