
Sync-Switch: Hybrid Parameter Synchronization for

Distributed Deep Learning

Shijian Li, Oren Mangoubi, Lijie Xu† and Tian Guo

Worcester Polytechnic Institute
†State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences

Abstract—Stochastic Gradient Descent (SGD) has become the
de facto way to train deep neural networks in distributed clusters.
A critical factor in determining the training throughput and
model accuracy is the choice of the parameter synchronization
protocol. For example, while Bulk Synchronous Parallel (BSP)
often achieves better converged accuracy, the corresponding
training throughput can be negatively impacted by stragglers.
In contrast, Asynchronous Parallel (ASP) can have higher
throughput, but its convergence and accuracy can be impacted by
stale gradients. To improve the performance of synchronization
protocol, recent work often focuses on designing new protocols
with a heavy reliance on hard-to-tune hyper-parameters.

In this paper, we design a hybrid synchronization approach
that exploits the benefits of both BSP and ASP, i.e., reducing
training time while simultaneously maintaining the converged
accuracy. Based on extensive empirical profiling, we devise a
collection of adaptive policies that determine how and when to
switch between synchronization protocols. Our policies include
both offline ones that target recurring jobs and online ones
for handling transient stragglers. We implement the proposed
policies in a prototype system, called Sync-Switch, on top of
TensorFlow, and evaluate the training performance with popular
deep learning models and datasets. Our experiments show that
Sync-Switch achieves up to 5.13X throughput speedup and similar
converged accuracy when comparing to BSP. Further, we observe
that Sync-Switch achieves 3.8% higher converged accuracy with
just 1.23X the training time compared to training with ASP.
Moreover, Sync-Switch can be used in settings when training with
ASP leads to divergence errors. Sync-Switch achieves all of these
benefits with very low overhead, e.g., the framework overhead
can be as low as 1.7% of the total training time.

Index Terms—Distributed deep learning, synchronization pol-
icy design, empirical performance optimization

I. INTRODUCTION

We are witnessing the increasingly widespread adoption

of deep learning in a plethora of application domains. The

unprecedented success of deep learning is, in large part,

powered by rapid model innovations, which in turn critically

depend on algorithms and systems support for training. One

of these innovations, distributed deep learning–training deep

neural networks on a cluster of GPU servers–is increasingly

leveraged to train complex models on larger datasets. In

particular, SGD-based optimization has emerged as the de

facto way to perform distributed training and provides the

basis for parallelizing training jobs, allowing deep learning

practitioners to evaluate different model variants quickly.

However, it is more difficult to achieve good performance

and high-quality training with SGD-based distributed train-

ing, compared to traditional single-node training [1], [2]. A

T
ra

in
in

g
 T

h
ro

u
g

h
p

u
t

Converged accuracy

ASP

BSP

SSP, DSSP,
Group-based

Our work:

Sync-Switch

Fig. 1: Ours vs. prior work on synchronization protocols. Our
work looks to improve both the training time and accuracy simulta-
neously, compared to prior work that trades-off these two metrics.

large number of factors, such as slow servers and network

communication links, can all impact the distributed training

performance [3]–[5]. Of particular importance is how each

cluster node communicates and synchronizes their respective

progress during training, governed by parameter synchroniza-

tion protocols, which has a profound impact on both the model

converged accuracy and training time. Bulk synchronous par-

allel (BSP) [6], a default option for popular frameworks

including TensorFlow, requires each node to synchronize every

iteration. In contrast, asynchronous parallel (ASP) allows

nodes to work at their own pace [7]. However, both distributed

training protocols have their respective limitations, e.g., BSP

is prone to slow down due to workers need to wait for

synchronization while ASP suffers from decreased accuracy

due to stale gradients.

In this work, we explore ways to exploit the benefits of both

BSP and ASP and design a hybrid synchronization approach

Sync-Switch. In contrast to prior work [8]–[11], which often

needs to sacrifice either training throughput or converged accu-

racy, we set out to reduce training time while simultaneously

maintaining the converged accuracy as illustrated in Fig. 1.

Specifically, we propose an empirically-driven methodology—

which we also use to generate a set of policies—that determine

how and when to switch the synchronization protocol. Our

policies, the offline ones that target jobs under normal training

circumstances and the online ones that react to cluster runtime

status, are designed with the key insight of maximizing

the time the GPU servers spend on training asynchronously

without sacrificing the trained model’s accuracy.

Through extensive empirical profiling of distributed training

workload, we demonstrate that our key idea of hybrid syn-

chronization can lead to converged accuracy and training time

benefit compared to using BSP and using ASP, respectively. In

particular, we empirically observe that, while one may need to

perform synchronous training throughout all epochs to achieve

1

ar
X

iv
:2

1
0
4
.0

8
3
6
4
v
2

[c

s.
D

C
]

 2
0
 A

p
r

2
0
2
1

TensorFlow

Sync-Switch

Job/Task/Worker Profiler
Continuously collect runtime metrics

Policy Manager
Protocol
policy

Timing
policy

Config.
policy

Configuration Actuator

Worker 1

Worker 2
1. Checkpoint current states

2. Switch sync protocol
3. Restart tasks from checkpointed states

DL models

Runtime

2. Switch
synchronization
protocol

1. Checkpoint
current states

Parameter
servers

Custom hook manager
Configs. (e.g.,
sync protocols)

Perf.
metrics

BSP-based
SGD

ASP-based
SGD

Fig. 9: Sync-Switch architecture and implementation. We imple-
ment Sync-Switch on top of the popular TensorFlow framework as two
logical parts: a standalone entity and a per-node part. Grey-shaded
components are our modifications. Hollow and solid arrows represent
the profiling and actuation workflow, respectively.

V. Sync-Switch IMPLEMENTATION

We implemented a Sync-Switch prototype, as shown in

Figure 9, based on TensorFlow v1.10 and Tensor2Tensor

v1.9 [28]. The prototype includes the parameter synchroniza-

tion policies described in Section IV for distributed training

jobs. Sync-Switch users can manage their distributed training

jobs via the command line. Sync-Switch’s implementation con-

sists of two logical components: a standalone cluster manager

that interfaces with Google Cloud Platform and a custom hook

manager embedded in TensorFlow that collects training status

and adjusts per-node configurations.

The cluster manager first takes the user input, including

the training job script and cluster size, to initialize protocol

and configuration policies. If the job is a recurring one, the

cluster manager initializes the timing policy based on the prior

binary search-based result. Otherwise, the cluster manager

launches a pre-specified number of pilot jobs per the search

algorithm described in Section IV-B1 to obtain the timing

policy. Afterward, Sync-Switch creates the training cluster

consisting of nodes running with TensorFlow and sets up the

profiler for continuously collecting runtime metrics.

Sync-Switch’s custom hook manager is written as a core

Python component to interact with TensorFlow runtime to col-

lect internal metrics such as training throughput and training

loss and to change hyper-parameters like learning rates. The

collected metrics are sent back to the profiler, which, in con-

junction with the policy manager, decides whether to trigger

a synchronization protocol switch. The switch mechanism is

implemented by having each custom hook manager listen at a

pre-specified port for incoming commands and by leveraging

TensorFlow’s built-in model checkpoint/restore functions for

persisting the training progress. In Sync-Switch, once all cus-

tom hook managers finish checkpointing, the cluster manager

propagates the updated training job and configurations to all

nodes. Once notified, custom hook managers relaunch the

training tasks to resume the training from the last model

checkpoint but with a different synchronization protocol.

VI. EVALUATION

We conducted our experiments by training popular deep

learning models on Google Cloud Platform (GCP) to quantify

Sync-Switch’s performance over training exclusively with BSP

and with ASP, two commonly chosen baselines [9], [11]. Note,

since the performance of existing synchronization protocols

all fall in between that of BSP and ASP, we believe eval-

uating using BSP and ASP provide us a good foundation

for understanding Sync-Switch’s performance. Furthermore,

semi-synchronous protocols, such as SSP and DSSP, can

also be utilized in Sync-Switch (for example switching from

SSP to ASP)—Sync-Switch is agnostic to the underlying

synchronization protocols. Our evaluation includes systems

experiments using our Sync-Switch prototype to evaluate the

efficacy of timing policies and framework overhead with real

TensorFlow jobs, as well as simulation experiments to analyze

the performance and cost of our binary search-based algorithm

under realistic workload conditions. Table I summarizes our

experiment setups and result highlights.

A. Evaluation Setup and Methodology

Distributed Training Workloads. We choose two different

workloads, (i) ResNet50 on the CIFAR-100 dataset and (ii)

ResNet32 on the CIFAR-10 dataset. Both models are part

of the ResNet model family, one of the widely used CNNs

for image recognition tasks. We use the ResNet implemen-

tations from Tensor2Tensor [28]. ResNet50 has more layers

than ResNet32, leading to different model parameter size

and floating-point operations, and therefore has longer per-

batch training time with the same cluster. The datasets, each

containing 60K images of size 32X32 pixels, are widely used

in deep learning research [29]. The key difference between the

two datasets is the number of the classification classes (i.e.,

CIFAR-100 contains 100 classes vs. CIFAR-10 contains 10

classes); therefore, it often takes more epochs to train on the

CIFAR-100. As such, these two workloads allow us to evaluate

Sync-Switch’s performance under different computation and

learning requirements.

Cluster Setup and Configuration. We run all experiments

on cloud-based GPU clusters in GCP’s us-west1 region; we

choose two commonly used cluster sizes of eight and sixteen4

to evaluate Sync-Switch’s performance [11], [14]. Each server,

running Ubuntu 18.04 LTS, has 8 vCPUs, 30 GB of main

memory, 100GB local HDD storage, and is equipped with

one Nvidia K80 GPU card. To account for the inherent

accuracy variations in SGD-based deep learning training, we

repeat each experiment setup five time using the same model

parameter initialization algorithm. We report both the average

performance with standard deviation and the runs with the best

performance, measured by the highest achieved test accuracy.

Evaluation Metrics. We use two groups of metrics for eval-

uating Sync-Switch’s efficiency in parameter synchronization

(first group) and its associated overhead (second group). The

first group includes training loss, test accuracy, total training

time, and time-to-accuracy. Training loss is calculated based

on the cross-entropy loss function per mini-batch. We report

the average training loss collected every 100 ASP steps to

4Smaller cluster size has less impact on ASP’s converged accuracy [5].

7

Search Setting Cost Amortization
Effective

(vs. BSP)
Success

Probability

(Exp.1, No, 5, 5) 12.71X 15.79 1.97X 100%
(Exp.1, No, 3, 3) 7.62X 9.47 1.97X 99.2%
(Exp.1, Yes, 0, 3) 4.63X 5.75 2.59X 100%

(Exp.2, No, 5, 5) 17.86X 44.81 1.12X 100%
(Exp.2, No, 4, 4) 14.28X 35.83 1.12X 93.4%
(Exp.2, Yes, 0, 4) 9.05X 22.71 1.17X 100%

(Exp.3, No, 5, 5) 7.68X 16.54 1.30X 100%
(Exp.3, No, 3, 3) 4.61X 9.93 1.30X 100%
(Exp.3, Yes, 0, 1) 0.54X 1.16 1.87X 100%

TABLE II: Binary search cost analysis. We define a search setting
as job recurrence, number of BSP trainings, and number of candidate
policy trainings.

Figure 15 compares the training performance with and

without (baseline) applying our straggler-aware policies. We

observe that when the straggler scenario is mild (scenario one),

both straggler-aware policies adequately handle the potential

performance degradation and even shorten the total training

time by 2%, compared to the straggler-agnostic baseline pol-

icy. Furthermore, we find that the greedy policy leads to a 2%

lower converge accuracy while policy two is able to maintain

the high-quality converge accuracy. The accuracy degradation

is most likely due to having to perform two extra switches,

one to ASP and the other back to BSP, before the optimal

timing. Based on our empirical observation, we conclude that

the greedy policy does not work in conjunction with Sync-

Switch’s existing baseline policies.

In contrast, the elastic-based policy is proven to be effective

even under moderate levels of slowness. In particular, we

observe that this policy not only achieves a similar level of

converged accuracy but also leads to a 1.11X speedup. This

further suggests that the better course of action is to train

without the transient stragglers than to block the remaining

cluster nodes from making progress when training BSP.

C. Overhead of Sync-Switch

1) Binary Search Cost: To quantify the overhead of our

binary search-based algorithm (in search time) in different

training scenarios, i.e., with recurring jobs and fewer mea-

surement runs, we use all our training logs and simulate each

search setting 1000 times with the accuracy threshold of 0.01.

Table II details the cost-performance trade-off (more results

are available in the appendix). If the job is recurring, the search

cost can be reduced by up to 5X the BSP training. However,

when facing a new training job, it is best to at least repeat the

BSP runs 3 times. We further observe that with too few BSP

training, the search setting often ends up with significantly

lower success probability (e.g., 56.8% to 82.3%) in finding

the same switching timing as the baseline setting.

Additionally, we analyze the amortized cost, measured by

the number of job recurrences, and the effective training ratio,

measured by the multiples of BSP training sessions. The

former provides further justification of the cost-effectiveness of

our binary search algorithm and the latter signifies the potential

information gains. As an example of the search setting (No,

Cluster Actuator Exec. Init. (s) Switching (s) Total (s)

8 K80
Sequential 157 90 247

Parallel (Ours) 90 36 126

16 K80
Sequential 268 165 433

Parallel (Ours) 128 53 181

TABLE III: Sync-Switch Overhead. We measure both the initializa-
tion time, i.e., the time taken to setup the training cluster, and the
switching overhead, when training ResNet32 using Sync-Switch.

3, 3) in Table II, if a job needs to be trained for more than

9 times, a very likely event given the trial-and-error nature of

deep learning training, the corresponding search cost is then

amortized. Moreover, the search process itself also produces

almost 2X valid training sessions compared to training with

BSP. In summary, our analysis shows that the search cost is

reasonably low and can be further reduced by continuously

using Sync-Switch.

2) Runtime Overhead: We quantify the overhead of using

Sync-Switch to perform distributed training. Our measurements

are based on training ResNet32 on the CIFAR-10 dataset,

as the training framework overhead is largely workload-

independent [5]. Table III shows the total time spent by

Sync-Switch for initializing the cluster and switching to a

different synchronization protocol. First, initializing a cluster

of twice the workers takes 1.42X the time of initializing a

cluster of 8 workers. Note that one can expect to have similar

initialization time even with just the vanilla TensorFlow [5].

Second, by having a configuration actuator that propagates

distributed training tasks in parallel, Sync-Switch reduces both

the initialization time and switching overhead by 2X and 3.1X,

respectively. Third, the switching overhead can be as low as 36

seconds, about 1.7% of the time taken to train the model with

Sync-Switch. In summary, Sync-Switch incurs low switching

overhead that increases sub-linearly with the cluster size.

VII. RELATED WORK

Distributed Synchronization Protocols. Researchers have

designed many synchronization protocols that can be roughly

categorized as BSP [6], ASP [7], and semi-synchronous pro-

tocols [8], [33], that trade-off the training throughput and

accuracy of distributed DL training. These studies all focus on

improving the synchronization protocols for distributed SGD,

by exposing mechanisms and policies to control the model

staleness. In contrast, our work focuses on determining the

best way to utilize existing protocols and can be used in

conjunction with new synchronization protocols. Compared

to semi-synchronous protocols such as SSP and DSSP, our

work leads to good converged accuracy and does not re-

quire users to tune extra hyper-parameters. In addition to

directly modify the synchronization protocols, researchers also

look at using different synchronizations for different cluster

nodes to account for the heterogeneous performance caused

by network and GPU servers [9], [10]. For example, Gaia

used synchronous training for nodes running inside the same

datacenter and fully asynchronous training for inter-datacenter

communication [10]. Additionally, Dutta et al. [11] introduced

a number of SGD variants where the synchronization degree

10

is controlled by a new hyper-parameter. Our work is similar

in that we will also use different synchronizations for a given

training session but with the key difference of deriving the

policies for hybrid synchronization.

Network Optimization for Distributed Training. The iter-

ative process of deep learning makes network an important

bottleneck as not only the model parameters but also the

gradients need to be transferred periodically. To combat the

impact on training performance without impacting the model

quality, prior work explored various techniques that aim to

reduce the communication costs via gradient sparsification or

compression. For example, by only sending the large gradients,

Aji et al. used a heuristic sparsification scheme and showed

a speed gain of 22% [34]. Terngrad and QSGD improved the

network communication efficiency by reducing the gradients to

a few numerical levels [35], [36]. These efforts are orthogonal

to our work but might be combined with Sync-Switch to

achieve further training speedup.

VIII. CONCLUSION

Using the right distributed synchronization protocol at the

right time can significantly improve the training throughput

and produce models with good test accuracy. In this paper,

we devised the first set of adaptive policies, including offline

and online ones, that make such decisions and evaluated

their effectiveness in a prototype system called Sync-Switch

in Google Cloud. We found that training with BSP for only

a small portion of time and then switching to ASP delivers

models of comparable converged accuracy using much shorter

time, compared to training with BSP. For recurring training

jobs, a prevalent scenario in deep learning due to its trial-and-

error nature, we used an offline approach to find the optimal

switch timing. To ensure that switching from BSP to ASP does

not lead to undesirable side effects, we additionally specified

a configuration policy that describes how to adjust critical

hyper-parameters. We showed that Sync-Switch improved the

total training time and the time-to-accuracy by up to 5X and

4X while achieving similar test accuracy through real-world

experiments, compared to training exclusively with BSP. Fur-

ther, with the elastic-based policy, Sync-Switch can effectively

circumvent the performance degradation caused by transient

stragglers and instead leads to a 1.1X speedup under moderate

slowdown scenarios. Additionally, the benefits brought by

Sync-Switch come with reasonably low overhead, e.g., a search

overhead that can be amortized with jobs recurring a few times

and a switching overhead in the order of tens seconds.

IX. ACKNOWLEDGEMENTS

We would like to thank all anonymous reviewers for their in-

sightful comments. This work is supported in part by National

Science Foundation grants #1755659 and #1815619, National

Natural Science Foundation of China (61802377) and Youth

Innovation Promotion Association at CAS, and Google Cloud

Platform Research credits,

REFERENCES

[1] S. Shi et al., “Performance modeling and evaluation of distributed deep
learning frameworks on gpus,” DASC/PiCom/DataCom/CyberSciTech,
2018.

[2] S. Li et al., “Speeding up Deep Learning with Transient Servers,” ICAC,
2019.

[3] F. Yan et al., “Performance Modeling and Scalability Optimization of
Distributed Deep Learning Systems,” SIGKDD, 2015.

[4] T. Ben-Nun et al., “Demystifying Parallel and Distributed Deep Learn-
ing: An In-depth Concurrency Analysis,” ACM Comput. Surv., 2019.

[5] S. Li et al., “Characterizing and Modeling Distributed Training with
Transient Cloud GPU Servers,” ICDCS, 2020.

[6] A. V. Gerbessiotis et al., “Direct Bulk-Synchronous Parallel Algo-
rithms,” J. Parallel Distrib. Comput., 1994.

[7] J. Dean et al., “Large scale distributed deep networks,” NeurIPS, 2012.
[8] X. Zhao et al., “Dynamic stale synchronous parallel distributed training

for deep learning,” ICDCS, 2019.
[9] W. Jiang et al., “A novel stochastic gradient descent algorithm based

on grouping over heterogeneous cluster systems for distributed deep
learning,” CCGRID, 2019.

[10] K. Hsieh et al., “Gaia: Geo-distributed machine learning approaching
lan speeds,” NSDI, 2017.

[11] S. Dutta et al., “Slow and stale gradients can win the race,” arXiv

preprint arXiv:2003.10579, 2020.
[12] Y. Peng et al., “Optimus: An Efficient Dynamic Resource Scheduler for

Deep Learning Clusters,” EuroSys, 2018.
[13] B. Recht et al., “Hogwild: A Lock-Free Approach to Parallelizing

Stochastic Gradient Descent,” NeurIPS, 2011.
[14] A. Or et al., “Resource Elasticity in Distributed Deep Learning,”

Proceedings of Machine Learning and Systems, 2020.
[15] J. Chen et al., “Revisiting distributed synchronous sgd,” arXiv preprint

arXiv:1604.00981, 2016.
[16] K. He et al., “Deep residual learning for image recognition,” CVPR,

2016.
[17] G. Huang et al., “Densely connected convolutional networks,” CVPR,

2017.
[18] B. Kleinberg et al., “An alternative view: When does sgd escape local

minima?” ICML, 2018.
[19] S. Hochreiter et al., “Simplifying neural nets by discovering flat min-

ima,” in NeurIPS, 1995.
[20] N. S. Keskar et al., “On large-batch training for deep learning: Gener-

alization gap and sharp minima,” ICLR, 2017.
[21] Q. Duan, “Cloud service performance evaluation: status, challenges, and

opportunities–a survey from the system modeling perspective,” Digital

Communications and Networks, 2017.
[22] A. Li et al., “CloudCmp: comparing public cloud providers,” ACM IMC,

2010.
[23] J. Xie et al., “Improving mapreduce performance through data placement

in heterogeneous hadoop clusters,” IPDPSW, 2010.
[24] A. Senior et al., “An empirical study of learning rates in deep neural

networks for speech recognition,” ICASSP, 2013.
[25] S. L. Smith et al., “Don’t decay the learning rate, increase the batch

size,” arXiv preprint arXiv:1711.00489, 2017.
[26] P. Goyal et al., “Accurate, large minibatch sgd: Training imagenet in 1

hour,” arXiv preprint arXiv:1706.02677, 2017.
[27] H. Lin et al., “Dynamic mini-batch sgd for elastic distributed training:

learning in the limbo of resources,” arXiv preprint arXiv:1904.12043,
2019.

[28] A. Vaswani et al., “Tensor2tensor for neural machine translation,” CoRR,
2018.

[29] A. Krizhevsky et al., “Cifar-10,” http://www.cs.toronto.edu/∼kriz/cifar.
html, 2017.

[30] C. Coleman et al., “Analysis of dawnbench, a time-to-accuracy machine
learning performance benchmark,” SIGOPS Operating Systems Review,
2019.

[31] X. Gastaldi, “Shake-shake regularization,” arXiv preprint

arXiv:1705.07485, 2017.
[32] F. Chollet, “Xception: Deep learning with depthwise separable convo-

lutions,” CVPR, 2017.
[33] Q. Ho et al., “More effective distributed ml via a stale synchronous

parallel parameter server,” NeurIPS, 2013.
[34] A. F. Aji et al., “Sparse Communication for Distributed Gradient

Descent,” arXiv preprint arXiv:1704.05021, Apr. 2017.
[35] W. Wen et al., “TernGrad: Ternary Gradients to Reduce Communication

in Distributed Deep Learning,” NeurIPS, 2017.

11

[36] D. Alistarh et al., “QSGD: Communication-Efficient SGD via Gradient
Quantization and Encoding,” NeurIPS, 2017.

[37] S. Hochreiter et al., “Flat minima,” Neural Computation, 1997.
[38] S. L. Smith et al., “A bayesian perspective on generalization and

stochastic gradient descent,” ICLR, 2018.
[39] P. Chaudhari et al., “Entropy-sgd: Biasing gradient descent into wide

valleys,” Journal of Statistical Mechanics: Theory and Experiment,
2019.

[40] L. N. Smith, “Cyclical learning rates for training neural networks,”
WACV, 2017.

APPENDIX A

ADDITIONAL REMARKS FOR THEORETICAL EXPLANATIONS

This section provides additional remarks for Sync-Switch

protocol policy design described in Section IV-A.

Remark A.1 (Population loss landscape at different scales).

There is much empirical and heuristic evidence that the

population loss is in fact much smoother than the training loss.

For instance, it has been observed that sharp local minima of

the training loss – minima where the training loss is only

low in a small region near the minimum point – oftentimes

do not correspond to a low test loss [19], [20], [37]–[39].

On the other hand, ’flat’ local minima of the training loss–

local minima where the training loss remains low in a wide

region containing the local minimum point– in many cases also

minimize the test loss. Moreover, it has recently been shown

that minimizing a ’smoothed’ version of the training loss can

lead to a test error that is as low as, or oftentimes even lower

than, if one were to minimize the training loss itself. Here the

smoothed loss function is the convolution of the loss function

with the distribution of the batch gradient noise (the variance

of the noise depends on the batch size) [18].

This evidence suggests that the population loss is much

smoother than the training loss, and is in fact closer to a

’smoothed’ version of the training loss convolved with a the

distribution of the batch gradient noise rather than the original

training loss. This suggest that our population loss will have

a landscape that is smooth at a finer scale on the order of

the learning rate used later in the training. On the other

hand, at coarser scales–on the order of the large learning

rate used earlier in the training–we expect the landscape of

the population loss to be much closer to the training loss. In

other words, earlier in the training, when a large step size

is used, the change in the training loss and population loss

at each step should be roughly the same, and the ratio of

the change in the population loss to the change in training

loss should be close to 1. Later in the training, when a much

smaller learning rate is used, this ratio could be very far from

1.

Remark A.2 (Can switching from BSP to ASP also minimize

the training loss?). In the previous discussion we have used

the fact that the population loss is oftentimes much smoother

than the training loss. For this reason, even if one only uses

stale gradients later in the training when the algorithm takes

smaller step sizes, the gradient of the training loss may still

change rapidly at each step of the algorithm despite the fact

that the gradient of the population loss may not be changing

as quickly. This suggests that, while using ASP later in the

training may allow one to effectively minimize the population

loss, it may still not allow one to minimize the training loss.

This is exactly what we observe in our experiments: while

starting with BSP and then switching to ASP allows one to

minimize the test error (and hence the population loss) as

effectively as using static BSP, the training loss remains much

higher than in experiments where static BSP is used.

Remark A.3 (Why not start with ASP and then switch to

BSP?). As noted in the previous discussion, using ASP early in

the training may cause the algorithm to be unstable, preventing

ASP from effectively decreasing the loss value. Thus, even

if one starts with ASP and switches to BSP, the time spent

running ASP early in the training is effectively wasted time.

This means that, starting with ASP and then switching to BSP

does not allow for any speedup over static BSP (and may even

lead to a slightly slower training time than static BSP due to

the time wasted running ASP at the beginning of the training).

Moreover, in our experiments we observe that starting with

ASP and switching to BSP can cause the loss value to get

“stuck” at a relatively high value for a very long time. This

is likely because, if one starts with ASP and then switches

to BSP after decaying the learning rate, the algorithm may

still be in a region with a high loss value at the epoch when

the learning rate is decreased. Since a lower learning rate can

cause SGD to take a much longer time to escape saddle points

of the loss function [40], starting the training with ASP can

cause the algorithm to get stuck for a very long time near a

saddle point with a high loss value even if one then switches

to BSP (Figure 7(c)), .

APPENDIX B

PSEUDO CODE FOR OUR BINARY SEARCH ALGORITHM

In Algorithm 1, we specify a limit for number of settings M

we want to explore, since from the observation in our empirical

experiment, the speedup provided for switching earlier over a

small percentage of workload is negligible. β is the margin

of error for converged accuracy due to the stochastic nature

of deep learning and distributed training, and should either be

specified by the user or set automatically (see Section VI for

details). To further reduce variance, we set the number of runs

for each switch point R. A large R can reduce sub-optimal

results, but increase the search cost. In reverse, a small R can

reduce search cost, but increase the possibility of sub-optimal

results. A is the target converged accuracy in the constraints.

APPENDIX C

ADDITIONAL RESULTS FOR BINARY SEARCH-BASED

OVERHEAD ANALYSIS

Table IV, Table V, and Table VI provide the complete

simulation results to what was presented in Section VI-C1.

Table V details the search cost for the workload of ResNet50

and CIFAR-100 on an 8-worker cluster. Due to the relatively

closer training throughput of BSP and ASP, the search cost

is greater than the other, simpler, workload. Moreover, the

search success probability is also lower for both recurring and

12

Search Setting

(Recurring, BSP runs, candidate runs)
Search Cost

Amortized

(# of recurrence)
Effective Training

(vs. BSP)
Success

Probability

Baseline: (No, 5, 5) 12.71X 15.79 1.97X 100%
(No, 4, 4) 10.17X 12.63 1.97X 100%
(No, 3, 3) 7.62X 9.47 1.97X 99.2%
(No, 2, 2) 5.07X 6.30 1.97X 82.3%
(No, 1, 1) 2.48X 3.08 2.02X 56.8%
(No, 1, 5) 8.71X 10.82 2.41X 80.4%
(No, 1, 4) 7.16X 8.90 2.37X 78.7%
(No, 1, 3) 5.61X 6.97 2.32X 78%
(No, 1, 2) 4.06X 5.04 2.22X 69.4%
(Yes, 0, 5) 7.71X 9.58 2.59X 100%
(Yes, 0, 4) 6.17X 7.67 2.59X 100%
(Yes, 0, 3) 4.63X 5.75 2.59X 100%
(Yes, 0, 2) 3.07X 3.81 2.61X 79%
(Yes, 0, 1) 1.50X 1.86 2.67X 56.6%

TABLE IV: Cost and performance analysis for experiment setup one.

Search Setting

(Recurring, BSP runs, candidate runs)
Search Cost

Amortized

(# of recurrence)
Effective Training

(vs. BSP)
Success

Probability

Baseline: (No, 5, 5) 17.86X 44.81 1.12X 100%
(No, 4, 4) 14.28X 35.83 1.12X 93.4%
(No, 3, 3) 10.71X 26.87 1.12X 85.4%
(No, 2, 2) 6.98X 17.51 1.15X 67.3%
(No, 1, 1) 3.26X 8.18 1.23X 37.3%
(No, 1, 5) 12.12X 30.41 1.41X 79.8%
(No, 1, 4) 10.04X 25.19 1.29X 59.2%
(No, 1, 3) 7.75X 19.45 1.29X 49%
(No, 1, 2) 5.65X 14.18 1.24X 48.2%
(Yes, 0, 5) 11.10X 27.85 1.17X 100%
(Yes, 0, 4) 9.05X 22.71 1.17X 100%
(Yes, 0, 3) 6.73X 16.89 1.17X 81%
(Yes, 0, 2) 4.64X 11.64 1.17X 78.1%
(Yes, 0, 1) 2.29X 5.75 1.22X 48.9%

TABLE V: Cost and performance analysis for experiment setup two.

Search Setting

(Recurring, BSP runs, candidate runs)
Search Cost

Amortized

(# of recurrence)
Effective Training

(vs. BSP)
Success

Probability

Baseline: (No, 5, 5) 7.68X 16.54 1.30X 100%
(No, 4, 4) 6.14X 13.22 1.30X 100%
(No, 3, 3) 4.61X 9.93 1.30X 100%
(No, 2, 2) 3.07X 6.61 1.30X 89.5%
(No, 1, 1) 1.54X 3.32 1.30X 69.7%
(No, 1, 5) 3.67X 7.90 1.63X 68.5%
(No, 1, 4) 3.14X 6.76 1.59X 66.4%
(No, 1, 3) 2.61X 5.62 1.53X 67.4%
(No, 1, 2) 2.07X 4.46 1.49X 77.2%
(Yes, 0, 5) 2.68X 5.77 1.87X 100%
(Yes, 0, 4) 2.14X 4.61 1.87X 100%
(Yes, 0, 3) 1.67X 3.60 1.87X 100%
(Yes, 0, 2) 1.07X 2.30 1.87X 100%
(Yes, 0, 1) 0.54X 1.16 1.87X 100%

TABLE VI: Cost and performance analysis for experiment setup three.

new jobs. Reducing the search times to be four leads to a

search cost of 9.05X of the BSP training and an amortized

training cost of 22.71 recurring jobs. The searching process

also produces less effective training of 1.17X. In terms of a

new training job, to ensure the success rate to be more than

99%, running five times per setting is recommended, leading to

a search cost of 17.86X amortized to 44.81 training sessions.

However, even though the search cost is higher than the others

for this setup, the effective training (1.12X) shows it is still
more efficient than training with BSP.

Table VI summarizes the cost and performance analysis for

the workload of ResNet32 and CIFAR-10 with a cluster of size

16. We show that the search cost can be reduced to 0.54X

the cost of BSP, cheaper than 1 BSP training session, due

to only searched once. When facing a new training job, it is

similarly safe to run three times per setting for guaranteed

high success probability, for the cost of 4.61X of the BSP

training. The search cost can be amortized with ten recurring

jobs, similar to training the workload with a cluster of size 8.

13

Algorithm 1 Our Binary Search-based Algorithm for Deriving

Timing Policies

1: Inputs: Accuracy threshold β, num. of settings M , runs

per setting R, target accuracy A (optional)

2: if A is not provided then

3: Train the model with BSP R times and record con-

verged accuracy: α1 · · ·αr

4: Set A = 1
R

∑R

i=1 αr

5: end if

6: upper = 100, lower = 0,m = 0, α′ = 0
7: while m < M do

8: r = 0
9: switching timing = (upper+lower)

2
10: while r < R do

11: Train switching timing% of workload with BSP,

then switch to ASP

12: Record the converged accuracy αr

13: α′ = α′ + αr

14: r = r + 1
15: end while

16: if α′

R
∈ [A− β,A+ β] then

17: upper = switching timing

18: else

19: lower = switching timing

20: end if

21: m = m+ 1
22: end while

Additionally, Sync-Switch can produce up to 1.87X of effective

training compared to training with BSP.

Figure 16 summarizes the normalized search cost to training

with BSP for all three experiment setups.

14

	I Introduction
	II Background
	II-A Distributed Deep Learning
	II-B Distributed Parameter Synchronization Protocols

	III Problem Statement and Solution Overview
	IV Sync-Switch Policy Design
	IV-A Protocol Policy: Which to Use and in What Order?
	IV-A1 Empirical Analysis
	IV-A2 Theoretical Explanations

	IV-B Timing Policy: When to Switch?
	IV-B1 Offline Policy via Binary Search
	IV-B2 Online Policies for Handling Stragglers

	IV-C Configuration Policy: How to Adjust Hyper-parameters?

	V Sync-Switch Implementation
	VI Evaluation
	VI-A Evaluation Setup and Methodology
	VI-B Performance of Sync-Switch
	VI-B1 End-to-end Comparison
	VI-B2 Generality Analysis of Our Observations
	VI-B3 With Transient Stragglers

	VI-C Overhead of Sync-Switch
	VI-C1 Binary Search Cost
	VI-C2 Runtime Overhead

	VII Related Work
	VIII Conclusion
	IX Acknowledgements
	References
	Appendix A: Additional remarks for theoretical explanations
	Appendix B: Pseudo Code for Our Binary Search Algorithm
	Appendix C: Additional Results for Binary Search-based Overhead Analysis

