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Fig. 1. Given target discrete curvature per vertex on a triangle mesh, we describe a method to eficiently and robustly compute a discrete conformal deformation

of the mesh’s metric to satisfy this prescription. Its basis is the mathematical foundation described in [Gu et al. 2018b; Springborn 2020]. The figure illustrates

several flatenings (parametrizations over the plane) obtained from computed metrics that are flat except at a few cone singularities (green and red points). The

parametrization is visualized by means of an adaptive grid texture (see Section 7); red paths indicate transitions in the parametrization due to the prescribed

cones. Conformal scale distortion is indicated by shading, from blue over white to red. The method supports closed surfaces as well as surfaces with boundary.

By prescribing the geodesic curvature along the boundary, alignment of the parametrization with the boundary can be enforced. On the right, closed surfaces

are cut (along the black curves), turning them into surfaces with boundary, which enables us to enforce parametrization alignment also along the cut curves.

We describe an eicient algorithm to compute a discrete metric with pre-

scribed Gaussian curvature at all interior vertices and prescribed geodesic

curvature along the boundary of a mesh. The metric is (discretely) confor-

mally equivalent to the input metric. Its construction is based on theory

developed in [Gu et al. 2018b] and [Springborn 2020], relying on results on

hyperbolic ideal Delaunay triangulations. Generality is achieved by con-

sidering the surface’s intrinsic triangulation as a degree of freedom, and

particular attention is paid to the proper treatment of surface boundaries.

While via a double cover approach the case with boundary can be reduced

to the case without boundary quite naturally, the implied symmetry of the

setting causes additional challenges related to stable Delaunay-critical con-

igurations that we address explicitly. We furthermore explore the numerical

limits of the approach and derive continuous maps from the discrete metrics.
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1 INTRODUCTION

Computing discrete metrics with prescribed angles on meshes is a

problem closely related to surface parametrization and quadrangula-

tion, which is of interest in many geometric settings. Despite many

years of eforts, only a few techniques for mesh parametrization

provide theoretical guarantees, commonly derived from the same

source: discrete harmonic mappings with convex boundary, based

on Tutte’s embedding theorem [Floater 1997].

Recent exciting advances concerning the theory of discrete metric

uniformization [Gu et al. 2018b; Springborn 2020] provide a solid

foundation for a much needed addition to this spectrum of meth-

ods. They enable the computation of discrete metrics with arbitrary

prescribed discrete curvature at vertices, as long as the discrete

Gauss-Bonnet theorem is respected. In particular, this allows to

compute, with guarantees, lat metrics or almost-everywhere lat

cone metrics with prescribed curvatures at conesÐan essential com-

ponent of global parametrization and quadrangulation algorithms.

Guarantees follow from a reduction to an unconstrained convex

optimization problem. However, compared to Tutte’s method, the

numerics involved are far more complex, in particular due to non-

linearity and large scale distortions inherent in conformal maps.

We present an eicient numerical algorithm based on these new

theoretical ideas, extend it to support surfaces with boundary, and

explore its practical performance, focusing on robustness.

Problem Summary. To deine the problemmore precisely, consider

a manifold triangle mesh � , possibly with boundary. For a given

discrete metric on � , i.e., an assignment of lengths to its edges

that satisfy the triangle inequality, we can compute inner angles of

triangles.

Let Θ� be the total angle (the sum of incident inner angles) at

vertex �� , and �� its angle deicit, deined as 2� − Θ� for interior

vertices and � − Θ� for boundary vertices. This quantity �� can be

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.



1:2 • Marcel Campen and Ryan Capouellez, Hanxiao Shen, Leyi Zhu, Daniele Panozzo, Denis Zorin

viewed as the discrete Gaussian curvature if �� is an interior vertex

and the geodesic curvature of the boundary if �� is on the boundary.

Given target curvatures �̂� (respecting the discrete Gauss-Bonnet

theorem) our goal is to compute edge lengths that exhibit exactly

these curvatures. Flattenings, i.e., mesh parametrizations over the

plane, are a special case corresponding to prescribing �� = 0 in

the interior [Ben-Chen et al. 2008]. Seamless maps for quadrilat-

eral remeshing are obtained by prescribing �̂� = ��
�
2 with �� ∈ Z

[Campen et al. 2019; Myles and Zorin 2012].

Approach. As shown in [Gu et al. 2018b; Springborn 2020], a

discrete metric realizing target curvatures �̂� always exists, if re-

triangulation of the surface is allowed. When restricting to metrics

discretely conformally equivalent to a given original metric, this met-

ric is unique (up to scale) and can be computed by minimizing a

convex function.

While the latter property has been exploited before for practical

parametrization purposes [Springborn et al. 2008], the assumption

of a ixed triangulation restricts the space of target curvatures that

can be realized by a conformally equivalent metric. For example, a

vertex �� of valence � cannot, under any (Euclidean) metric, exhibit a

discrete curvature �� ≤ (2 − �)� , because inner angles are bounded
by � . As a consequence, the resulting discrete metric’s edge lengths

violate the triangle inequality in some places. This limitation can

be remedied by allowing changes to the triangulation of the input

surface.

More concretely, the main requirement for triangulation changes

needed to enable this is that at all times the triangulation remains an

intrinsic Delaunay triangulation. This leads to a natural algorithm

[Sun et al. 2015] in the spirit of kinetic data structures [Basch et al.

1999], which, however, requires the determination of the exact se-

quence of all individual Delaunay-critical events during the metric

computation process.

Contributions. In this paper we describe an eicient and practical

algorithm, performing triangulation changes with greater lexibility,

enabled by the theoretical connection to hyperbolic metrics estab-

lished by [Gu et al. 2018b; Springborn 2020]. While this theory is

developed for closed surfaces, in practice many, if not most, relevant

applications involve surfaces with boundaries. These cases can be

reduced to the closed surface case by creating a surface double, but

a number of algorithmic issues need to be addressed to reliably

maintain symmetric intrinsic Delaunay triangulations in such cases.

We introduce a number of additional improvements to the basic

algorithm, to speed up convergence and increase accuracy and ro-

bustness. We furthermore perform extensive evaluations, with a

focus on numerical aspects such as the efect of varying arithmetic

accuracy. Numerical behavior of the algorithm is of critical rele-

vance as conformal metrics and maps can unavoidably exhibit very

large ranges of scales.

We discuss the relevant background in Section 3. An implementa-

tion of the main ideas, with particular attention to practical aspects

is described in Section 4. Generalization to surfaces with boundary

is presented in Section 5, followed by the construction of a surface

mapping from the discrete metric in Section 6, and concluded by

the evaluation of the algorithm in Section 7.

2 RELATED WORK

The problem of computing conformally equivalent metrics or, by im-

plication, conformal maps of discrete surfaces, has been considered

in a variety of works before. As there is no useful natural notion

of conformality in the discrete (non-smooth) setting, a range of

discrete counterparts of the continuous concept of conformality

have been proposed and used.

Static Triangulation. Prominent examples of works addressing

the computation of conformal metrics or conformal maps on dis-

crete surfaces, based on various deinitions of discrete conformality,

while considering the triangulation ixed are based on least-squares

formulations [Desbrun et al. 2002; Lévy et al. 2002], vertex scaling

formulations [Ben-Chen et al. 2008; Jin et al. 2007; Sawhney and

Crane 2017; Soliman et al. 2018; Springborn et al. 2008], circle pat-

terns [Kharevych et al. 2006], or formulations based on holomorphic

one-forms [Gu and Yau 2003].

Dynamic Triangulation. A ixed triangulation restricts the space

of metrics that can be achieved. By adjusting the triangulation de-

pending on the prescribed target curvature, this limitation can be

remedied. Two systematic approaches have been proposed to that

end, both conceptually considering a continuous metric evolution

from initial state to target state. [Luo 2004] proposes to adjust the

triangulation by an intrinsic edge lip whenever an edge becomes

triangle inequality critical (Figure 2 left). Implementation variants

are described in [Campen et al. 2019; Campen and Zorin 2017a,b].

Diferently, [Gu et al. 2018a,b; Springborn 2020] efectively consider

the case of lipping an edge when it becomes Delaunay-critical, i.e.,

when four vertices become co-circular (Figure 2 right). Surfaces with

boundary in this context are addressed in [Sun et al. 2015] using

a double cover approach, reducing this case to the case without

boundary. A correspondence map between the original triangula-

tion and the modiied triangulation can be kept track of by means

of an overlay data structure [Fisher et al. 2007].

In concurrent work, [Gillespie et al. 2021] make use of the same

theoretical results we use here and describe an algorithm that con-

ceptually is very close to our core algorithm in Section 4. Main

diferences of our work are (i) a number of important details in

the optimization procedure as described in Section 4, (ii) special

combinatorial handling of symmetry in the double surface used to

support meshes with boundary, and (iii) extensive evaluation in

particular of numerical limits and numerical precision efects. In

comparison, [Gillespie et al. 2021] propose a more lightweight data

structure (than [Fisher et al. 2007] that we use) to keep track of

the mesh overlay, and additionally consider the case of spherical

parametrization.

3 BACKGROUND

We begin by considering the case of surfaces without boundary, i.e.,

we are given a closed manifold triangle mesh � = (� , �, � ). The
case of surfaces with boundary can be reduced to the closed surface

case with an additional symmetry structure, which we address in

detail in Section 5.

The mesh � is equipped with an input metric deined by edge

lengths ℓ : � → R>0, satisfying the triangle inequality.
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Fig. 2. Let: flip-on-degeneration. Right: flip-on-Delaunay-violation. Along-

side a conceptual illustration of the valid region Ω (light blue) and Delaunay

region Δ (white) is shown (cf. Section 3.2), containing the current point �

(cross mark) and changing due to the flip.

3.1 Conformal Equivalence

A conformally equivalent discrete metric, for a ixed triangulation� ,

is deined bymeans of logarithmic scale factors � : � → R associated
with vertices � = (�1, . . . , ��), by deining new edge lengths as

ℓ� � (�) = ℓ� � �
��+��

2 (1)

per edge �� � [Luo 2004]. Given per-vertex target angles Θ̂� a confor-

mally equivalent metric with these angles is characterized by, for

all �:

�� (�) := Θ̂� − Θ� (�) = Θ̂� −
∑

�� ��

��
��
(�) = 0, (2)

where the inner angle ��
��
(�) is computed under the metric deined

by � via Eq. (1), i.e., from edge lengths ℓ̃ = ℓ (�). We use shorthands

�̃ = � (�) and ℓ̃ = ℓ (�) for these scale factor dependent quantities
in the following.

It is known that �(�) = (�1 (�), . . . , �� (�)) is the gradient of a
twice-diferentiable convex function [Springborn et al. 2008]. Hence,

one may obtain factors � satisfying Eq. (2) using (second-order)

convex optimization methods, starting from arbitrary initializations

(e.g. � ≡ 0). This is true, however, only as long as there is a solution

for which � stays in the feasible region Ω� ⊂ R� where ℓ (�)
respects the triangle inequality for each triangle �� �� ; otherwise it

does not deine a Euclidean surface metric on� .

3.2 Dynamic Triangulation

The feasible region Ω� can be altered by adjusting the triangulation

dynamically during the evolution of � from 0 towards �∗.
Note that a change of triangulation is possible without intrin-

sically changing the surface. � together with given edge lengths

deines a surface �� with a metric which is lat everywhere except

at� . There are many triangulations (besides�) with vertices� and

their own associated edge lengths, deining the same surface ��

(cf. [Sharp et al. 2019]); hence the diferentiation between� and �� .

In particular, an edge lip replacing a pair of triangles (�� �� ,����)
sharing an edge �� � , with triangles (����,���� ) sharing edge ���
can be performed without intrinsically changing the surface �� , by

setting the length of the new edge ��� to the length of the diagonal

of the planar quadrilateral obtained by unfolding �� �� ,���� [Fisher

et al. 2007]. This is referred to as intrinsic lip.

Delaunay Flips. [Gu et al. 2018b; Springborn 2020] prove a re-

markable fact: the convex energy can be extended to all of the space

R
� of scale factors � deined at vertices, if a particular change of

triangulation is allowed. Speciically, the triangulation is modiied so

that it stays (intrinsically) Delaunay at all times as � evolves. More

speciically, whenever the Delaunay condition is violated as a result

of a change in �, a lip is performed to maintain the Delaunay prop-

erty. As the resulting energy is a globally convex function, it can be

minimized by an unconstrained Newton method, and the resulting

choice of � satisies (2) with respect to the resulting triangulation.

Definition 1 (Intrinsic Delaunay). A triangulation is intrinsi-

cally Delaunay if the angles of two triangles �� �� and ���� opposite a

common edge �� � satisfy the Delaunay condition:

�̃�� � + �̃
�
� � ≤ � (3)

or equivalently cos �̃�� � + cos �̃
�
� � ≥ 0. Expressed directly in terms of

edge lengths this condition is equivalent to

ℓ̃2
��
+ ℓ̃2

��
− ℓ̃2� �

ℓ̃�� ℓ̃��
+
ℓ̃2�� + ℓ̃

2
�� − ℓ̃

2
� �

ℓ̃�� ℓ̃��

≥ 0. (4)

This latter version of the Delaunay condition is particularly im-

portant for our construction.

Generically (if these weak inequalities hold strictly), the intrinsic

Delaunay triangulation is unique, but for special conigurations

(four or more intrinsically co-circular vertices resulting in equality

in Eq. (4)) it is not.

For a given triangulation� , the Penner cell Δ� ⊂ R� denotes the

set of scale factors � for which� , along with the modiied metric

deined by �, is intrinsic Delaunay. Clearly, Δ� ⊂ Ω� , and when

� ∈ �Δ� the Delaunay triangulation is not unique. Whenever �

reaches the boundary of Δ� , we can switch to another Delaunay

triangulation� ′ by means of an intrinsic lip, thereby changing the

region (from Δ� to Δ�′ ), enabling � to evolve further, see Figure 2.

The cells Δ� form a partition of R� [Gu et al. 2018b].

Such changes of scale factors together with intrinsic Delaunay

lips lead to the following generalized notion of discrete conformal

equivalence of two metrics [Gu et al. 2018b]:

Definition 2 (Discrete Conformal Eqivalence). Two metrics

(�1, ℓ1) and (��, ℓ�) are discretely conformally equivalent, if there

is a sequence of meshes with the same vertex set, (�� , ℓ� ), � = 1, . . . ,�,

such that, for each � ,�� is an intrinsic Delaunay triangulation for the

metric ℓ� and either

• (�� , ℓ� ) and (��+1, ℓ�+1) are diferent metrics with the same

triangulation (i.e.,�� =��+1) and the edge lengths are related
by Eq. (1) for a choice of �� : � → R.
• (�� , ℓ� ) and (��+1, ℓ�+1) are diferent Delaunay triangulations
for the same metric.
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Fig. 3. Ptolemy flip of an edge �� � shared by two triangles forming an

inscribed quadrilateral, i.e., a Delaunay-critical edge.

Degeneration Flips. The alternative of performing a triangulation

change only when � reaches the boundary �Ω of the currently feasi-

ble regionwas considered by [Luo 2004]. This occurs when a triangle

becomes a degenerate cap. An intrinsic lip of this triangle’s longest

edge yields a non-degenerate triangulation, efectively changing the

valid region Ω such that � lies strictly in its interior. Figure 2 left

illustrates this. An implementation of this approach is described and

applied in [Campen and Zorin 2017b]. Open theoretical questions

remain regarding the initeness of the lip sequence and the sound

handling of simultaneous adjacent degeneracies.

At irst sight, the approach based on maintaining an intrinsic

Delaunay triangulation may seem less eicient in comparison. Due

to Δ ⊂ Ω, at least as many, but often many more cells Δ need to be

traversed. Practically, this suggests a large number of small steps

between lips in the process of optimizing �, compared to, e.g., the

use of (less frequent) degeneration lips, and much smaller steps

compared to typical unconstrained optimization.

Remarkably, however, this Delaunay approach permits an imple-

mentation that is in general more eicient and more robust (see

Section 7.2 for a comparison). As we will see, exploiting a relation

to hyperbolic Delaunay triangulation, arbitrarily large steps can be

made, beyond Δ and even beyond Ω (unconstrained by Euclidean

triangle inequalities). Flips can be performed collectively after the

fact and in arbitrary order. This is detailed in Section 3.4.

3.3 Evolution Step

Assume we are given a triangulation� that is intrinsic Delaunay

under the metric deined by some �⊢. Consider an evolution of �

from �⊢ to �⊣, e.g., linear:

� (�) = (1 − �)�⊢ + ��⊣, � ∈ [0, 1] .
As we move along the interval [0, 1], whenever four vertices form-

ing triangles �� �� and ���� become co-circular under the metric

deined by ℓ (� (�)), an intrinsic lip of edge �� � is performed. Due

to the special coniguration (the two triangles forming an inscribed

quadrilateral, see Figure 3) the length that the new edge ��� needs

to take can be computed following Ptolemy’s theorem as

ℓ̃�� =
1

ℓ̃� �
(ℓ̃�� ℓ̃�� + ℓ̃�� ℓ̃�� ), (5)

where we use ℓ̃ as a shorthand for ℓ (� (�)). For ℓ̃�� = ℓ�� (� (�)) =
ℓ�� �

�� +��
2 to take this value for the current � (�), we need to set:

ℓ�� :=
1

ℓ� �
(ℓ�� ℓ�� + ℓ�� ℓ�� ). (6)

Notice that this is Ptolemy’s formula, Eq. (5), applied to the original

metric, as all scale factors cancel. In other words: applying the for-

mula in the current (� (�)-scaled) metric ℓ̃ is equivalent to applying it

in the original metric ℓ , followed by scaling. Remarkably, this holds

even though the vertices are not co-circular under the original metric

in general. Moreover, the edge lengths ℓ set in this way may not even

satisfy the triangle inequality. This is no issue, though, as certainly

the relevant scaled lengths ℓ̃ = ℓ (� (�)) do, by construction.

It was shown that the number of lip events along the path is

inite [Wu 2014], which means that after a inite number of lips we

will obtain the triangulation and edge length assignment needed

for the target � (1) = �⊣.
One practical downside of this procedure, in which the necessary

lips along the evolution path are detected and performed one-by-

one sequentially [Sun et al. 2015], is that it requires solving precisely

for the sequence of lips. An alternative approach, whose correct-

ness can be shown based on an interpretation of the involved edge

lengths as deining hyperbolic metrics instead of Euclidean metrics,

improves on this.

3.4 Hyperbolic Metric Approach

Instead of moving � along the interval [0, 1], determining the se-

quence of lip events and executing them in order, let us directly

consider � = 1. The initial triangulation � may not be Delaunay

under � (1), and the edge lengths ℓ (� (1)) may not even respect the

triangle inequality. Nevertheless, we can test each edge for violation

of the Delaunay criterion using Eq. (4) applied to ℓ (� (1)), and in-

crementally lip (using Eq. (6)) all violating edges in arbitrary order

following the classical lip algorithm until a Delaunay triangulation

is reached [Bobenko and Springborn 2007]. While in case of triangle

inequality violations this criterion lacks the geometric justiication

via Eq. (3) (the involved quantities are no longer (cotangents of)

Euclidean angles), this algorithm nevertheless succeeds.

Hyperbolic Delaunay. The reasons for applicability of Eq. (4) and

use of Eq. (6) are direct consequences of an elegant correspondence

between hyperbolic and conformal metric structures used in the

proofs of [Gu et al. 2018b; Springborn 2020] and introduced in [Rivin

1994], given by mapping edge lengths to Penner coordinates of a hy-

perbolic metric, and Euclidean triangulations to ideal triangulations.

Detailed explanations can be found in these papers and an overview

given in [Crane 2020, ğ5, ğ6]. We go into more detail in Section 6,

as this relation is important when the conformal metric is used to

establish a conformal map, for purposes of evaluation of the map at

arbitrary points. Here we just present a proposition summarizing

the aspect of this theory relevant to our algorithm.

Proposition 1. Suppose lengths ℓ̃ (possibly not satisfying triangle

inequality) are assigned to edges in a triangle mesh� , conformally

equivalent to a set of Euclidean metric lengths ℓ . If the lip algorithm is

applied to ℓ̃ , with the Delaunay criterion in algebraic form (4) used to

determine which edges need to be lipped, and the Ptolemy formula (6)

used for length updates, the algorithm produces a triangulation � ′

with lengths ℓ̃ ′ that satisfy the triangle inequality. This triangulation

is intrinsic Delaunay. Moreover, the discrete metric deined by (� ′, ℓ̃ ′)
is discrete conformally equivalent to (�, ℓ).
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In summary, instead of performing lips following an expensive-

to-compute sequence required to maintain a valid Euclidean metric

on triangles at all times, the algorithm performs the lips in arbitrary

order, yielding edge lengths ℓ̃ satisfying the triangle inequality only

in the end. This version of the lip algorithm is referred to as Weeks

algorithm [Weeks 1993].

These observations ensure that whenever we modify scale fac-

tors � while computing the conformal metric, the lip algorithm

can be used to recover a Delaunay triangulation, which can then

be used to evaluate the value of the convex function we need to

minimize, its gradient, and its Hessian.

4 ALGORITHM

Using this background, we can now formulate an eicient algorithm

for the computation of a conformally equivalent metric, respect-

ing prescribed target angles �̂. The algorithm, spelled out in Algo-

rithm 1, is based on a standard Newton’s method with line search,

but incorporates several important details and modiications.

Delaunay. Initially, if� is not already intrinsically Delaunay, it is

turned into a Delaunay mesh using standard intrinsic edge lips.

Then, whenever � is updated (during the line search), before the gra-

dient and Hessian are evaluated the triangulation is turned into an

intrinsic Delaunay triangulation with respect to the metric deined

by � using Weeks lip algorithmÐnow using the Ptolemy length

computation rule from Eq. (6).

Energy-free Line Search. The function � (�) that needs to be mini-

mized is known explicitly [Springborn et al. 2008]:

� (�) =
∑

�� ��

(

2� (�̃� � , �̃ �� , �̃�� ) − � (�� + � � + �� )
)

+ �̂⊺�,

where �̃� � = 2 log ℓ� � + �� + � � and � is a per-triangle function

involving Milnor’s Lobachevsky function [Springborn et al. 2008,

Eq. (8)]. The gradient of � (�) is �(�) = �̂ − �(�) (Eq. (2)) and
its Hessian � (�) simply is the well-known positive semi-deinite

cotan-Laplacian in terms of the scaled angles � (�).
The obvious approach is to use the standard Newton’s method

with backtracking line search, using � (�), �(�), � (�) (cf. [Gillespie
et al. 2021]). However, computing the energy � (�), in particular

evaluating the Lobachevsky function, presents numerical challenges,

and eicient Chebyshev-polynomial approximations, like the one

0 2

−2

0

2

·10−10

�
(�
+
�
�
)

−2

0

2

·10−11

�

�
⊺
�
(�
+
�
�
)

Fig. 4. Energy (blue; mean (20202.12) subtracted) and projected gradient

(red) along a descent direction �. Notice that the numerical noise in the

energy computation dominates the actual change in energy, making it less

suitable to be a measure of progress in the line search. By contrast, the sign

of the projected gradient (red) can be determined much more precisely.

used in the implementation of [Springborn et al. 2008], may not

yield suicient accuracy, while incurring additional computational

Algorithm 1: FindConformalMetric

Input : triangle mesh� = (� , �, � ), closed, manifold,
edge lengths ℓ > 0 satisfying triangle inequality,

target angles �̂ > 0 respecting Gauss-Bonnet

Output : triangle mesh� ′ = (� , � ′, � ′),
edge lengths ℓ̃ > 0 satisfying triangle inequality,

such that ∥�(�′,ℓ̃ ) − �̂∥∞ ≤ �tol

Function FindConformalMetric(�, ℓ, �̂):
� ← 0

(�, ℓ) ←MakeDelaunay(�, ℓ, �)
while not converged(�, ℓ, �) do

� ← �(�, ℓ, �) // gradient

� ← � (�, ℓ, �) // Hessian

� ← ����� (�� = −�) // Newton direction

(�, ℓ, �) ← LineSearch(�, ℓ, �, �) // Newton step

ℓ̃ ←ScaleConformally(�, ℓ, �)
return (�, ℓ̃)

Function LineSearch(�, ℓ, �, �):
(�1, ℓ1) ←MakeDelaunayPtolemy(�, ℓ, � + �)
(�1/2, ℓ1/2) ←MakeDelaunayPtolemy(�, ℓ, � + 1

2�)
if 1

2

(

�⊺�(�1, ℓ1, �+�) + �⊺�(�1/2, ℓ1/2, �+ 12�)
)

≤
��⊺�(�, ℓ, �) then // Armijo-like condition

return (�1, ℓ1, � + �) // full step

while true do // line search

(�, ℓ) ←MakeDelaunayPtolemy(�, ℓ, � + �)
if �⊺�(�, ℓ, � + �) ≤ 0 then // Eq. (7)

return (�, ℓ, � + �)
� ← 1

2� // backtracking

Function converged(�, ℓ, �):
return ∥�̂ − Θ(�, ℓ̃)∥∞ ≤ �tol

Function � (�, ℓ, �):
return �̂ − Θ(�, ℓ̃) // Eq. (2)

Function � (�, ℓ, �):
return CotanLaplacian(�, ℓ̃)

Function Θ(�, ℓ, �): // angle computation

for �� ∈ � do // Eq. (2)

Θ� ←
∑

�� �� ∈�′ arccos
(

(ℓ̃2� � + ℓ̃
2
��
− ℓ̃2

��
)/(2ℓ̃� � ℓ̃�� )

)

return (Θ0, . . . ,Θ�)
Function MakeDelaunayPtolemy(�, ℓ, �):

while NonDelaunay(�, ℓ, �, �� � ) for any edge �� � do
(�, ℓ) ← PtolemyFlip(�, ℓ, �� � )

return (�, ℓ)
Function NonDelaunay(�, ℓ, �, �� � ):

return (ℓ̃2
��
+ ℓ̃2

��
− ℓ̃2� � )/(ℓ̃�� ℓ̃�� )

+ (ℓ̃2�� + ℓ̃
2
�� − ℓ̃

2
� � )/(ℓ̃�� ℓ̃�� ) < 0 // Eq. (4)

Function PtolemyFlip(�, ℓ, �� � ):
� ← Flip(�, �� � )
ℓ�� ← (ℓ�� ℓ�� + ℓ�� ℓ�� )/ℓ� � // Eq. (6)

return (�, ℓ)
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overhead. We observe that the energy can be very lat along the

search direction, so using the decrease of energy evaluated this way

as a criterion in the line searchmay lead to the algorithm stalling due

to numerical noise (see Figure 4). This is particularly problematic in

cases requiring high conformal distortion or if we want to compute

the conformal metric with high precision, as needed for instance to

derive an implied conformal map (cf. Section 7).

The evaluation of the gradient and Hessian, both of which are

simple functions of angles (not involving the Lobachevsky func-

tion), by contrast, is more eicient and numerically robust than the

energy itself (see Figure 4). Fortunately, we are able to formulate our

algorithm such that it relies on �(�) and � (�) only. This is possible
for the following reason: As � (�) is convex, it is also convex along

the search direction �, i.e., � (� + ��) for ixed � and � is convex in

the step size �. Therefore its derivative

�

��
� (� + ��) = �⊺�(� + ��), (7)

i.e., the gradient’s projection onto the search direction, has at most

one zero. Hence, if we require that the step size � is selected in the

line search such that �⊺�(� + ��) ≤ 0, this guarantees that � (�)
decreases, without the need for checking the function value itself.

Note that avoiding energy evaluation precludes the use of stan-

dard suicient decrease conditions (most commonly, Armijo condi-

tion) in the line search. However, a simple backtracking search,

starting with � = 1, for a point along the search direction with

negative projected gradient, ensures that the Newton step, when

it is less than one, is always in the range [��/2, ��], where ��
is the function’s (unknown) minimum point along the search line.

One can show that this is suicient for convergence by following

the standard analysis of Newton’s method with inexact line search.

However, this is, in general, not suicient to guarantee that the algo-

rithm converges quadratically. An additional Armijo-like condition

(the irst termination condition in the line search in Algorithm 1;

we use � = 0.1, with a meaning similar to the Armijo condition

constant) yields a more consistent quadratic behavior. The practical

efect of this additional termination condition is small in most cases

(most commonly, the reduction in the number of iterations on our

test datasets is around 1-2). A detailed analysis of convergence of

the proposed energy-free method can be found in [Zorin 2021].

Termination. The accuracy with which the target angles �̂ can be

matched of course depends (in a non-trivial manner) on the preci-

sion of the real number representation. If tolerance �tol is chosen

too low relative to this, Algorithm 1 may never terminate. For prac-

tical purposes therefore additional stopping criteria can be taken

into account: an upper bound on the number of Newton steps and

the number of line search halvings, a lower bound on the Newton

decrement �⊺�(�, ℓ, �). Information about the practically achiev-

able accuracy can be found in Section 7.3.

Additional Performance Heuristic. In particularly challenging cases,

the gradient direction and in particular its magnitude can be rapidly

varying. The line search loop may then have to be executed many

times before a valid step size is found, causing many redundant edge

lips. One additional line search heuristic that proved beneicial in

this regard is a gradient norm decrease condition. Speciically, as a

stopping condition for the line search we require that, in addition

to �⊺� < 0, the norm of the gradient ∥�∥ decreases. Only if this

additional condition forces the step size below a given threshold (we

use 10−10), the condition is lifted for one step, allowing the gradient

to grow, so as to not hamper convergence.

Overlay Mesh. An embedding of the (by edge lips) modiied mesh

in the original mesh can be maintained by using a mesh overlay

data structure. Towards the algorithm it behaves like a mesh, but

internally it keeps track of the overlay of both meshes, updating it

whenever an edge is lipped. [Fisher et al. 2007] propose to represent

it explicitly by means of a polygon mesh data structure, [Gillespie

et al. 2021] propose a more lightweight implicit representation by

normal coordinates. We found the overhead of even the explicit

structure to be benign (e.g., on average 11% added time cost on the

example cases from Figure 9).

5 BOUNDARIES

So far, we assumed that � is a closed surface. For a surface with

boundary, the problem can be reduced to the case of closed surfaces

by gluing a mirrored copy to the surface along the boundary, turning

it into a closed surface with an obvious (relectional) symmetry. A

strategy of this kind is also used in [Sun et al. 2015] and [Gillespie

et al. 2021].

However, the initial symmetry of the setting may be disturbed

when applying Algorithm 1. Due to numerical inaccuracies, the

values � may diverge on the two copies; application of a standard

Delaunay lip algorithm is further complicated by the presence of

stably cocircular conigurations, as we discuss below. Therefore

we describe a version of this surface double cover approach that

explicitly imposes and maintains symmetry, on the numerical as

well as the combinatorial level, by construction.

5.1 Double Cover

Let the input surface be � . Its double cover is constructed as follows:

(1) we attach a mirrored copy � ′ of the input mesh � along the

boundary (merging boundary vertices and edges), as illus-

trated below, yielding a closed mesh� ,

(2) we transfer the edge lengths ℓ and the target curvatures �� of

interior vertices �� from � to � ′,
(3) we prescribe Θ̂� = 2� − 2�̂� at each (former) boundary vertex

�� , where �̂� is the target discrete geodesic boundary curvature

at vertex �� .

The double cover mesh� built this way

exhibits an obvious relectional symmetry,

i.e., there is a map � with �2 = � that takes

vertices to vertices, edges to edges, and faces

to faces. It maps an element in the interior

of � to its copy in � ′ and vice versa; on

the merged (former) boundary vertices and

edges, � is the identity.

Conformal Metric Symmetry. Due to symmetry (i.e., invariance

with respect to �) of the mesh � , the metric ℓ , and the target an-

gles �̂, the symmetrically initialized factors � will (in theory, up to

numerical round-of error) remain symmetric after each iteration
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of the optimization process. This can be seen by observing that the

function � (�) is the sum of per-triangle terms �� (�� ), where �� is

the restriction of � to vertices of the triangle� . Given the above sym-

metry, its gradient �(�) = ∇�� therefore is invariant with respect

to �. Consequently, if we cut the mesh along the symmetry line in

the end, so as to discard one copy, a boundary vertex �� will have

exactly half the prescribed angle, 12 Θ̂� = �−�̂� , and therefore exhibit
a discrete geodesic boundary curvature of �̂� , just as intended.

Tufted Double Cover. The fact that � (and thus all vertex-associated

attributes) are supposed to evolve symmetrically implies that we

can use a tufted double cover as in [Sharp and Crane 2020], with the

unknown scale factors � shared between the two symmetric halves

of� , to reduce the number of variables (and to impose perfect sym-

metry on the numerical level). This does not mean, however, that

computations could trivially be restricted entirely to one half of the

double cover only: edge lips may, and commonly will, create edges

and faces spanning both halves of the double cover, crossing the

symmetry line.

Combinatorial Symmetry. Edge lips across the symmetry line can

lead to triangulations that

are no longer combinatori-

ally symmetric, as depicted

in the inset. Unless special

care is taken, this can in-

crease the chance of numeri-

cal inaccuracies causing divergence from geometric symmetry. Fur-

thermore, such cases contain co-circular vertex conigurations that

are stable, i.e., for the given triangulation, due to the symmetry of

�, these remain co-circular independent of the evolution of �. An

example is the diagonal edge on the right in the inset. As in this

case, numerical evaluation of the Delaunay condition results in an

essentially random choice of the result, in order to avoid poten-

tially ininite lip sequences of Delaunay-critical edges, we instead

perform special lips at the symmetry line, maintaining perfect com-

binatorial symmetry by construction, as detailed in the next section.

Our method explicitly identiies these stably cocircular conigura-

tions and ensures that Delaunay lips are never applied to these,

even if they appear to be slightly non-Delaunay due to numerical

inaccuracies. In addition, having a symmetric Delaunay mesh for

the inal coniguration can simplify the extraction of the resulting

metric or map for the original surface with boundary.

5.2 Symmetric Meshes

Our goal is to rigorously determine which edge lip cases can occur

in a symmetric mesh, in particular at the symmetry line, so as

to ensure all special cases are correctly handled in our method.

To that end, we begin by making precise the general notion of

combinatorially symmetric polygon mesh. In this, rather than using

edges, we use halfedges, each associated with a unique face (or a

boundary loop, which can be treated exactly like a face). Speciically,

each edge corresponds to two halfedges.

Definition 3 (Combinatorial Mesh). A combinatorial polygon

mesh is a triple (�,N ,O) of a set of halfedges � , a bijective function

N : � → � (next-halfedge function), and a bijective function O

(opposite-halfedge function) with the property

O2 (ℎ) = ℎ; O(ℎ) ≠ ℎ (8)

i.e., all orbits of O have size 2.

This deinition is quite general which is important for maintain-

ing intrinsic Delaunay triangulations: e.g., it allows for vertices

of valence 1, polygons glued to themselves, etc., all of which are

possible conigurations in these triangulations.

Definition 4 (Mesh Elements). Deine the bijective circulator

function C : � → � to be N−1 (O(ℎ)). Then the mesh has the

following implied elements:

• Faces are the orbits of the next-halfedge function N .

• Vertices are the orbits of the circulator function C.
• Edges are the orbits of the opposite-halfedge function O.

Collectively we refer to them as (mesh) elements. A halfedge belongs

to an element if it is part of the respective orbit.

Amesh with boundary is a mesh with a subset of its faces marked

as boundary loops. The halfedges of these loops form the set ����

of boundary halfedges.

Definition 5 (Reflection Map). A relection map � : � → �

for a mesh (�,N ,O) is an involution (�2 = � ) deined on the set of

halfedges: each halfedge is mapped either to itself, or forms a relection

pair with a distinct halfedge. It is required to satisfy the following

conditions:

(1) preservation of O relation: O(�(ℎ)) = �(O(ℎ)),
(2) inversion of N relation: N(�(ℎ)) = �(N−1 (ℎ)),
(3) preservation of boundary: ℎ ∈ ���� ⇐⇒ �(ℎ) ∈ ���� .

Note that conditions (1) and (2) correspond to the properties of

continuity and orientation-reversal of continuous relection maps

[Panozzo et al. 2012]. They imply that � maps orbits ofN , of O, and,
as a consequence, of C, to orbits of these functions, i.e., it is well-

deined for faces, edges, and vertices (via�(�) = � ′ ⇐⇒ �(ℎ) ∈ � ′
for any ℎ ∈ �). Furthermore, because �2 = � , all orbits of � have

length 1 or 2, whether it acts on halfedges, faces, edges, or vertices.

This implies the following partitioning.

Proposition 2 (Halfedge Sets). � can be partitioned into dis-

joint sets �1, �2, �� so that the following conditions are satisied:

• ℎ ∈ �� ⇐⇒ �(ℎ) = ℎ;

• ℎ ∈ �1 ⇐⇒ �(ℎ) ∈ �2;

• for any face or edge � , either all belonging halfedges are in �1,

or all in �2, or � is ixed by � (i.e. �(�) = �).

This leads to the following partitioning of the sets of edges and

faces, where � = (ℎ,ℎ′), � = (ℎ0, . . . ℎ�−1) denote the orbits of

belonging halfedges:

• � ∈ �� ⇐⇒ ℎ,ℎ′ ∈ � � , � = 1, 2

• � ∈ �⊥ ⇐⇒ ℎ,ℎ′ ∈ ��

• � ∈ � ∥ ⇐⇒ ℎ = �(ℎ′)
• � ∈ �� ⇐⇒ ℎ0 ∈ � � , � = 1, 2

• � ∈ �� ⇐⇒ �(ℎ0) ∈ �

The set �⊥ is the set of edges (perpendicularly) crossing the sym-

metry line between two halves of a symmetric mesh mapped to
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each other (see Figure 5 right); the set � ∥ is the set of edges on the

symmetry line; �� is the set of faces that cross the symmetry line,

and are mapped by the symmetry map to themselves. For additional

details, see Appendix A.

Using this terminology, our double cover construction from Sec-

tion 5.1 can be described formally in terms of combinatorial structure

of the mesh (see Appendix B). Initially we have �⊥ = ∅ and �� = ∅,
i.e., no element crosses the symmetry line (the former boundary).

� ∥ contains the edges lying on the symmetry line, i.e., those for

whose halfedges the O relation was adjusted to glue the two copies.

This initially simple situation can change, however, when edge lips

are performed on the double cover mesh.

5.3 Symmetric Flips

When an edge � in a symmetric mesh � = (�,N ,O, �) shall be
lipped, the edge �(�) needs to be lipped as well (unless �(�) = �),

so as to be able to maintain a symmetric mesh. The simultaneous

lip of � and �(�) (as well as the single lip of � if �(�) = �) is referred

to as symmetric lip. As discussed in Section 5.1, in the algorithm

from Section 4 the metric evolves symmetrically. This implies that

whenever the algorithm intends to lip an edge � , it simultaneously

intends to lip �(�) as well. The algorithm is therefore compatible

with the restriction to symmetric lips.

While for an edge � ∈ �� with incident faces � , � ∈ �� the process
is obvious, special care needs to be taken when elements from � ∥ ,
�⊥, or �� are involved. We will exhaustively distinguish diferent

types of symmetric lips based on the membership of the involved

edges and faces in these sets.

Flip Types. For a triple (��, �, �� ) of an edge � with incident faces �� ,
�� , the triple of labels denoting their set memberships, e.g., (1, ∥, 2),
is called lip type of the edge � .

Consistent Flip Types. We say that an edge has a consistent lip type,

if this particular triple may occur in a symmetric mesh. For instance,

(1,⊥, 1) is not a consistent type, as edges from �⊥ necessarily have

incident faces from �� by deinition.

Proposition 3 (Appendix A) helps to reduce the possible set to

the following six possibilities, up to a 1↔ 2 exchange. It is easy to

construct examples proving that all of them are consistent, i.e., may

occur in a symmetric mesh:

• Edge in �1: Set 1a: (1, 1, 1), (1, 1, �) Set 1b: (�, 1, �)
• Edge in � ∥ : Set 2a: (1, ∥, 2) Set 2b: (�, ∥, �)
• Edge in �⊥: Set 3: (�,⊥, �)

Relevant Flip Types. Among these types, only four are also rel-

evant; Following Proposition 4 (Appendix A), types of the form

(�, ∥, �) and (�, 1, �) in the sets 1b and 2b are necessarily associated

with edges that satisfy the Delaunay condition Eq. (4) irrespective

of the choice of lengths of edges involved. These are not relevant for

the purpose of the algorithm from Section 4, which exclusively lips

non-Delaunay edges. This leaves only sets 1a, 2a, and 3 for further

consideration.

Triangles and Quadrilaterals. A lip of type (1, 1, �) leads to a pair

of triangles in �� that together form a quadrilateral which is in-

scribed, i.e., the four vertices are intrinsically co-circular (Figure 5

center). Remarkably, this statement holds regardless of metric, as

long as it is symmetric, i.e., invariant with respect to �. Instead of

randomly choosing a diagonal splitting this quadrilateral into two tri-

angles, we explicitly represent it as a quadrilateral face. This avoids

violating the symmetry by the diagonal, which, e.g., would com-

plicate recovering the surface with boundary after the conformal

metric is computed, and avoids potential issues such as sequences

of lips caused by numerically nearly co-circular points.

Faces in �� can therefore be triangular or quadrilateral. We ac-

cordingly partition �� = � � ∪ �� , and based on this distinguish

�-versions and �-versions of lip types involving the label � . This

yields a total of seven types that are consistent and relevant.

Six of these seven lip types form three pairs of mutually inverse

lips, while one is self-inverse. We can thus succinctly summarize :

(1) (1, 1, 1) + (2, 2, 2) ↔ (1, 1, 1) + (2, 2, 2);
(2) (1, ∥, 2) ↔ (�,⊥, �);
(3) (1, 1, � ) + (2, 2, � ) ↔ (�,⊥, �);
(4) (1, 1, �) + (2, 2, �) ↔ (�,⊥, �).

Case (1) is the standard case of lipping a coniguration not involving

the symmetry line. (2), (3), and (4) are the special cases crossing the

symmetry line; they are illustrated in Figure 5. Table 1 details the

combinatorial changes to be performed on the symmetric mesh so

as to execute these symmetric lips. In terms of implementation, it

thus simply comes down to initially labeling the edges and faces

of the double cover, updating the labels when lipping edges, and

using one of these special case rules whenever a label other than 1

or 2 is involved in a lip.

(1, ∥, 2)
↔
(�,⊥, � )

(1, 1, � ) + (2, 2, � )
↔

(�,⊥, �)

(1, 1, �) + (2, 2, �)
↔

(�,⊥, �)

Fig. 5. Symmetric edge flips involving faces from �� (light blue), crossing

the symmetry line (dashed). Faces from � 1 and � 2 are colored dark blue. The

configurations are shown with co-circular vertices, though combinatorially

flips can be performed in any state. Note that the light blue quads’ vertices,

however, are necessarily co-circular by symmetry, regardless of metric.
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5.4 Symmetric Metric

To be able to apply Algorithm 1 to such symmetric meshes to com-

pute a symmetric conformal metric, what is left to clarify is how to

deal with quadrilateral faces.

Delaunay Criterion. For edges with two incident triangles, the

Delaunay check needed for the algorithm is standard, via Eq. (4). If

one of the incident faces is a quad, due to symmetry it, regardless of

the metric, is an inscribed trapezoid. As a consequence, whichever

way we (virtually) split it into triangles we get the same angles

opposite any of its edges. Hence, we may perform the Delaunay

check assuming arbitrary virtual diagonals in the quads.

Gradient and Hessian. For the same reason, the computation of

gradient�(�) andHessian� (�) can be performed based on arbitrary

diagonals; the choice does not afect the result [Springborn 2020].

Ptolemy Formula. Note that each of the edges created by sym-

metric lips involving quads (Figure 5) can also be obtained by a

sequence of edge lips involving triangles (and split quads) only. In

this way the length of such edges can be computed using (multiple

instances of) the standard Ptolemy formula Eq. (6). As there are only

four types of lips involving quads, one can conveniently derive

closed form expressions for these cases in advance, rather than actu-

ally performing these sequences for each lip. Note that each quad

needs to store its diagonal length to enable these computations.

5.5 Restriction to Single Cover

Once Algorithm 1 has terminated and the desired conformal metric

has been computed, we inally need to discard half of the double

cover: we need to cut the symmetric surface along the line of symme-

try. While initially the entire symmetry line is formed by a sequence

of mesh edges, this may no longer be the case due to lips (unless

an overlay is used), namely whenever �� and �⊥ are not empty

in the end. One simply needs to split all edges from �⊥ at their

midpoint, and split the triangles and quads from �� by connecting

these inserted split vertices.

6 CONTINUOUS MAPS FROM DISCRETE METRICS

The algorithms described in previous sections deal exclusively with

discrete metric deinitions, i.e., assignments of edge lengths to edges

of a mesh. If mesh connectivity does not change, an aine map from

the initial mesh triangles� to the inal mesh triangles �̃ can be easily

inferred from the lengths. However, as pointed out in [Springborn

et al. 2008], a natural map is actually a projective map between

triangles, which, in addition to mapping the original lengths to

conformally deformed ones, also maps the circumcircle of � to the

circumcircle of �̃ . While for ixed connectivity this yields only a

moderate improvement in, e.g., texture quality, for changing con-

nectivity the map deinition is more relevant.

While for the discrete algorithm itself we only needed a simple-

to-formulate (although surprising) fact that Weeks lip algorithm

can be used to obtain an intrinsically Delaunay mesh even if the

triangle inequality is violated at intermediate steps, deining maps

between the original mesh points and the inal (e.g. lat) mesh points

requires a more in-depth exposition of the underlying theory.

ℓ� �

ℓ� �

ℓ��

�

�

�

� �

−� ��

��

−��

� �
1

� �
2

�

�

Fig. 6. Let: Poincaré model. Center: Beltrami-Klein model, both with an

ideal triangle. Note that in the Beltrami-Klein model it forms a Euclidean

triangle. Right: Two-triangle chart.

Our goal in this section is to deine a map � : |� | → |� ′ |,
from the original to the inal (e.g. conformally lattened) mesh,

more speciically, mapping formulas of the form (� ′
�
,� ′�,� ′� ;� ′) =

� (�� ,� � ,�� ;� ), where (�� ,� � ,�� ) are barycentric coordinates of
a point on the input triangle �� �� in� and (� ′

�
,� ′�,� ′�) is the cor-

responding point on a triangle � ′
���

in mesh� ′.

6.1 Cusped Hyperbolic Metric on Meshes

The central idea of the theory in [Gu et al. 2018b] and several other

papers dealing with related problems is a construction of a hyper-

bolic metric corresponding to a Euclideanmetric ℓ which is invariant

to conformal scale factors �; in this context the lengths ℓ are referred

to as Penner coordinates of the hyperbolic metric.

Conformal deformations of ℓ do not change this hyperbolic metric,

and lips deine just diferent triangulations of a ixed surface. The

update of Penner coordinates for an edge lip using the Ptolemy

formula Eq. (6) happens to produce a mesh that is isometric in the

hyperbolic metric to the mesh before the lip. Next, we discuss the

hyperbolic metric deinition and isometric retriangulation in this

metric in more detail.

Beltrami-Klein Model. We use the Beltrami-Klein hyperbolic plane

model. The model represents the hyperbolic plane�2 as the interior

of a unit disk, with points of the boundary of the disk being points at

ininity in the hyperbolic metric. These points (which are not a part

of the hyperbolic plane, but play an important role in the model)

are called ideal points. The model has the following properties.

• Lines are segments connecting points on the boundary.

• Given two distinct points � and � in the disk, the unique

Euclidean straight line connecting them intersects the disk’s

boundary at two ideal points, � and �; label them so that the

points are, in order, �, � , �, � along the line. The hyperbolic

distance between � and � then is:

�� (�, �) =
1

2
log
|�� | |�� |
|�� | |�� |

• Isometries of the hyperbolic plane correspond to projective trans-

formations preserving the unit disk.

• An isometry is deined uniquely by specifying images of three

points on the boundary of the disk (ideal points). There is an

isometry mapping any three ideal points to any other three

ideal points. We denote such projective maps � [� → � ′]
where� and� ′ are triples of points on the unit disk (Figure 6

center).

• While angles are not preserved, if a line is a diameter, per-

pendicular lines are also perpendicular to it in the model.
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� [� ref→ � � ] lip � [� � ′→ � ref ]

�

�

�

� ref �

�

�

� ref

� �
1

� �
2

� � ′
1

� � ′
2

��

��

Fig. 7. Mapping a point through a single flip via a two-triangle chart.

Deining the Hyperbolic Metric. For a mesh � with vertices ex-

cluded, the hyperbolic metric is deined by mapping each mesh

triangle, with edge lengths given by ℓ , to a similar Euclidean tri-

angle inscribed in a unit disk, and using the Beltrami-Klein model

to deine the hyperbolic distances inside the triangle. Under this

hyperbolic metric the triangles are ideal, with vertices at ininity (re-

ferred to as cusped, for reasons more obvious in the Poincaré model,

see Figure 6 left). Furthermore they are all congruent, because there

is a hyperbolic isometry, a projective circumcircle-preserving map,

mapping one triangle to the other.

Note however, that unlike the case of inite triangles, the identii-

cation of sides of ideal triangles that are adjacent in� is not unique:

because the sides are ininitely long, one can slide them along each

other isometrically. The natural gluing deined by identifying points

that correspond in the disk model picks one such isometric identii-

cation. One can show that if Penner coordinates ℓ and ℓ̃ are related

by a set of conformal scale factors �, the resulting gluing between

adjacent ideal triangles is the same, i.e., they deine the same metric.

This allows a convenient deinition of two-triangle isometric charts

(Figure 6, right) for this metric, which provide most of what we need

for deining our maps � across edge lips.

Two-Triangle Charts. Consider two adjacent triangles�� �� and����
sharing edge �� � , and ive Penner coordinates ℓ� � , ℓ�� , ℓ�� , ℓ�� , ℓ� � . For a

single triangle, Penner coordinates can be changed arbitrarily using

conformal deformations. Note however, that there are only four

conformal scale factors �� , � � , �� , �� involved when mapping two

adjacent triangles, so the ive lengths cannot be chosen completely

arbitrarily. The invariant that is preserved under these remappings

is the cross-ratio �� � = (ℓ�� ℓ�� )/(ℓ�� ℓ�� ). Cross-ratio assignments to

edges (shear coordinates) actually are in one-to-one correspondence

with choices of cusped hyperbolic metrics on a ixed mesh.

We are thus free to choose the conformal scale factors�� , � � , �� , ��
so that the following conditions are satisied: (1) edge �� � is mapped

to the diameter (−�, �), with � = (1, 0), on the horizontal coor-

dinate axis; (2) vertices � and � are mapped to antipodal points

�� = (�,
√
1 − �2) and −�� on the circle. It is easy to check that the

four scale factors are uniquely deined by these conditions, with

� equal to (1 − �� � )/(1 + �� � ). Notice that �� � > 0, thus � ∈ (−1, 1),
regardless of any triangle inequality condition. We denote these two

chart triangles � �
1 and � �

2 .

Thus, an isometric atlas can be constructed for the whole mesh,

by mapping each triangle pair to a chart as described above. This

gives us the necessary tools to deine the map � .

Mapping Across a Flip. Let�� be a mesh obtained after applying

a sequence of � lips to� , and��+1 a mesh obtained by lipping a

single further edge �� � shared by triangles �1 = �� �� and �2 = ����
as above. Each mesh has length assignments ℓ� , but as these are

guaranteed to satisfy triangle inequalities only at certain steps �

where the Delaunay condition is satisied, these are best viewed as

Penner coordinates for a hyperbolic metric.

As barycentric coordinates are not invariant with respect to pro-

jective maps, we need to choose a reference triangle for barycentric

representation (�� ,� � ,�� ). We use an equilateral reference triangle

� ref, with vertices �0, �1, �2, with �� = (cos 2��/3, sin 2��/3) for any
triangle �1 of�� , see Figure 7 left.

In the two-triangle chart, �1 and �2 are mapped to � �
1 and � �

2 .

After the lip in the chart, the new chart triangles, correspond-

ing to triangles � ′1 = ���� and � ′2 = ���� are � � ′
1 = (�, �� ,−�� )

and � � ′
2 = (−�,−�� , �� ), see Figure 7 center. If the image of the

point (�� ,� � ,�� ) in the chart belongs to triangle � ′1 then the map

(�� ,� � ,�� ) → (� ′� ,�
′
� ,�
′
�
) is obtained as the composition of

circumcircle-preserving projective maps:

(� ′� ,�
′
�
,� ′

�
) = � (�� ,� � ,�� ) =

(

� [� � ′
1 → � ref] ◦ � ◦ � [� ref → � �

1 ]
)

(�� ,� � ,�� )
(9)

where � is the matrix converting barycentric coordinates on � �
1

to barycentric coordinates on � � ′
2 . The expression is similar in

the case when the image of the point in the chart lands in � � ′
2 .

The circumcircle-preserving projective maps � can be computed in

barycentric coordinates using the following formula:

� (�� ,� � ,�� ) = (���� ,� �� � ,���� )/(���� +� �� � +���� )

with �� =
ℓ� � ℓ�� ℓ̃��

ℓ̃� � ℓ̃�� ℓ��
, where ℓ are lengths of the source, and ℓ̃ are

lengths of the target triangle.

7 EVALUATION

We have implemented Algorithm 1 (with support for boundaries

following Section 5) in C++. Our goal is to assess how well this the-

oretically sound method performs practically. While by default we

use standard double precision loating point numbers, the optional

use of extended precision arithmetics in our implementation allows

us to assess to what extent potential convergence issues are related

to inite precision or other problems, as detailed in Sections 7.3

and 7.4. We ind that, as conformal maps can easily involve a very

large range of scales across a mesh, for certain challenging settings

the use of extended precision arithmetics can be essential to yield

results of adequate quality.

In cases where a (mostly) lat metric is computed, the result can

be visualized by turning the metric into a map

(using a layout of the lat mesh in the plane

[Springborn et al. 2008]) and mapping a tex-

ture (e.g. a grid or checkerboard) to the sur-

face using this map. For a clear visualization

in cases with high scale distortion, we use a

procedurally generated hierarchical grid tex-

ture, as illustrated here. Its density is chosen adaptively based on

the pointwise magnitude of the scale distortion on the surface mesh,

halving the spacing between texture lines when the scale factor of

the conformal map is halved.
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6 8 6 4 11 6

Fig. 8. Visualization of conformal maps, implied by conformal cone metrics, on some of the closed models with angle prescriptions from the dataset of [Myles

et al. 2014]. The numbers indicate the scale range (diference of maximal and minimal conformal (natural) logarithmic scale factor �) for each model. Cones

are marked by red and green dots; texture jumps due to cones are marked red. The textured map and scale visualization follow the description from Section 7.
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Fig. 9. Decay of maximum angle error ∥�̂ − �∥∞ over the iterations of

the Newton algorithm. Each graph represents one of the closed-surface

instances from the dataset of [Myles et al. 2014].

Fig. 10. Like Figure 9, but each graph represents one of 1000 random test

instances (again without boundary)

7.1 Validation

Closed Surfaces. A dataset of mesh models together with angle

prescriptions �̂ > 0 (based on cones of cross ields) has been released

with [Myles et al. 2014].We applied our implementation to the closed

models from this dataset. The angle error decay in the course of

2 4 6 8 10 12
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10−12

genus
er
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Fig. 11. Final residual angle error for the extreme case of concentrating all

curvature in a single cone on an �-torus surface (genus �). For the genus 12

case, where the residual error is still benign, the conformal scale factor spans

232 orders of magnitude. For the problematic genus 13 case it surpasses

262. By increasing numerical precision (Section 7.3), this can be remedied;

for instance, with 200-bit precision, the � = 150 case converges to below

10−29, with 400-bit precision, the � = 400 case to below 10−65 (with the scale

factors spanning 611 orders of magnitude). (To reduce numerical issues in

this extreme experiment, the initial step size � was halved until the range

of the coeficients of �� was less than 10.)

the algorithm on these cases is visualized in Figure 9. Some of the

models with the resulting conformal map are visualized in Figure 8.

We observe that the models reach angle accuracy of 10−10 in less

than 15 Newton iterations. The inal achievable accuracy varies

and is correlated with the range of scale factors in the inal mesh

(cf. Figure 20), as a large variation of scale factors leads to a moderate

loss of precision in the gradient computation.

As further test instances, we use 1000 diferent random target

angle prescriptions �̂ (with Θ̂� ∈ (�, 3�) for all vertices �� ) on a

sphere mesh (1K vertices). The error decay is visualized in Figure 10.

Note that the overall behavior is very similar, whether the prescribed

angles are random or geometrically meaningful (as in Figure 9).

We consider the extreme scenario of concentrating the target

metric’s entire curvature in one point (i.e., prescribing a single cone

of angle 2� (2� − 1) in an otherwise lat metric). Errors for surfaces

of increasing genus � (procedurally generated �-tori) are shown

in Figure 11. A blow-up of the coniguration around the single

prescribed cone vertex on a genus 6 example is shown in Figure 13.

Surfaces with Boundary. The above mentioned dataset from [Myles

et al. 2014] also contains meshes with one or more boundary loops,

together with angle prescriptions �̂ > 0 for interior and boundary
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4 5 5 6 5

Fig. 12. Visualization of conformal maps, analogous to Figure 8, on some of the models with boundary from the dataset of [Myles et al. 2014]. The boundary

geodesic curvature is prescribed to be zero, therefore the angle between texture grid lines and the boundary is constant per boundary loop.

vertices. The error decay on these cases is shown in Figure 14. Some

of the models are visualized in Figure 12. The behavior is overall

similar to the closed surface case.

As a synthetic test, we generate 1000 diferent random target

angle prescriptions �̂ for a surface with boundary (a disk with 5K

vertices). In the interior we prescribe a lat metric, at the boundary

we prescribe a geodesic curvature, maximally in the range ±� , i.e.,
Θ̂� ∈ (0, 2�) for all boundary vertices �� . Figure 15 shows the number

of the diferent types of symmetric lips that are performed in the

course of the algorithm on these cases. As expected, the number

of lips is larger for cases with a prescribed curvature spanning a

larger range.

Another relevant scenario is that of prescribed geodesic curvature

along a cut graph. We take the closed models of the dataset from

[Myles et al. 2014] and mimic the setting employed by [Campen

et al. 2019]: we compute a cut graph on each of these surfaces,

and prescribe Θ̂� = � along this cut graph’s segments’ from both

sides (efectively asking them to be straight under the conformal

Fig. 13. Top: Input triangulation. Second row: Resulting intrinsic retrian-

gulation, when concentrating all curvature on a single vertex (Θ = 22� ); it

is Delaunay under the computed conformal metric (with curvature −20�
at the central vertex). Third row: overlay triangulation [Fisher et al. 2007],

allowing for a simple representation of the implied conformal map, linear

or projective per triangle. Botom: Visualization of implied conformal map

using a hierarchical grid texture (spanning 25 levels in this extreme case).
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Fig. 14. Decay of maximum angle error ∥�̂ − �∥∞ over the iterations of

the Newton algorithm. Each graph represents one of the instances with

boundary from the dataset of [Myles et al. 2014].
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2
±π
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103

boundary curvature range

fl
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(1, 1, 1) + (2, 2, 2) ↔ (1, 1, 1) + (2, 2, 2)

(1, ‖, 2) ↔ (t,⊥, t)

(1, 1, s) + (2, 2, s) ↔ (s,⊥, s)

Fig. 15. Scater plot showing the numbers of diferent types of symmetric

flips during the algorithm relative to the range of prescribed random bound-

ary curvatures. Each dot represents one type of flips for one of 1000 test

instances.

metric). The cut graph is composed of � short handle loops com-

puted as in [Diaz-Gutierrez et al. 2009], connected by additional

shortest paths. The resulting cut forms a graph on the surface with

nodes of valence 3; at each node, an angle of � is prescribed for

the largest sector, and angles �/2 for the remaining two. Some of

the models are visualized in Figure 16, with the cut graph marked

in black. Depending on the shape of the cut graph, this scenario

turns out to be the most challenging numerically: As can be seen

in Figure 17 left, in a few cases the inal maximum error is over

10−10, i.e., higher than in the previously discussed scenarios. This
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55 19 28

Fig. 16. Visualization of conformal maps with cones, analogous to Figure 8,

on models cut to disk topology using a cut graph (black). Due to the pre-

scribed geodesic curvature along the cut boundary, the cut is axis-aligned

under the map. Notice that such enforced alignment can easily imply a

broad range of scales, which is challenging numerically.

is related to the scale distortion of the implied conformal metric

spanning a range of up to 73 orders of magnitude in these cases.

With higher-precision arithmetic, these residuals can be reduced,

as discussed in Section 7.3.

7.2 Comparison

We demonstrate the advantages of the Delaunay lip approach over

the degeneration lip approach (Section 3.2) in terms of eiciency

as well as numerical robustness. To this end, we apply an imple-

mentation of the described method and an implementation of the

algorithm described by [Campen and Zorin 2017b] (both using stan-

dard double precision loating point numbers) to the same set of

inputs.

Eficiency. The main diferences between the two methods lie in

the number of linear system solves (to compute the descent direc-

tion �) and the number of intrinsic lips. In the proposed method,

the number of lips is often signiicantly higher (see the discussion

in Section 3.2), while the number of system solves is lower. As a
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Newton steps

Fig. 17. Decay of maximum angle error ∥�̂ − �∥∞ over the iterations of

the Newton algorithm. Each graph represents one of the closed instances

from the dataset of [Myles et al. 2014], with prescribed curvature along a cut

graph. Let: double precision. Right: extended precision (100 bits mantissa).
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Fig. 18. Scater plot showing the number of flips and the run time (to reach

�tol = 10−10), for the described Delaunay-flip method (blue) and the degen-

eration flip method (red). Each dot represents one of 1000 test instances.

Dashed lines mark the average run time, 0.4s and 29.6s, respectively.

lip is a cheap local operation, while a system solve is an expensive

global operation, a run time beneit can be conjectured.

The scatter plot in Figure 18 shows that this is the case on av-

erage. As test instances we use 1000 diferent random target angle

prescriptions �̂ (with Θ̂� ∈ (�, 3�) for all vertices �� ) on a sphere

mesh (10K vertices). Only for relatively simple cases, where the

target curvature can be matched without degeneration lips, the

number of system solves may be similar. On average, run time is

73× lower with the Delaunay-based method on these examples.

Robustness. Diferences in robustness can best be observed by con-

sidering extreme cases. In Figure 19 we show the residual error of

the two methods when prescribing one very small or very large

target angle (while distributing the remaining curvature). For small

angles it becomes apparent that the degeneration lip algorithm is

numerically more fragile.
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Fig. 19. Final residual angle error ∥�̂ − �∥∞ for extreme cases (one very

small or very large target angle, on a sphere with 1K vertices), comparing

the Delaunay-based algorithm (blue) and the degeneration flip algorithm.

[Campen and Zorin 2017b] (red).
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7.3 Accuracy

While the method is theoretically guaranteed to yield the desired

result, in practice numerical inaccuracies limit how closely the target

curvature will be matched. As the method involves exponential and

trigonometric functions (Eqs. (1) and (2)), it cannot be implemented

in a numerically exact manner using adaptive precision rational

or integer number types. Using extended precision loating point

number types (such as MPFR), the method’s accuracy can, however,

be increased arbitrarily. We evaluate the efect of this choice on

result accuracy in Figure 20. As test instances we use 1000 diferent

random target angle prescriptions �̂ (with Θ̂� ∈ (�, 3�) for all
vertices �� ) on a sphere mesh (1K vertices).

As can be observed, the remaining error decreases consistently

as the number of bits used for the loating point computations is

increased. Due to dependence on many factors (input mesh and

edge lengths, target angles, choice of linear system solver for the

Newton direction) a simple bound on the error cannot be given, but

Figure 20 gives an empirical idea of the behavior. Note that some

correlation can be observed to the conformal scale distortion (the

range [�min� , �max� ]) that is required to match the target curvature.

In Figure 17 right the efect of increased precision on test cases

from Section 7.1 can be observed. In particular, for the models that

have maximum error over 10−10 when using standard double preci-

sion arithmetic, the error is reduced to below 10−16 when using a

100 bits mantissa instead.
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Fig. 20. Scater plot showing residual angle error ∥�̂−�∥∞ (ater at most 50

Newton steps) relative to the range of logarithmic conformal scale factors�.

Each dot represents one test instance, run using floating point numbers

with a mantissa of 53 bits (double), 75 bits, 100 bits, 125 bits, 150 bits (MPFR).

7.4 Failure Modes

We can distinguish two types of potential issues (detailed below):

high residual error or a high number of optimization steps. The for-

mer can be caused by limited arithmetic precision (and can therefore

be remedied by using extended precision, as demonstrated above).

The latter can be caused by an unfavorable energy landscape, and

is therefore more fundamental, regardless of numerics.

Precision-related failures. Depending on the target curvature, a

high amount of metric distortion may be required, with negative

numerical efects on result accuracy. It can be observed that this is

correlated with local concentrations of positive or negative target

(Gaussian or geodesic) curvature. Figure 21 left shows an experiment

in which an increasingly large cluster of vertices have a target angle

below 2� and the rest above 2� . When using standard double preci-

sion, a large fraction of these synthetic test cases essentially fails to

reach a reasonably accurate state. Performing these computations

with higher precision (Figure 21 right) resolves these problems. Anal-

ogously, we notice that cut graphs with more complex shape than

the ones used in Figure 17 (e.g., the more constrained łhole-chainž

in [Campen et al. 2019]) cause a similar behavior.

Near-degeneracy failures. This second issue is more fundamental.

While the method may, in principle, converge eventually, the step

size can decrease to the point that the number of iterations needed

becomes impractical. When using the above mentioned hole-chain

choice of cuts on the dataset of [Myles et al. 2014], we can identify

four high-genus models with complex singularities which fail to

converge in a reasonable number of steps even with high-precision

arithmetic. The underlying reason is illustrated in Figure 22, show-

ing the plot of the projected gradient �⊺�(� + ��) for a line search
direction. One can see that while theoretically the gradient is �1,

it may experience very signiicant jumps, when a large number of

triangle lips happen nearly simultaneously as � changes (in this

particular case 58). We observe that this occurs in particular in the

presence of highly distorted near-degenerate triangles.

total number of vertices

ra
ti
o

10−0

10−5

10−10

10−15

10−20

Fig. 21. Heatmap showing the final error ∥�̂ − �∥∞ for spheres of varying

resolution (x-axis) with some ratio (y-axis) of the vertices set to target angle

3 and the rest to a constant target angle <2� such that the Gauss-Bonnet

theorem is satisfied. Let: double precision results when the two angle values

are distributed in two clusters. Center: double precision results when the

two angle values are distributed randomly over the sphere. Right: extended

precision (150 bits mantissa) results with the same distribution as let. (For

this experiment, the threshold for the gradient norm decrease was set to 0

and, to reduce the run time in this particular case, � was chosen adaptively,

initially halved until the range of coeficients of �� was less than 10.)

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.



Eficient and Robust Discrete Conformal Equivalence with Boundary • 1:15

0 1 2 3

·10−10
−0.06

−0.05

−0.04

−0.03

Δ

Fig. 22. Projected gradient �⊺� (� + ��) along the normalized Newton

descent direction with step length � = 0.0217745227 + Δ.

8 CONCLUSIONS AND FUTURE WORK

We presented a practical realization of the method for computing

discrete conformal maps based on the ideas of [Gu et al. 2018b;

Springborn 2020], elaborating how it can be applied safely to meshes

with boundary, the most practically relevant scenario for conformal

mapping. Our improvements include a straightforward to imple-

ment algorithm for maintaining symmetric Delaunay triangulations

and several improvements increasing the robustness of Newton’s

optimization method in the context of our application. We explored

its behavior on a standard dataset, and for a number of challenging

synthetic examples, demonstrating its robustness for a broad range

of cases involving high distortion. We also observe that common fail-

ure cases can be addressed by using extended precision arithmetic,

albeit at a signiicant cost in run time.

However, in our extensive tests we did identify a small number

of cases for which the method does not produce a conformal map in

reasonable time, which indicates potential for further algorithmic

improvements. It would also be desirable to ind ways to minimize

the use of extended precision arithmetic to the minimum necessary

in a iltered approach, so as to increase accuracy while maintaining

performance. Finally, extension of the method from Euclidean to

spherical and hyperbolic discrete metrics would be not only of

theoretical interest [Schmidt et al. 2020].
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A PROOFS AND ADDITIONAL LEMMAS

Proof of Proposition 2

Proof. If � is not ixed, by the well-deinedness of � on mesh

elements, for each ℎ ∈ � we have �(ℎ) ∉ � . Therefore for a non-

ixed individual face or edge � all its halfedges can be assigned to

�1 (or to �2) without contradicting the conditions. It needs to be

shown that this can be done for all such elements consistently.

Let �� the set of halfedges whose edges are not ixed and � � the

set of halfedges whose faces are not ixed. Let Q the relation that

is the union of O|�� and N|� � on � \ �� . Consider the connected

components �� of Q (intuitively: the mesh’s connected components

separated by ixed edges and ixed faces). Due to the properties of �
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Table 1. Combinatorial updates required to perform symmetric flips of all relevant consistent types. The change to N is given by listing the orbits (halfedge

cycles forming faces) of N created by the flip. The employed indexing is depicted in the figures let and right. Similarly, we define changes to � viewing it as a

permutation with orbits of length 1 or 2, and listing the sets of orbits being replaced. Finally, rather than deleting and adding new halfedges on demand, for

implementational eficiency we can associate a superfluous pair of halfedges, eliminated by a quad-creating flip, with the quad (listed behind the bar).

(1, 1, 1) + (2, 2, 2) ↔ (1, 1, 1) + (2, 2, 2)
N : (ℎ�0, ℎ�1, ℎ�2), (ℎ�3, ℎ�4, ℎ�5), � = 1, 2 N : (ℎ�0, ℎ�2, ℎ�4), (ℎ�1, ℎ�3, ℎ�5), � = 1, 2

� : unchanged � : unchanged

(1, ∥, 2) ↔ (�,⊥, � )
N : (ℎ0, ℎ1, ℎ2), (ℎ3, ℎ4, ℎ5) N : (ℎ0, ℎ2, ℎ4) , (ℎ1, ℎ3, ℎ5)
� : (ℎ0, ℎ3) � : (ℎ0), (ℎ3)

(1, 1, � ) + (2, 2, � ) ↔ (�,⊥, �)
N : (ℎ0, ℎ1, ℎ2), (ℎ3, ℎ4, ℎ5), (ℎ6, ℎ7, ℎ8) N : (ℎ0, ℎ2, ℎ4), (ℎ1, ℎ3, ℎ5, ℎ6) | ℎ7, ℎ8
� : (ℎ0, ℎ3), (ℎ7, ℎ8) � : (ℎ0), (ℎ3)

(1, 1, �) + (2, 2, �) ↔ (�,⊥, �)
N : (ℎ0, ℎ1, ℎ2), (ℎ3, ℎ4, ℎ5), (ℎ6, ℎ9, ℎ7, ℎ8) N : (ℎ0, ℎ2, ℎ7, ℎ4), (ℎ1, ℎ3, ℎ5, ℎ6) | ℎ8, ℎ9
� : (ℎ0, ℎ3), (ℎ8, ℎ9) � : (ℎ0), (ℎ3)

(preserving/invertingO andN ) it is well-deined on these connected

components via �(�� ) = � � ⇔ �(ℎ) ∈ � � for any ℎ ∈ �� . Using

arguments analogous to [Panozzo et al. 2012, Prop. 2] one veriies

that the set of ixed elements necessarily forms a cycle; therefore

there are at least two such connected components.

As � on � \ �� has orbits of length 2 only, it allows a bipartition

of the connected components, i.e., they can be assigned to two sets

�1 and �2 in accordance with the above conditions. □

Label Compatibility

Proposition 3.

(a) � ∈ �⊥ ⇒ ��, �� ∈ �� .
(b) � ∈ � ∥ ⇒ �� ∈ � 1, �� ∈ � 2 or �� = �� ∈ �� .
(c) � ∈ �1 ⇒ � ∉ � 2, � ∈ �2 ⇒ � ∉ � 1.

(d) � ∈ �� , ��, �� ∈ �� ⇒ �(�) ∈ ��, �� .

Proof. Part (a) follows immediately from the deinition of � � , as

faces from � � cannot have edges from �⊥.
Suppose a face �� is incident at an edge � from � ∥ . For these

edges �(�) = � . Suppose �� ∈ � 1, then �(��) is incident to �(�) = � ,

therefore �� = �(��). As �(��) ∈ � 2 by deinition of � 2, this proves

the irst part of (b). Suppose �� ∈ �� , and let ℎ a halfedge ℎ ∈ � ,

ℎ ∈ �� . Then �(ℎ) ∈ �� by the deinition of �� ; but, by deinition of

� ∥ , �(ℎ) ∈ � , so �� = �� , i.e., a face is adjacent to itself along � .

Part (c) directly follows from the deinitions of �� and � � .

In part (d), suppose �� and �� are incident at � ∈ �1, ��, �� ∈
�� , and � = (ℎ�, ℎ� ). Then �(ℎ�) ∈ �(��) = �� , �(ℎ� ) ∈ �� , and

O(�(ℎ�)) = �(ℎ� ) by the properties of �, i.e., (�(ℎ�), �(ℎ� )) is an
edge. By deinition of �� , it has to be in �2, i.e., faces �� and �� share

a second edge, and this edge is from �2. □

Irrelevance of Flip Types (�, ∥, �) and (�, 1, �)
Proposition 4. Types (�, ∥, �), (�, ∥, �), (�, 1, �), (�, 1, �), and (�, 1, �)

are associated with edges that are Delaunay regardless of metric.

Proof. Consider (�, ∥, �). By Prop. 3(b), it corresponds to a conig-
uration with a single face: (� � , � ∥ , � � ). As the triangle � � is isosceles,
and both side edges of the triangle coincide with � ∥ , angles opposite
� ∥ are �/2 − �/2 if the apex angle is � , i.e., their sum is guaranteed

to be less than � and the edge is Delaunay. For (�, ∥, �), to evaluate

� ∥

� ∥

the Delaunay criterion, we split � � into triangles.

As � � is inscribed the choice of diagonal does not

afect the angles; we can choose the diagonal that

connects a vertex of � ∥ with a vertex with trapezoid
angles ≤ �/2 (see inset), from which we can see

that both angles opposite � ∥ are less than �/2. For
cases (�, 1, �), (�, 1, �), and (�, 1, �) the same logic

applies to each face incident at the shared edge �1.

□

B DOUBLE COVER: FORMAL DEFINITION

Given amesh� = (�0,N0,O0), with boundary and interior halfedges
���� ∪ � ���

= �0, we discard ���� and set � = �1 ∪ �2 where

�1
= � ��� and �2

= �̄ ��� , where ·̄ denotes a copy. The relection
map � is deined via �(ℎ) := ℎ′ if ℎ′ ∈ �2 is the copy of ℎ ∈ �1. O0
is adopted on both copies to deine O, except that O(ℎ) := �(ℎ) if
O0 (ℎ) ∈ ���� ; this latter adjustment constitutes the gluing of the

two copies along their boundaries. Finally

N(ℎ) :=
{

N0 (ℎ) if ℎ ∈ �1,

�((N0)−1 (�(ℎ))) if ℎ ∈ �2 .

This forms the symmetric double cover mesh � = (�,N ,O, �)
with triangle faces and map �. Note that � is a relection map: it

satisies the conditions of Def. 5 (where condition (3) is void as�

has no boundary). It is easy to see that this construction implies

�⊥ = ∅ and �� = ∅, i.e., no element crosses the symmetry line (the

former boundary). � ∥ contains the edges lying on the symmetry

line, i.e., those for whose halfedges the O relation was adjusted to

glue the two copies.
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