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Abstract

Models which estimate main effects of individ-
ual variables alongside interaction effects have
an identifiability challenge: effects can be freely
moved between main effects and interaction ef-
fects without changing the model prediction.
This is a critical problem for interpretability be-
cause it permits “contradictory” models to rep-
resent the same function. To solve this prob-
lem, we propose pure interaction effects: vari-
ance in the outcome which cannot be represented
by any subset of features. This definition has
an equivalence with the Functional ANOVA de-
composition. To compute this decomposition,
we present a fast, exact algorithm that transforms
any piecewise-constant function (such as a tree-
based model) into a purified, canonical represen-
tation. We apply this algorithm to Generalized
AdditiveModels with interactions trained on sev-
eral datasets and show large disparity, including
contradictions, between the apparent and the pu-
rified effects. These results underscore the need
to specify data distributions and ensure identifia-
bility before interpreting model parameters.

1 MOTIVATION

An important question in data analysis is whether two vari-
ables act in concert to affect an outcome. This question
is often approached by estimating an additive model with
interactions of the form:

Y ⇡ f0 + f1(X1) + f2(X2) + f3(X1, X2) (1)

and then examining f1, f2, f3 (Neter, Wasserman, and Kut-
ner, 1974; Hastie and Tibshirani, 1990). But this uncon-
strained additive model has fundamental flaws. We exam-
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Figure 1: Four realizations of Eq. (1) on Boolean variables
X1 and X2. In each row, we have an overall intercept f0,
main effects f1 and f2, and an interaction effect f3. Red in-
dicates a positive and blue a negative effect. While the four
models appear to be different and to yield contradictory in-
terpretations, all four models represent the same function

and produce identical outputs. The fourth model (d) is the
purified canonical form returned by our algorithm.

ine two common forms of this model and show that both
have problems of identifiability and interpretability.

1.1 Interactions between Boolean Variables

First, let us consider the simple case of Boolean variables
X1 andX2 that take on values {0, 1}. As depicted in Fig. 1,
we can represent the additive model with interaction by 3
tables and an intercept. The tables represent the main ef-
fect of X1, the main effect of X2, and the effect of the
interaction between X1 and X2. As shown in Fig. 1, we
can realize different bitwise operations betweenX1 andX2
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Figure 2: Strength of the interaction effect implied by dif-
ferent parameter choices for model (3). The vertical axis
is the proportion of variance explained by the interaction
effect for IID X1, X2 ⇠ N(0, 1). In all cases, a = 0 and
b = c = d = 1, but choice of ↵ and � values changes the
model’s interpretation. In an extreme case, ↵ = � = �1
makes the main effects disappear entirely. Recall that all of
these represent the same function and make the same pre-
dictions, only the interpretations vary from form to form.

through different values in the interaction table.

Naı̈vely, we may believe that the bitwise operations AND

(Fig. 1a) andOR (Fig. 1b) represent distinct forms of inter-
action effect. However, we can equivalently write the OR

operation as X1 _ X2 = �0.25(X1 � X2) + 0.5(X1 �

0.5) + 0.5(X2 � 0.5) + 0.251. Similarly, we can write the
AND operation asX1^X2 = 0.25(X1�X2)+0.5(X1�

0.5) + 0.5(X2 � 0.5) + 0.75. These equivalences make it
clear that the interaction effect of AND is identical to the
interaction effect of OR, and both interactions are actually
XOR modified with main effects. Thus, the four additive
models depicted in Fig. 1 are identical in their outputs, but
generate contradictory interpretations. Since the main rea-
son for using additive models is to understand the impact
of variables and their interactions on the outcome (Hastie,
2017), this representational degeneracy is problematic.

In this paper, we define interaction effects as variance
which cannot be explained by main effects. Because both
AND and OR are the XOR modified with main effects,
our definition implies that additive models with interaction
effects can always be purified to a weighted XOR interac-
tion. This preference has connections to the effect coding
representation of inputs (Bech and Gyrd-Hansen, 2005),
discussed in Sec. 4.1.

1.2 Multiplicative Model

Now let us consider the case where X1 and X2 are con-
tinuous. A common interaction model in statistics (Hastie
and Tibshirani, 1990) is the linear model augmented with

1� represents the centered XOR depicted in Fig. 1d.

multiplicative features:

Y ⇡ a+ bX1 + cX2 + dX1X2. (2)

While this model is typically identifiable, the coefficients,
unfortunately, are not necessarilymeaningful. For any ↵,�,
the following model is equivalent to (2):

Y ⇡ (a� d↵�) + (b+ d�)X1 + (c+ d↵)X2

+ (d)(X1 � ↵)(X2 � �), (3)

The algebraic form of (2) is just a special case of (3) with
↵ = � = 0, but for any ↵ and �, forms (2) and (3) make the
same predictions. As shown in Fig. 2, changing the values
of ↵ and � changes the interpretations of a, b, c, d. Mean-
centering does not solve this problem (see Section A of the
Supplement for a more complete discussion), so we require
rules governing the selection of values for ↵,�. In this pa-
per, we propose to follow the functional ANOVA decom-
position, which implicitly sets ↵,� such that the variance
of interaction terms is minimized.

1.3 Contributions

In this paper, our major contributions are threefold: (1) We
study the problem of non-identifiability of additive models
with interactions, and show that the functional ANOVA de-
composition repairs this flaw. We argue that the functional
ANOVA decomposition should be preferred to other rep-
resentations of interaction. (2) We propose a fast, exact
algorithm to recover the functional ANOVA decomposi-
tion from piece-wise constant functions such as tree-based
models. (3) We show that naı̈ve inspection of popular mod-
els for training GAMs with interactions can produce con-
tradictory conclusions on real datasets. These contradic-
tions are corrected by our purification algorithm.

2 RELATEDWORK

Generalized additive models (GAMs) have long been used
to model individual features flexibly (Hastie and Tibshi-
rani, 1990), using functional forms such as splines, trees,
wavelets, etc. (Eilers and Marx, 1996; Lou, Caruana, and
Gehrke, 2012; Wand and Ormerod, 2011). GAMs are
claimed to be interpretable (Hastie and Tibshirani, 1990;
Caruana et al., 2015) and have been leveraged for inter-
pretability tasks, such as identifying unexpected relation-
ships between features and predictions. For example, using
GAMs, Caruana et al. (2015) found an unexpected rela-
tionship between having asthma and decreased likelihood
of pneumonia mortality in a medical records dataset.

While vanilla GAMs describe nonlinear relationships be-
tween each feature and the label, interactions are some-
times added to further capture relationships between mul-
tiple features and the label (Coull, Ruppert, and Wand,
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2001; Lou et al., 2013). However, the resulting models
are overparametrized if the parameters are not regularized
or constrained (Marascuilo and Levin, 1970; Rosnow and
Rosenthal, 1989; Terbeck and Davies, 1998; Green et al.,
1999; Davies, 2012) – the interactions can hence be non-
identifiable and non-unique. The interpretability of GAMs
may be misleading if the relationship between a feature and
the prediction changes after adding an interaction with that
feature to the model. To address this, constraints such as
the “sum-to-zero” restriction (Hastie and Tibshirani, 1990)
– where parameters are constrained to sum to zero – or ef-
fect coding (Bech and Gyrd-Hansen, 2005) – a certain type
of one-hot-encoding with fewer degrees of freedom – have
been proposed.

The functional ANOVA decomposition, which we study
in this paper, also addresses this issue using “integrate-to-
zero” restrictions (Hooker, 2007). Interestingly, the func-
tional ANOVA has also been used to isolate effects of indi-
vidual features in settings where many features are chang-
ing at a time, such as in hyperparameter tuning (Hutter,
Hoos, and Leyton-Brown, 2014). However the connection
between the functional ANOVA and isolating effects of in-
dividual features in interactions has not been studied.

Our definition of interactions as variance which cannot be
explained by main effects is similar to Yu, Bien, and Tib-
shirani (2019)’s “reluctance” principle: that a main effect
should be preferred over an interaction if both have similar
prediction performance. However, the reluctance principle
does not solve the identifiability problem. For example, in
Fig. 1, reluctance would outlaw representations (c) and (d),
but would make no choice between representations (a) and
(b). Our definition of interactions is also related to Sobol
indices (Sobol, 2001), that measure how important a fea-
ture or interaction is in terms of the amount of prediction
variance explained.

Due to the computational cost of finding interactions, the
search space of possible interactions is typically restricted.
For example, the popular hierarchy restriction (Bien, Tay-
lor, and Tibshirani, 2013) only considers a potential inter-
action if its component features are already present in the
model as main effects. We briefly mention a few interac-
tion detection methods, and refer the reader to a recent re-
view by Bien, Taylor, and Tibshirani (2013) for more. They
can be roughly divided into two types: hypothesis-testing
for interactions (Sperlich, Tjøstheim, and Yang, 2002), or
model-based methods Tsang, Cheng, and Liu (2017); Pu-
rushotham et al. (2014), including methods that use tree-
based models to detect interactions (Sorokina et al., 2008;
Du and Linero, 2019).

Instead of restricting the model class for estimation, our
proposed method of purifying interactions is designed to be
applied post-hoc after estimation. Other post-hoc optimiz-
ers include decision tree pruning (Mingers, 1989), which

aims to remove spurious interactions, and local models to
approximate large models (Ribeiro, Singh, and Guestrin,
2016; Lengerich, Aragam, and Xing, 2019).

In this paper we focus on tree-based models. In contrast
to other recent works on generating post-hoc explanations
from tree-based models, such as feature importance, rules,
etc. (Devlin et al., 2019; Hara and Hayashi, 2018; Deng,
2019), in this work we focus on defining what purified in-
teractions for tree-based models look like.

3 FUNCTIONAL ANOVA

The Functional ANOVA (fANOVA) (Hoeffding, Robbins,
and others, 1948; Stone and others, 1994; Huang, 1998;
Cuevas, Febrero, and Fraiman, 2004; Hooker, 2007) seeks
to decompose a function F (X) into:

F (X) = f0 +
dX

i=1

fi(Xi) +
X

i6=j

fij(Xi, Xj) + . . . , (4)

where X = (X1, . . . , Xd). By the uniqueness of fANOVA
under non-degenerate feature distributions (Chastaing,
Gamboa, and Prieur, 2012), this set of functions uniquely
defines an orthogonal decomposition of F with minimum
variance in higher-order functions. From this decomposi-
tion, we can uniquely define interaction effects.

3.1 fANOVA for Continuous Functions

Given a density w(X) and F
u
⇢ L

2(Ru) the family of al-
lowable functions for variable set u, the weighted fANOVA
(Hooker, 2004, 2007) seeks:

{fu(Xu)|u ✓ [d]} = (5a)

argmin
{gu2Fu}u2[d]

Z ⇣ X

u✓[d]

gu(Xu)� F (X)
⌘2

w(X)dX,

where [d] indicates the power set of d features, such that

8 v ✓ u,

Z
fu(Xu)gv(Xv)w(X)dX = 0 8 gv,

(5b)
i.e., each member fu is orthogonal to the members which
operate on a subset of the variables in u. By Lemma 4.1 of
Hooker (2007), these orthogonality conditions are equiva-
lent to the integral conditions

8 u ✓ [d], 8 i 2 u,

Z
fu(Xu)w(X)dXidX�u = 0

(5c)
where the subscript �u indicates the set of variables not in
u. Thus, we seek a set of functions fu which jointly satisfy
(5c) with respect to a density w.



Purifying Interaction Effects with the Functional ANOVA

3.2 fANOVA of Piecewise-Constant Functions

For F which is piecewise-constant, we have a set of bins⌦j

for feature j. Let us assume that each⌦j is finite, e.g. ⌦j =
{Xj,1, . . . , Xj,nj}. Then, the conditions (5c) become:

8 u ✓ [d],8 i 2 u, 8 Xu\i,X

Xi2⌦i

fu(Xu\i, Xi)
X

X�u

w(X) = 0. (6)

That is, if we represent each fu as a tensor of effect sizes,
the fANOVA is recovered when every slice has mean zero.

4 PURE INTERACTION EFFECTS

We define pure interaction effect as variance in the outcome
which cannot be described by fewer variables:
Definition 1. Pure interaction effects of X on Y are:

{fu(Xu)|u ✓ [d]} =

argmin
{gu2Fu}u2[d]

Z ⇣ X

u✓[d]

gu(Xu)� E[Y |X]
⌘2

p(X)dX,

such that 8 u 2 [d],E[fu(Xu)|Xv] = 0 8 v ⇢ u.

This is equivalent to the fANOVA decomposition of
E[Y |X] = F (X) under w(X) = p(X)).

4.1 A Connection to Effect Coding

In the context of discrete features (e.g., Fig. 1), fANOVA is
equivalent to effect coding (Bech and Gyrd-Hansen, 2005).
This unfolds the feature values into indicators, referred to
as dummy variables or one-hot encoding. In linear regres-
sion with X1 taking values in {0, 1} this translates to

Y = �0 + �1I(X1 = 0) + �2I(X1 = 1) + ✏. (8)

For identifiability, we must drop a parameter. One com-
mon strategy is to remove the indicator for a “reference”
value (e.g., setting �1 = 0), in which case �0 becomes the
predictor for examples with the reference value. An alter-
native “effect” coding seeks to ensure that �0 represents the
average outcome by:

Y = �0 + �1I(X1 = 1)� �1I(X1 = 0) + ✏. (9)

For Boolean X1, doing this translates to representing X1

as a single column taking values in {�1, 1}. For X1 with
values {v1, . . . , vk}, the effects are given by k�1 columns
with the jth having values I(X1 = vj+1) � I(X1 = v1).
When interactions are employed between discrete features,
the interaction is then represented by the elementwise prod-
uct of each pair of columns in the individual effects. For
two Boolean features this exactly produces the XOR rep-
resentation of Fig. 1d. More generally, the use of effect

coding exactly corresponds to the fANOVA representation
under a uniform weight function.

A natural question is how to extend effect coding to con-
tinuous features. In this paper, we propose to recover the
fANOVA by purifying tree-based models. This exploits the
power of tree-based models to partition continuous vari-
ables into discrete bins, providing a data-driven method of
extending effect coding to continuous variables.

5 CALCULATING FANOVA OF
TREE-BASED MODELS

For tree-based models, we have a tensor Tu representing
the effect sizes of each set of variables u. According to
(6), if these tensors can be “purified” such that each 1-
dimensional slice has mean zero, we recover exactly the
fANOVA decomposition. Let

m(Tu, i,Xu\i) =
X

xi2⌦i

fu(Xu\i, xi)
X

X�u

w(X) (10)

be the weighted mean of the slice of Tu representing ef-
fect sizes for different values of Xi when Xu\i = xu\i.
For any (u, i), we also have a corresponding Tu\i (letting
T; be the tensor representing the overall model intercept).
Because the model predictions are generated by summing
the effects across all T , we can move any value from Tu

into Tu\i without changing the model predictions. In par-
ticular, we can movem(Tu, i, xu\i) into Tu\i to generate a
1-dimensional slice of Tu with mean zero without adjust-
ing the output of the overall model. We refer to this as
“mass-moving” between Tu and Tu\i.

Algorithm 1 Purify-Matrix
Require: T,w, u,⌦ .Will purify Tu so that every slice

has zero-mean according to weighting w

1: end False
2: while pure 6= True do
3: pure True
4: for i 2 u do
5: for xu\i 2 ⌦u\i do
6: m

0
 m(Tu, i, xu\i) . Eq. (10)

7: ifm0
6= 0 then . There is mass to move.

8: pure False
9: Tu[xu\i, :]  Tu[xu\i, :]�m

0

10: Tu\i[xu\i]  Tu\i[xu\i] +m
0

11: end if
12: end for
13: end for
14: end while
15: return T

This suggests an algorithm for calculating the fANOVA for
tree-based models. By iteratively removing the means of
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Algorithm 2 Purify
Require: T,w,⌦ . T is the set of tensors, ⌦ is the values,

w is the weighting
1: order  sort descending([|T |]) . Arrange all

potential sets u in order of decreasing size
2: for u 2 order do
3: T  Purify-Matrix(T,w, u,⌦)
4: end for
5: return T

slices of Tu, we can generate a Tu which satisfies (6) with-
out changing the model’s outputs. We can iteratively pu-
rify all Tu 2 T by this procedure, cascading effects from
high-order interactions into low-order interactions, and fi-
nally from main effects into the global intercept. We call
this algorithm for purifying interactions “mass-moving”
(Alg. 2) because it iteratively moves mass from higher-
order interactions to lower-order interactions until no mass
remains to be moved. At convergence, it exactly recovers
the fANOVA decomposition. An illustration of this algo-
rithm is available in Sec. B of the Supplement2.

In contrast to other algorithms for calculating the fANOVA
which rely on optimization of orthogonal basis functions
(e.g. Hooker, 2007; Chastaing, Gamboa, and Prieur, 2012),
our algorithm uses the tree structure to recover the exact
decomposition. This avoids challenges of optimizing func-
tions on correlated variables. While this paper is focused on
the implications of the decomposition, and thus we study
the results of decomposing tree-based models, in principle
we could apply this algorithm to any F by first estimating
a piecewise-constant F̂ .

5.1 Convergence and Correctness

By the uniqueness of the fANOVA, Alg. 2 is correct if
and only if it converges to produce tensors with zero-mean
slices. Since Alg. 2 operates on the tensors in order of de-
creasing dimension, it suffices to check that Alg. 1 con-
verges to produce a tensor with zero-mean slices for any
input. To see that this is indeed the case, let us examine
the means of slices over a run of Alg. 1 for a matrix Ta,b

representing the effect of the interaction of two variables
Xa 2 ⌦a and Xb 2 ⌦b. For simplicity, we are consider-
ing only a matrix representing an interaction between two
variables; this proof extends to tensors as well since the
fANOVA is defined over one-dimensional slices. In the fol-
lowing, we use the shorthand notation wi,j = w(i, j) (for
i 2 ⌦a and j 2 ⌦b), and assume that w has been normal-
ized so that

P
i2⌦a

P
j2⌦b

wi,j = 1.

Let t be an iteration counter which alternates between ze-

2This algorithm can be implemented in under 100 lines of
Python and is available in the open-source package https:
//github.com/microsoft/interpret.

roing row and columns (i.e., the number of times line 4 of
Alg. 1 has been passed). At each t we have a matrix T

t
a,b

and can defineM t as the unpurified mass at iteration t:

c
t
j =

X

i2⌦a

wi,jT
t
a,b[i, j], r

t
i =

X

j2⌦b

wi,jT
t
a,b[i, j]

(11a)

M
t =

X

i2⌦a

X

j2⌦b

wi,j(
��rti

��+
��ctj

��) (11b)

When M
t = 0 the algorithm has converged to a matrix

with zero-mean at every slice. Then, for any w which has
equal weighting along the row or column dimensions, the
algorithm converges in a single iteration:
Theorem 1. For any Ta,b,⌦, if wi,j = wi,j0 8 i, j

0
:

M
t = 0 8 t � 2 (12)

This means the algorithm converges in a single pass for
many simple distributions, a fact familiar to data scientists
who often “double-center” design matrices with uniform
weighting over samples and features. We also have rapid
convergence of Alg. 1 for generic non-degenerate w:
Theorem 2. For any Ta,b, w,⌦, for any ✏ > 0

M
t
 ✏ 8 t � ⌧(✏) (13)

where ⌧(✏) = log2
�
M0

✏

�
.

That is, Alg. 2 converges to the fANOVA decomposition
with tolerance ✏ inO

�
log(M0)�log(✏)) iterations for each

interaction tensor. This theorem is proved in Sec C of the
Supplement. Empirically, we observe that most of the mass
is moved in few iterations (Section D of the Supplement).

The uniqueness of fANOVA provides several useful corol-
laries. First, permutation of the rows and columns does not
change the purified interaction effect:
Corollary 2.1. For any permutation P with inverse P

0
,

Purify-Matrix({Ta, Tb, Ta,b}, w, {a, b},⌦) =

P
0(Purify-Matrix(P (Ta, Tb, Ta,b), w, {a, b},⌦)). (14)

This gives two convenient conditions: (1) re-encoding the
order of nominal variables does not change the interaction
effects, and (2) Alg. 1 can iterate over the slices in any or-
der. Second, interaction purification is a linear operator:
Corollary 2.2. For any interaction matrix Ta,b = ↵1A1 +
. . .+ ↵nAn, where

Pn
i=1 ↵i = 1:

Purify-Matrix({Ta, Tb, Ta,b}, w, {a, b},⌦)

= ↵1Purify-Matrix({Ta, Tb, A1}, w, {a, b},⌦)

+ . . .+ ↵nPurify-Matrix({Ta, Tb, An}, w, {a, b},⌦).
(15)

This means that purification can be run equivalently before
or after bootstrap aggregation.
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5.2 Estimating w

Defining interaction effects via weighted fANOVA makes
it clear that effects can only be understood in conjunction
with a data distribution. The correct w(x) under which to
understand effects is the true data distribution p(x); how-
ever a fundamental challenge of machine learning is to es-
timate p(x) from limited data. In this paper, we use three
simple estimators of piecewise-constant densities:

• Uniform: ŵunif(x�u) / 1

• Empirical: ŵemp(x�u) /
P

xi2Xtrain
I{xi

�u=x�u}

• Laplace: ŵlap(x�u) / ŵunif(x�u) + ŵemp(x�u)

As we see in the experiments, the choice of distribution
can change (sometimes dramatically) the purified effects.
Thus, selection of ŵ(x) is a critical step in model interpre-
tation and we look forward to future work which improves
estimation of p(x).

6 EXPERIMENTS

After verifying that our algorithm recovers the ground-truth
fANOVA decomposition of simulation data (Sec. E of the
Supplement), we examine the implications of purification
on real data. To do so, we use two additive models with
interactions. Both of these models are tree-based ensem-
bles, from which we recover the set of effect tensors T by
summing the effect tensors of each tree in the forest.

The first model is a constrained form of Extreme Gradi-
ent Boosted (XGB) Forests (Chen and Guestrin, 2016), an
extremely popular model for tabular data. By limiting the
depth of each tree to a single split (boosted stumps, referred
hereafter as XGB), this is a GAM without interactions. If
we allow the trees to have depth 2, this model (XGB2) is
a GAM with pairwise interactions. The XGB2 model was
not designed to prefer main effects over interactions. As we
see in the experiments, this means that purification induces
large changes in the interpretation of XGB/XGB2 models.

The second model we use is the GA2M model (Lou et al.,
2013) implemented in Nori et al. 2019. The GA2M algo-
rithm allows users to specify the number of interactions to
estimate; when this value is set to 0 we refer to this al-
gorithm as GAM. GA2M was designed with a two-stage
estimation procedure to fit main effects before fitting inter-
actions in order to make mains as strong as possible and
prevent main effect from leaking into interactions. This
two-stage training procedure reduces the mass that needs
to be moved by purification; nevertheless on average the
purification process also improves the main effects learned
by GA2M models.

Our results show that model interpretations change signif-
icantly from purification and that the choice of data distri-
bution used for purification is important.

Figure 3: Main effects of additive models with interactions
trained to predict the (a) ground-truth recidivism and (b)
COMPAS risk score. The implications of the main effects
depend on the model class, the use of purification, and the
distribution used for purification.

6.1 COMPAS

The Correctional Offender Management Profiling for Al-
ternative Sanctions (COMPAS) system is a model for pre-
dicting recidivism risk that is used to guide bail decisions.
The high stakes of this system make it crucial to ensure that
the algorithm treats individuals fairly – understanding how
COMPAS makes predictions is of societal importance.

In 2016, the investigative journalism firm Propublica or-
ganized and released recidivism data on defendants in
Broward County, Florida along with the correponsding
predictions from the COMPAS model3. Analyses of this
dataset have sparked controversy, with different investi-
gations coming to different conclusions about algorithmic
bias (Dieterich, Mendoza, and Brennan, 2016; Feller et al.,
2016; Tan et al., 2018). Here, we ask whether the con-
clusions regarding algorithmic bias are changed by purifi-
cation, and how much the choice of sample distribution
changes the interpretation of the model.

To answer this question, we train an additive model with
interactions to mimic the COMPAS model, as in Tan et al.
(2018). As shown in Fig. 3, the interpretations of main ef-
fects in the COMPAS dataset are changed significantly by
the purification process. The magnitude – and occasion-
ally the sign – of the effects are changed by the selection
of data distribution. In particular, the sign of many mains
learned by XGB (gray bars) are opposite the signs for those
mains learned by GAMs, or GA2Ms and XGB2 after pu-
rification: the use of purification with XGB2 yields mains
that are much more consistent with what other models learn
compared to mains learned directly by XGB. Also, there is

3https://github.com/propublica/
compas-analysis/
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significant variation in the strength of the mains (though
not the signs) depending on the data distribution used for
the purification process. Both the learning algorithm and
purification distribution are important for meaningful au-
dits of the COMPAS model.

6.2 California Housing

A canonical machine learning dataset, and the task used in
the original development of weighted fANOVA (Hooker,
2007), is the California Housing dataset (Pace and Barry,
1997). This dataset was derived from the 1990 U.S. census
to understand the influence of community characteristics
on housing prices. The task is regression to predict the me-
dian price of houses in each district in California.

In Fig. 4, we see the interaction of latitude and longitude
on housing prices. The unpurified effects indicate that the
most expensive real estate lies in the Pacific Ocean; after
purification this problem goes away and we see that it arose
from the influence of the Los Angeles and San Francisco
metropolitan areas. This result is similar to the fANOVA
decomposition in Hooker 2007 (see Fig.5 within); how-
ever, our approach is able to recover these pure interaction
effects from any model, rather than constrained to orthogo-
nal basis functions. This enables our approach to use meth-
ods which adaptively split variables (such as the gradient-
boosted trees of XGB2), leading to more refined density
estimation than the grid used in Hooker 2007.

6.3 MIMIC-III

MIMIC-III (Johnson et al., 2016) is a medical dataset of
lab tests and outcomes for patients in the intensive care unit
(ICU). The classification task is to predict mortality in the
current hospital stay. In this experiment, we investigate the
reliability of risk curves by examining their consistency af-
ter purification with different sample distributions.

A representative sample of main effect curves are shown
in Fig. 5. The upper left graph (the main effect of Age for
GAM/GA2Ms) shows imperceptible change due to purifi-
cation. As a result, the selection of distribution used for
purification does not make a large difference in this case.
For the XGB/XGB2 models, however, this story is more
complex (upper right graph). The XGB2 model is not de-
signed to prioritize main effects over interaction effects, so
purification makes non-negligible impact and the selection
of a distribution can change model interpretation.

These differences are magnified for the variable blood urea
nitrogen (BUN) which participates in a large number of in-
teractions. Even though the GA2M algorithm was designed
to estimate interactions based only on residuals after esti-
mating the main effects, it is apparent that the interaction
terms still capture some main effects because mass-moving
significantly alters the main effect of this variable. As a re-

sult, the purified risk curves can produce different interpre-
tations for different distributions (e.g., the curve of the risk
graph at BUN near 50).

Purification does not change the overall model, so any ex-
cessive granularity in the purified main effects must have
been hiding in the interaction effects. This leads us to be-
lieve that tree-based models tend to estimate high-variance
interaction effects, and that regularizing these interaction
effects could improve predictive accuracy.

7 DISCUSSION

7.1 Purification Explains the Results of Prior Work

Our work suggests that interactions can properly be under-
stood only after purification. This problem has confounded
prior work studying the ability of machine learning to iden-
tify interactions. For example, Wright, Ziegler, and König
(2016) studied the ability of random forests to learn inter-
action effects. The authors generated data from five differ-
ent data generators designed to reflect interactions of ge-
netic single nucleotide polymorphisms (SNPs). Their re-
sults appeared to lead to a pessimistic conclusion that ran-
dom forests are not adept at learning interaction effects.

Model SNP1 SNP2 SNP1xSNP2
Interaction Only 0 0 1
Modifier SNP 0 1 1
No Interaction 1 1 0
Redundant 1 1 �1
Synergistic 1 1 1

Table 1: Data Generator Coefficients, Unpurified

Model SNP1 SNP2 SNP1�SNP2
Interaction Only 0.5 0.5 0.25
Modifier SNP 0.5 1.5 0.25
No Interaction 1 1 0
Redundant 0.5 0.5 �0.25
Synergistic 1.5 1.5 0.25

Table 2: Data Generator Coefficients, Purified

However, as shown in Tables 1,2 (and visualized in Fig. 12
of the Supplement), these data generators look very differ-
ent before and after purification. In particular, the data gen-
eration schemes differ dramatically in the strength of the
pure main effects: the “synergistic” model has main effects
three times as strong as the main effects in the “interac-
tion only” model. In contrast, the interaction effect is the
same strength for all data generation schemes (except for
the “No Interaction” setting). In light of the purified data
generators, the results of Figs. 3 and 4 of Wright, Ziegler,
and König (2016) suggest a more optimistic conclusion: in
the case of interaction effects of equal strength, the random
forest preferentially recovers interactions of variables with
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Figure 4: Interaction of the Latitude/Longitude features in an XGB2 model trained on the California housing data. The left
pane is the unpurified interaction, the middle pane is the purified interaction, and the right is the map of California from
which samples were drawn. Purification sorts out the influence from the Los Angeles and the San Francisco metro areas.

(a) Age

(b) Blood Urea Nitrogen (BUN) level

Figure 5: Main effects of models trained to predict mortal-
ity in MIMIC-III before and after purification.

stronger main effects. This result underscores the necessity
of purifying data generation schemes before studying the
inductive biases of machine learning models.

7.2 Purification Reveals Noisy Estimates

As we saw in experiments (Sec. 6), purification can pro-
duce main effects that are less smooth than the main ef-
fects of the original model. Purification does not change
the model, so the mass that made a main effect less smooth
was hidden in the interactions prior to mass moving. High
variance in terms can hurt interpretability and likely should
be regularized out for more robust estimation.

We are currently investigating post-hoc regularization
methods that simplify the main effects to reduce the vari-
ance induced when estimating interaction effects, and re-
vealed by the purification process. Preliminary results sug-

gest that main effects often can be simplified, which not
only makes them easier to interpret, but, in some cases,
makes them modestly more accurate on test data.

7.3 The Mystery of log(X1X2)

In this section we use the notion of pure interaction effects
to revisit a classic interaction puzzle: the log function. A
classic way of representing an interaction between X1 and
X2 is Y = X1X2. If we sample data for X1 and X2 uni-
formly on the the interval (0, 1], the mass-moving purifi-
cation algorithm shows that Y = X1X2 has the following
XOR-like interaction and linear main effects:

Figure 6: Pure interaction and main effects of Y = X1X2.

However, if we model the logarithm of Y , we get log(Y ) =
log(X1X2) = log(X1)+log(X2). That is, applying log(·)
to the interaction X1X2 appears to break the interaction
and yield a model that is purely additive in the log(X1)
and log(X2). It is surprising that applying a simple mono-
tone function to the productX1X2 can make the interaction
between X1 and X2 disappear.

Does purification account for this? Yes – according to our
definition of pure interaction effects,log(X1X2) is not an
interaction effect at all. In Section H, we verify that the
mass-moving algorithm correctly identifies interaction ef-
fects and resolves the mystery of log(X1X2).

8 CONCLUSIONS AND FUTUREWORK

We have shown that the non-identifiability of interaction
effects in additive models is a problem for model inter-
pretability – equivalent models can produce contradictory
interpretations. We have proposed to use the fANOVA
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decomposition to recover meaningful interaction effects,
and we have shown an efficient algorithm to exactly re-
cover this decomposition for piecewise-constant functions
such as tree-based estimators. In the past, algorithms such
as GA2M have been designed to prioritize main effects
over interactions during estimation; our method of post-hoc
purification returns an identifiable form of any tree-based
model, and thus frees model designers to separate estima-
tion procedures from purification procedures. Finally, we
have applied this approach to learn pure interaction effects
from several datasets, and seen that the interpretation of
these effects changes in response to the data distribution.
This underscores the importance of specifying the data dis-
tribution before attempting to interpret any estimated ef-
fects. The true density p(x) is the correct data distribution
for model interpretation, but p(x) is seldom known, so we
are interested in future work to improve estimators of p(x)
in order to improve model interpretability.
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